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A free monoid containing all prefix codes

CAO Chun-hua! LIU Qin'? YANG Di?

Abstract. In this paper, we exhibit a free monoid containing all prefix codes in connection
with the sets of i-th powers of primitive words for all ¢ > 2. This extends two results given by

Shyr and Tsai in 1998 at the same time.

81 Introduction

Prefix codes are widely used in information theory and computer science, for example, in
encoding and decoding, data compression and transmission, DES and Huffman’s algorithms
(see [1-4]). So they are especially hot topics in theoretical researches and practical applications.
There are several equivalent ways to define a free monoid and we suggest adopting the following
one: a monoid S is free if and only if every element s in S has a unique factorization as a product
of elements of § = S\{1})\S\{1})2, the so-called basis of S. Let X be an alphabet and M be
the monoid of languages over X which is not free. But the family of all prefix codes over X
denoted by P(X) is a free submonoid of M (see Proposition 2.17 of [5]). From then on, people
are devoted to establishing more and more smaller or larger free submonoids of M than it. In
[6], some submonoids of P(X) are proposed. In [7], the submonoid generated by the basis of
P(X), denoted by P(QX), together with the set of all primitive words over X, denoted by @, is
proved to be not free. In [8], the submonoid generated by P(X) U{QW} is free for arbitrary
i > 2, where Q) = {f* | f € Q} is the set of i-th powers of all primitive words. Also in [8],
the submonoid generated by PfEX) u{® | i=2, 3,4, ...} is free, where PfEX) is the
family of all irreducible finite prefix codes. This leads to the following natural question. Is the
submonoid generated by P(X) u{Q® | i=2, 3, 4, ...} free? Here in this paper, we solve the
problem by proving that P(X) u{Q® | i=2, 3, 4, ...} is a code, so the monoid generated
by P(X) u{Q® | i=2, 3, 4, ...} is a free submonoid of M. It is a free submonoid of M
containing all prefix codes in connection with the sets of ith powers of primitive words for all
i > 2.
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82 Preliminaries

Let X be a nonempty finite set of letters, named by an alphabet, and | X| be the number
of letters in X. Any finite string over X is called a word. For example, w = a®bab?a is a
word over the alphabet X = {a,b}. The word which contains no letter is called the empty
word, noted by 1. The set of all words over X is noted by X*. For any w;, ws € X*, let
Wy = a1a2...0n, W2 = biby...b, where a;, b; € X for i = 1,2,...,n, j = 1,2,...,m,
we define the catenation operation of w; and ws is the word wywe = ajas...a,bibs...by,.
Then X* is a monoid with the catenation. For any word w € X*, let lg(w) be the number
of letters occurring in w, and Ig(1) = 0. Then lg(w) = 8 for the former word w = a3bab?a.
Let Xt = X*\ {1}. Any nonempty subset of X* is a language and {1} is a language. Let
M={A | ACX" or A={1}}. For any A, B € M, the catenation operation of A and B is
the language AB = {zy | © € A, y € B}. Then M is a monoid with the catenation, called
the monoid of languages. For any A € M, let A ={x € A | lg(z) <lg(y) for all y € A},
which is the set of all words with minimal length in A. Let lg(A) = lg(x) for any = € A,
then lg(AB) = lg(A) + lg(B) for any A,B € M. So M is a monoid with length. A nonempty
family of languages o« € M is called a code if A1Ay--- A, = BiBy--- By, and A;, B; € « for
i1=1,2,...,n, j=1,2,...,mimplies that n = m and A; = B; fori =1,2,...,n. If ais a code,
then o generates a free monoid * of M. If S is a free monoid, then § = (S\{1})\(S\{1})? is
a code.

