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A free monoid containing all prefix codes

CAO Chun-hua1 LIU Qin1,2 YANG Di3

Abstract. In this paper, we exhibit a free monoid containing all prefix codes in connection

with the sets of i-th powers of primitive words for all i ≥ 2. This extends two results given by

Shyr and Tsai in 1998 at the same time.

§1 Introduction

Prefix codes are widely used in information theory and computer science, for example, in

encoding and decoding, data compression and transmission, DES and Huffman’s algorithms

(see [1-4]). So they are especially hot topics in theoretical researches and practical applications.

There are several equivalent ways to define a free monoid and we suggest adopting the following

one: a monoid S is free if and only if every element s in S has a unique factorization as a product

of elements of S̊ = S\{1})\S\{1})2, the so-called basis of S. Let X be an alphabet and M be

the monoid of languages over X which is not free. But the family of all prefix codes over X

denoted by P (X) is a free submonoid of M (see Proposition 2.17 of [5]). From then on, people

are devoted to establishing more and more smaller or larger free submonoids of M than it. In

[6], some submonoids of P (X) are proposed. In [7], the submonoid generated by the basis of

P (X), denoted by ˚P (X), together with the set of all primitive words over X, denoted by Q, is

proved to be not free. In [8], the submonoid generated by ˚P (X) ∪ {Q(i)} is free for arbitrary

i ≥ 2, where Q(i) = {f i | f ∈ Q} is the set of i-th powers of all primitive words. Also in [8],

the submonoid generated by ˚Pf (X) ∪ {Q(i) | i = 2, 3, 4, . . .} is free, where ˚Pf (X) is the

family of all irreducible finite prefix codes. This leads to the following natural question. Is the

submonoid generated by ˚P (X)∪{Q(i) | i = 2, 3, 4, . . .} free? Here in this paper, we solve the

problem by proving that ˚P (X) ∪ {Q(i) | i = 2, 3, 4, . . .} is a code, so the monoid generated

by ˚P (X) ∪ {Q(i) | i = 2, 3, 4, . . .} is a free submonoid of M . It is a free submonoid of M

containing all prefix codes in connection with the sets of ith powers of primitive words for all

i ≥ 2.
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§2 Preliminaries

Let X be a nonempty finite set of letters, named by an alphabet, and |X| be the number

of letters in X. Any finite string over X is called a word. For example, w = a3bab2a is a

word over the alphabet X = {a, b}. The word which contains no letter is called the empty

word, noted by 1. The set of all words over X is noted by X∗. For any w1, w2 ∈ X∗, let

w1 = a1a2 . . . an, w2 = b1b2 . . . bm where ai, bj ∈ X for i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

we define the catenation operation of w1 and w2 is the word w1w2 = a1a2 . . . anb1b2 . . . bm.

Then X∗ is a monoid with the catenation. For any word w ∈ X∗, let lg(w) be the number

of letters occurring in w, and lg(1) = 0. Then lg(w) = 8 for the former word w = a3bab2a.

Let X+ = X∗ \ {1}. Any nonempty subset of X+ is a language and {1} is a language. Let

M = {A | A ⊆ X+ or A = {1}}. For any A, B ∈ M , the catenation operation of A and B is

the language AB = {xy | x ∈ A, y ∈ B}. Then M is a monoid with the catenation, called

the monoid of languages. For any A ∈ M , let A = {x ∈ A | lg(x) ≤ lg(y) for all y ∈ A},
which is the set of all words with minimal length in A. Let lg(A) = lg(x) for any x ∈ A,

then lg(AB) = lg(A) + lg(B) for any A,B ∈ M . So M is a monoid with length. A nonempty

family of languages α ⊆ M is called a code if A1A2 · · ·An = B1B2 · · ·Bm and Ai, Bj ∈ α for

i = 1, 2, . . . , n, j = 1, 2, . . . ,m implies that n = m and Ai = Bi for i = 1, 2, . . . , n. If α is a code,

then α generates a free monoid α∗ of M . If S is a free monoid, then S̊ = (S\{1})\(S\{1})2 is

a code.

For any u, v ∈ X∗, if there exists a word x ∈ X∗ such that ux = v (or xu = v), then u is

called a prefix (or suffix) of v, denoted by u ≤p v (or u ≤s v). We write u <p v (or u <s v) if

u ≤p v (or u ≤s v) but u ̸= v and u ̸= 1. A language A is called a prefix code if A ∩AX+ = ∅,
that is for any two distinct words x, y in A, x is not a prefix of y and y is not a prefix of x.