For any u, v € X*, if there exists a word x € X* such that ux = v (or zu = v), then w is
called a prefix (or suffix) of v, denoted by u <, v (or u <s v). We write u <, v (or u <, v) if
u<p v (or u<gv)but u#vand u#1. A language A is called a prefix code if AN AX+ =0,
that is for any two distinct words z, y in A, x is not a prefix of y and y is not a prefix of z.
A prefix code A is called a maximal prefix code if and only if for any z € X\ A, AU {x} is
not a prefix code. Let w € X, if w = f* where f € X and n > 1 is an integer implying that
n =1 and w = f, then w is called a primitive word. Let @) be the set of all primitive words
over X and Q¥ = {f* | f e Q} for each i > 2. A word which is not a primitive word is called
an imprimitive word. Each imprimitive word is in a unique Q) for some i > 2.

Some definitions which are used in the paper but not stated here can be found in [5, 9, 10].

83 Main Result

If | X| =1, let X = {a}, then P(X) = {{a’} | i=1,2,3,...} and Q = {a}, Q) = {a'}
for each i > 2. So P(X) u{Q® | i=2, 3,4, ...} = P(X). In the rest of the paper, we
always let X be an alphabet containing at least 2 letters. For two distinct letters a, b € X,
since a’, (a’b)? € Q®, then Q) is not a prefix code for each i > 1. So it is an interesting
thing to check whether the submonoid generated by all prefix codes in connection with the sets
of QW for all i > 2 is free or not? In order to answer this question, at first, we propose some
properties on prefix codes and Q) , which will be used in the proof of the main result in the
section.
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Lemma 3.1, (Proposition 211 of [5]) et A, be nonempty languages over X fori=1,2,3,...,n.
If AjAy... A, is a prefix code, then AsAs... Ay, AsAy...A,, ..., Ap_1A,, A, are prefic
codes.

Lemma 3.2, (Proposition 1 of ) Eor gny vy € X+ and a, b € X where | X|>2 and a # b, at

least one of the words ua and ub is primitive.

Proposition 3.3. Let A, B € M\ {1}. Then for every i > 1, none of the sets AQW, QW A,
AQY B is a prefix code.

Proof. Assume AQ is a prefix code. Then Q) is a prefix code by Lemma 3.1. But Q) is
not a prefix code. This is a contradiction. So AQ® is not a prefix code.

Take z € A and f € Q. Then fiz € QWA. Let u = f'z € XT. By Lemma 3.2, for two
distinct letters a, b € X, at least one of the words ua and wb is primitive. Without loss of
generality, we let ua is a primitive word that is, fiza = ua € Q. So (fiwa)'z € QW A. Since
fiz, (fiza)'z € QWA and fiz <, (f'za)’z, then QWA is not a prefix code.

Assume AQWB = A(QB) is a prefix code. Then QB is a prefix code by Lemma 3.1.
But Q) B is not a prefix code. This is a contradiction. So AQ®™ B is not a prefix code. O

We usually take the language {1} as a prefix code. The family of all prefix codes over X is
denoted by P(X).

Lemma 3.4. Let u € XT and lg(u) = k. Then ab’u, ba’u € Q for all s > k and a, b € X
such that a # b.

Proof. Assume ab®u is an imprimitive word. Then there exist ¢ € @ and ¢t > 2 such that
ab®u = q*. Sot-lg(q) = s+ 1+ k. Then 2lg(q) <t-lg(q) =s+1+k<s+1+s=2s5+1.
So lg(q) < % < s+ 1. Hence g <, ab®. Then ¢ = ab®* for some 0 < s; < 5. So
ab’u = ¢t = ab®rab® .... Hence b*~*1u = abs;.... Thus a = b, which is a contradiction.
Similarly, we can prove that ba®u is a primitive word. O

Lemma 3.5. (Provosition L1 of [5) et yy = f* where f € Q and i > 1. Then vu = g* for
some g € Q.

In this lemma, when ¢ = 1, we can see if uv € @, then vu € Q.
Proposition 3.6. Let A€ P(X)\ {1} and B € M. Then AQYWB # QU for everyi, j > 2.