A prefix code A is called a maximal prefix code if and only if for any x ∈ X+ \ A, A ∪ {x} is

not a prefix code. Let w ∈ X+, if w = fn where f ∈ X+ and n ≥ 1 is an integer implying that

n = 1 and w = f , then w is called a primitive word. Let Q be the set of all primitive words

over X and Q(i) = {f i | f ∈ Q} for each i ≥ 2. A word which is not a primitive word is called

an imprimitive word. Each imprimitive word is in a unique Q(i) for some i ≥ 2.

Some definitions which are used in the paper but not stated here can be found in [5, 9, 10].

§3 Main Result

If |X| = 1, let X = {a}, then P (X) = {{ai} | i = 1, 2, 3, . . .} and Q = {a}, Q(i) = {ai}
for each i ≥ 2. So ˚P (X) ∪ {Q(i) | i = 2, 3, 4, . . .} = P (X). In the rest of the paper, we

always let X be an alphabet containing at least 2 letters. For two distinct letters a, b ∈ X,

since ai, (aib)i ∈ Q(i), then Q(i) is not a prefix code for each i ≥ 1. So it is an interesting

thing to check whether the submonoid generated by all prefix codes in connection with the sets

of Q(i) for all i ≥ 2 is free or not? In order to answer this question, at first, we propose some

properties on prefix codes and Q(i), which will be used in the proof of the main result in the

section.
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Lemma 3.1. (Proposition 2.11 of [5]) Let Ai be nonempty languages over X for i = 1, 2, 3, . . . , n.

If A1A2 . . . An is a prefix code, then A2A3 . . . An, A3A4 . . . An, . . ., An−1An, An are prefix

codes.

Lemma 3.2. (Proposition 1 of [11]) For any u ∈ X+ and a, b ∈ X where |X| ≥ 2 and a ̸= b, at

least one of the words ua and ub is primitive.

Proposition 3.3. Let A, B ∈ M \ {1}. Then for every i ≥ 1, none of the sets AQ(i), Q(i)A,

AQ(i)B is a prefix code.

Proof. Assume AQ(i) is a prefix code. Then Q(i) is a prefix code by Lemma 3.1. But Q(i) is

not a prefix code. This is a contradiction. So AQ(i) is not a prefix code.

Take x ∈ A and f ∈ Q. Then f ix ∈ Q(i)A. Let u = f ix ∈ X+. By Lemma 3.2, for two

distinct letters a, b ∈ X, at least one of the words ua and ub is primitive. Without loss of

generality, we let ua is a primitive word that is, f ixa = ua ∈ Q. So (f ixa)ix ∈ Q(i)A. Since

f ix, (f ixa)ix ∈ Q(i)A and f ix ≤p (f ixa)ix, then Q(i)A is not a prefix code.

Assume AQ(i)B = A(Q(i)B) is a prefix code. Then Q(i)B is a prefix code by Lemma 3.1.

But Q(i)B is not a prefix code. This is a contradiction. So AQ(i)B is not a prefix code.

We usually take the language {1} as a prefix code. The family of all prefix codes over X is

denoted by P (X).

Lemma 3.4. Let u ∈ X+ and lg(u) = k. Then absu, basu ∈ Q for all s ≥ k and a, b ∈ X

such that a ̸= b.

Proof. Assume absu is an imprimitive word. Then there exist q ∈ Q and t ≥ 2 such that

absu = qt. So t · lg(q) = s + 1 + k. Then 2lg(q) ≤ t · lg(q) = s + 1 + k ≤ s + 1 + s = 2s + 1.

So lg(q) ≤ 2s+1
2 < s + 1. Hence q <p abs. Then q = abs1 for some 0 ≤ s1 < s. So

absu = qt = abs1abs1 . . .. Hence bs−s1u = abs1 . . .. Thus a = b, which is a contradiction.

Similarly, we can prove that basu is a primitive word.

Lemma 3.5. (Proposition 1.11 of [5]) Let uv = f i where f ∈ Q and i ≥ 1. Then vu = gi for

some g ∈ Q.