Proof. Assume there exist some 7, j > 2 such that AQWB = QU). Take z € A. Then
lg(x) =k > 1. Let a, b € X and a # b. Then abfz € Q by Lemma 3.4. So zab® € Q by
Lemma 3.5. Then (zab®)’ € QUY). Since QU) = AQ¥ B, then (zab*)’ € AQ”WB. There exist
f €A yeQand z € B such that (zab*)’ = fy'z. Since A € P(X) and z, f € A, then z = f.
Thus (ab*r)i~tab® = y'z. In addition, exactly one of the following two cases may occur.

(1) When lg(ab¥z) = lg(y), we have ab*z = y. Since (ab*z)I~1ab* = yz, then (ab*x)I~Labk =
(abkz)iz. Hence (abfz)’~tabk = (abFz)~tab*rz. We consider the following case.
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(1-1) When i = j, since (ab¥z)i~tab® = (ab¥x)'~lab*zz, then (ab*x)"~Lab* = (ab*x)"~la
b*zz. Hence zz = 1. So x = 1. This contradicts that lg(z) = k > 1.

(1-2) When i > j, since (ab*z)~tabt = (ab*z)"~labfzz, then ab® = ab*x(ab*x)'~72z. So
x(abfx)"~7z = 1. Hence x = 1. This contradicts that lg(x) = k > 1.

(1-3) When i < j, since (abfz)?~lab* = (ab*z)"~tabFzz, then (abFz)i ="~ lab® = 2. S-
ince v € A, ba*r € Q and (abFz)?~""lab = 2 € B, then x(ba*z)!(abFx)I~"~lab® =
z(ba*z)'z € AQWB. Again since AQWB = QU then z(ba*z)'(abFz)i~*~'ab* €
QU). There exists g € Q such that z(ba*z)(abPz)T~*"1ab® = g’. So (xba®)*(xab®)’~?
= ¢7. In fact, we know lg(zba®) = lg(xab®) = 2k + 1. Calculating the lengths of
the two words in the equation, we have lg(g) = 2k + 1. So g = zba* = zab*. Hence
a = b. This contradicts that a # b.

(2) When Ilg(ab*z) # lg(y), we have y = (ab*z)'u for some 0 < t < j —1 and u € X*.
When u = 1, then y = (abz)’. Since y € @, then t = 1. Hence y = ab*z. We have a
contradiction by the former case. Hence u € X*. Since (abFz)?~lab® = yiz = yy'~lz =
(abFz)tuy’=1z, then (abFfx)i=1~tabF = uy’~lz. When 0 < t < j — 2, then u <, ab’z.
When ¢ = j — 1, then u <, ab*. So u <, abfz or u <, ab¥. Since ab® <, ab*xz, then we
consider u <, ab®z. One of the following cases may occur.

(2-1) If u = ab™ for some 0 < m < k, then y = (ab*z)tu = (ab®z)tab™. So (ab®z)’~tab®
=y'z = yy' 2z = (abFx)tab™y' "1z, Then (abFz)’~'~tab® = ab™y'~1z. It follows
that b* =™z (abfz)’~2"tab® = y*~12z. We obtain y starts with the letter b. But by
(abFz)i~lab® = y'z, we see that y starts with the letter a. This is a contradiction.

(2-2) If u = ab¥, then y = (ablz)tu = (abFz)tab®. So (abFz)i~lab* = y'z = yy'~lz =
(abFz)tab®yi=1z. Tt follows that (abfz)i~1=tabk = abFyi~'z. So z(abfz)’~2~tab* =
y*~1z. We obtain the (k 4 1)th letter in y is a. But by y = (ab*z)'u, we see that
the (k + 1)th letter in y is b. This is a contradiction.

(2-3) If u = abFz; for some z;, 2o € X such that x = 2125, then y = (abfz)tu =
(abfz)tab*zy. So (abFz)i~labt = y'z = yy'~lz = (ablz)labFziy*~lz. It follows
that (ab®z)?~1=tab? = abFziy"~'2. So wa(abFz)’~27tab = yi~lz. We obtain the
(Ig(w) + 1)th letter in y is a. But by y = (ab’z)tu, we see that the (Ig(xs) + 1)th
letter in y is b. This is a contradiction.

From all above, we know AQ" B % QU for every 4, j > 2. O

We cite some results from some references which will be used in the proof of our next

proposition.

Lemma 3.7. (Lemma 3.9 of B) Let A be a mazimal prefiz code and B, D € M\{1}. Then
AQ(i)B #+ Q(i)D for any i > 2.

Lemma 3.8. (Proposition 213 of B]) et A B, C, D, E be languages and AB = CD = E.
Then A B=C D = E and lg(A) +1g(B) = lg(C) + lg(D) = lg(E).
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Proposition 3.9. Let A € P(X)\ {1}, and B, D € M\ {1}. Then AQY B # QU D for every
ij>2

Proof. Assume there exist i > 2 and j > 2 such that AQ®WB = QY D. We consider the cases
that i = j and i # j.

(1) If ¢ = j, we consider the cases that A is a maximal prefix code and A is not a maximal
prefix code.

(1-1) If A is a maximal prefix code, by Lemma 3.7, we have a contradiction.

(1-2) If A is not a maximal prefix code, then there exists u; € X\ A such that AU{u;} €
P(X). For the word uy, by Lemma 3.2, we have uja € Q or ub € Q for two distinct
letters a, b € X. Without loss of generality, we may assume uja € Q. For any
dy € D, by the assumption AQB = QU D, we have (u1a)'d; € QWD = AQW B.
There exist y € A, p € Q and v; € B such that (uja)d; = yp'vr. Since AU {u} is
a prefix code and uy, y € AU {u1}, then uy = y. Since y € A, then uy € A. This
contradicts that u; € X\ A.

Thus for every i,j > 2, if i = j, then AQ®WB # QU)D.

(2) If i # j, by the assumption AQWB = QUWD, we have AQWB = QU D by Lemma
3.8. Take uy € A, dy € D and k = 2max{lg(uz), lg(da)}. Since k > 2lg(uz), then
k > lg(us) + 1 = lg(ausy) for a € X. By Lemma 3.4, we have ab*(auy) € Q for b € X
and a # b. Hence usab®a € Q by Lemma 3.5. Then (ugab*a)’dy € QUD = AQWB.
There exist z € A, ¢ € Q and v, € B such that (ugab®a)’dy = rq'vs. Since A is a prefix
code and us, x € A, then £ = us. Hence (abkaug)j_labkadg = ¢'vy. In the following, we

consider lg(q) and lg(ab*aus).

(2-1) If lg(q) = lg(ab*ausy), then g = ab*auy. We consider the following cases.

(2-1-1) When i > j, since ¢/~ tabfads = q've, then ab*ady = ¢" 7+ vy, So dy =
u2q vy, Calculating the lengths of the two words in the equation, we have
k> lg(da) =lg(u2)+ (i—7)(2+k+1g(u2))+1g(ve) > k. This is a contradiction.

(2-1-2) When i < j, since ¢/ lab¥ady = q'vo, then ¢~ "labfady = vo € B. By
ab*2uy € Q, we have ug(ab®+2us)i¢? "~ labFady € AQWB = QU D. There
exist ¢ € Q and z € D such that us(ab*+?uy)i¢’~""lab*ady = ¢’z. Since
dy € D, then lg(ds) < lg(z). So z = z1dy for some z; € X*. It follows
that ug(ab®2uy)i¢? """ tabPa = ¢721. So lg(g) = 2 + k + lg(us) + klg]& If
i —1g(z1) # 0, then 0 < Flgj& < 1. This contradicts that {g(g) is an integer.
Hence i — lg(z1) = 0. Then ¢ = usab®*tt = bugab®. We can see that the
(Ig(uz) + 2)th letter in ¢ is a. On the other hand, we know 2(k+1) — (k+4) =
2k+2—k—4 =k—2 > 0 because k = 2max{lg(uz), lg(d2)} > 2. So
k+1> % :§+2. Since ab*aus = q and 3 < Ig(us) +2 < (§)+2§ k41,
then the (Ig(usz) + 2)th letter in ¢ is b. This is a contradiction.
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(2-2) If 1g(q) # lg(ab*aus), let ¢ = (abfaus)iz; for some 0 < ¢t < j — 1 and x; €
X*. Assume x; = 1, then ¢ = (ab¥aus)’. Since ¢ € Q, then t = 1. We have a
contradiction by case (2-1). Hence 21 € Xt. We consider the following cases.

(2-2-1) When 0 < t < j — 1, we have 1 <, ab®aus. One of the following cases may
occur.

(2-2-1-1) If 1 = ab®* for some 0 < s; < k, then (abfaus)’~tabFady = q'vy =
qq" ve = (abFauy)tab® ¢*~tvy. So (abFaus)i~1"tabkady = ab®q'~'vy. Then
bE =51 qug (abfaus )’ 2 "tabfads = ¢'~'v,. Hence q starts with the letter b.
But by ¢ = (ab*aus)z1, we know that ¢ starts with the letter a. This is a
contradiction.

(2-2-1-2) If 2y = ab®, then we have (abFaus)’~lab*ady = q¢ive = q¢* lvy =
(abFaus)tabbq'~lvy. So (abFaus)’~'~tabFad, = ab®q'lvy. It follows that
aug(abfaus)i=2"tabkady = ¢'~'v,. Hence the (Ig(uz) + 2)th letter in ¢ is
a. But by ¢ = (abFaus)tz;, we know that the (Ig(uz) + 2)th letter in g is b
because (Ig(ug) +2) < k + 1. This is a contradiction.

(2-2-1-3) If 21 = ab¥a, then we have (ab*aus)?~labfads = qive = q¢' vy =
(abfaus)tabfaq'~ vs. So (abfaus)’~1~tabFads = ab*aq'~vy. It follows that
ug(abfaus)i=2~tab*ady = ¢*~'v,. Hence the (Ig(ug) + 1)th letter in ¢ is a.
On the other hand, we know 2(k+1) — (k+4) =2k+2—-k—4=k—-2>0
because k = 2max{lg(uz), lg(dz)} > 2. So k+1 > £t = k42 By
q = (abfaus)tz1 = (abFaus)tab®a and 3 <lg(uz) +2 < () +2<k+1, we
can see that (Ig(uz) + 2)th letter in ¢ is b. This is a contradiction.

(2-2-1-4) If 2, = abfaul, for some u), uy € XT such that uy = uhuy, then
we have (abFaus)i~labFady = q¢ive = q¢"lvy = (abFaus)tabFaubq~tvs.
So (abfaus)i~1tab*ady = ab*auhg'~ vy, Then uf(abFaus)’ 2 tab*ady =
q'~'vy. Hence the (Ig(u4) + 1)th letter in ¢ is a. But by ¢ = (ab*aus)tx,
we know that the (lg(uy) -+ 1)th letter in ¢ is b because (Ig(ufy)+1) < k+1.
This is a contradiction.

(2-2-2) When t = j — 1, we have ¢ = (ab¥aus)’~'z; and z1 <, abfady. This
implies that (abfaus)’~tabfady = qiva = ((abFaus)i='z1)'vs. So abFady =
z1((ab®aus)?~1x) vy, Calculating the lengths of the two words in the equa-
tion, we obtain k+2+1g(d2) = i-lg(x1)+ (j —1)( —1)(k+2+1g(u2)) +lg(v2).
So i -lg(x1) + (i —i— )k 4+ 2+ 1g(uz)) + lg(va) — lg(d2) — k — 2 = 0. This
contradicts that lg(ds) < g

Thus for every i,j > 2, if i # j, then AQ®WB # QU)D.
From all above, we know AQ"W B # QU)D for any i,j > 2. O

Lemma 3.10. (Lemma 3.6 of B)) ret B D e M. If there exist i, j > 2 such that QB =
QYD, then QW =QU) and B = D.
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o

Since P(X) is free, then P(X) is a code and it is the unique irreducible generating set
of P(X). So a prefix code A in P(X) cannot be represented in the form A = BC with

B, C € P(X). We have the following theorem on P(X) u{® | i=2, 3,4, ..}

Theorem 3.11. The family P = P(X) ui{Q® | i=2, 3,4, ...} is a code, so P* is a free
monoid properly containing all prefix codes.

Proof. Let A1As---A,, = B1By--- B, for any Ay, Ao, ..., Ay, By, B, ..., B, € P. We will
show that m =n and A; = B; for i = 1,2,...,n. We prove the theorem by induction on m.

(1) Ifm= 1, then A1 = BlBQ c Bn

o

(1-1) If Ay and Bj are both in P(X), then A1 = By and By --- B, = {1}. Som = n and
A1 = B;j.

(1-2) If Ay and By are both in {Q(i) | i=2, 3, 4, ...}, there exist i1, j1 > 2 such that
Q") = QU1 B, ... B,. By Lemma 3.10, we have Q") = QUV) and B, --- B,, = {1}.
Som =mn and A; = B;.

(1-3) If Ay € P(X) and By € {Q©) | i=2, 3, 4, ...}, then A} = QU2 B, .- B, for
some j, > 2. By Proposition 3.2, we know that Q¥ B is not a prefix code. But

o

Ay € P(X) C P(X). This is a contradiction.

(1-4) If A, € {Q® | i =2, 3, 4, ...} and B; € P(X), then Q2 = B,B,---B,
for some iy > 2. If none of B, belongs to {Q" | i = 2, 3, 4, ...} where
p € {2, 3, ..., n}, then B1Bs--- B, is a prefix code. But Q') is not a prefix
code. This is a contradiction. If some of B, are in {Q¥) | i =2, 3, 4, ...} where
pe{2 3, ,..., n}, let B = QU3 for some j3 > 2 and 2 < t < n such that B;
is the first one of By, Bs, ..., B, in {QW | i =2 3,4, ...}. Then Q"2 =
BiBs-+ By 1QU9) B, - B, where By, Bs, ..., B;_1 € P(X). By Proposition
3.6, we know that this cannot be true.

(2) Assume that the theorem is true for integers proper less than m. For the integer m, we
let AjAy--+A,, = B1Bsy--- B,. We consider the following cases.

o

(2-1) If A; and B; are both in P(X), then Ay = By and As -+ A,,, = By -+ B,,. Accord-
ing to the assumption, we have m —1=n—1and A; = B; fori =2, 3, ..., m. So
m=nand A; =B; fori=1, 2, 3, ..., m.

(2-2) If A; and By are both in {Q®W | i =2, 3, 4, ...}, then QU A,---A,, =
QU4 B, --- B, for some i3, j; > 2. By Lemma 3.10, we have Q") = QU4 then
Ag--- A, = By B,. According to the assumption, we know that the result holds.

(23) If A, € P(X) and By € {Q® | i =2, 3, 4, ...}, then 4145+ A, =
QUs)By --- B, for some j5 > 2. If some of Ay, As, ..., Ay, are in {Q®) | i =
2, 3, 4, ...}, let A; = QU4) for some iy > 2 such that A, is the first one of As,
Az, ooy Ay in {QW | i=2,3, 4, ...}. Then AjAy--- A, 1Q A - A, =

o

Q(j5)BQ"'B7L where A17 AQ, cey As—l € P(X) Since AlAQ"'AS_l is a preﬁx
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code, by Proposition 3.9, this is impossible. If none of Ay, As, ..., A,, is in {Q |
i=2,3,4, ...}, then AjAs--- A, is a prefix code. By proposition 3.3, we know
that QUs)B, - -- B, is not a prefix code. Since A A --- A, = QU5) By --- B, this is
a contradiction. Similarly, we can discuss the case A; € {Q¥) | i =2, 3, 4, ...}
and By € P(X)

In summary, we know P = P(X) u{Q® | i=2,3, 4, ...} is a code. So P* is a free
monoid containing all the prefix codes in connection with the sets of ith powers of primitive
words for all 7 > 2. O
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