In this lemma, when i = 1, we can see if uv ∈ Q, then vu ∈ Q.

Proposition 3.6. Let A ∈ P (X) \ {1} and B ∈ M . Then AQ(i)B ̸= Q(j) for every i, j ≥ 2.

Proof. Assume there exist some i, j ≥ 2 such that AQ(i)B = Q(j). Take x ∈ A. Then

lg(x) = k ≥ 1. Let a, b ∈ X and a ̸= b. Then abkx ∈ Q by Lemma 3.4. So xabk ∈ Q by

Lemma 3.5. Then (xabk)j ∈ Q(j). Since Q(j) = AQ(i)B, then (xabk)j ∈ AQ(i)B. There exist

f ∈ A, y ∈ Q and z ∈ B such that (xabk)j = fyiz. Since A ∈ P (X) and x, f ∈ A, then x = f .

Thus (abkx)j−1abk = yiz. In addition, exactly one of the following two cases may occur.

(1) When lg(abkx) = lg(y), we have abkx = y. Since (abkx)j−1abk = yiz, then (abkx)j−1abk =

(abkx)iz. Hence (abkx)j−1abk = (abkx)i−1abkxz. We consider the following case.
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(1-1) When i = j, since (abkx)j−1abk = (abkx)i−1abkxz, then (abkx)i−1abk = (abkx)i−1a

bkxz. Hence xz = 1. So x = 1. This contradicts that lg(x) = k ≥ 1.

(1-2) When i > j, since (abkx)j−1abk = (abkx)i−1abkxz, then abk = abkx(abkx)i−jz. So

x(abkx)i−jz = 1. Hence x = 1. This contradicts that lg(x) = k ≥ 1.

(1-3) When i < j, since (abkx)j−1abk = (abkx)i−1abkxz, then (abkx)j−i−1abk = z. S-

ince x ∈ A, bakx ∈ Q and (abkx)j−i−1abk = z ∈ B, then x(bakx)i(abkx)j−i−1abk =

x(bakx)iz ∈ AQ(i)B. Again since AQ(i)B = Q(j), then x(bakx)i(abkx)j−i−1abk ∈
Q(j). There exists g ∈ Q such that x(bakx)i(abkx)j−i−1abk = gj . So (xbak)i(xabk)j−i

= gj . In fact, we know lg(xbak) = lg(xabk) = 2k + 1. Calculating the lengths of

the two words in the equation, we have lg(g) = 2k + 1. So g = xbak = xabk. Hence

a = b. This contradicts that a ̸= b.

(2) When lg(abkx) ̸= lg(y), we have y = (abkx)tu for some 0 ≤ t ≤ j − 1 and u ∈ X∗.

When u = 1, then y = (abkx)t. Since y ∈ Q, then t = 1. Hence y = abkx. We have a

contradiction by the former case. Hence u ∈ X+. Since (abkx)j−1abk = yiz = yyi−1z =

(abkx)tuyi−1z, then (abkx)j−1−tabk = uyi−1z. When 0 ≤ t ≤ j − 2, then u <p abkx.

When t = j − 1, then u <p abk. So u <p abkx or u <p abk. Since abk <p abkx, then we

consider u <p abkx. One of the following cases may occur.

(2-1) If u = abm for some 0 ≤ m < k, then y = (abkx)tu = (abkx)tabm. So (abkx)j−1abk

= yiz = yyi−1z = (abkx)tabmyi−1z. Then (abkx)j−1−tabk = abmyi−1z. It follows

that bk−mx(abkx)j−2−tabk = yi−1z. We obtain y starts with the letter b. But by

(abkx)j−1abk = yiz, we see that y starts with the letter a. This is a contradiction.

(2-2) If u = abk, then y = (abkx)tu = (abkx)tabk. So (abkx)j−1abk = yiz = yyi−1z =

(abkx)tabkyi−1z. It follows that (abkx)j−1−tabk = abkyi−1z. So x(abkx)j−2−tabk =

yi−1z. We obtain the (k + 1)th letter in y is a. But by y = (abkx)tu, we see that

the (k + 1)th letter in y is b. This is a contradiction.

(2-3) If u = abkx1 for some x1, x2 ∈ X+ such that x = x1x2, then y = (abkx)tu =

(abkx)tabkx1. So (abkx)j−1abk = yiz = yyi−1z = (abkx)tabkx1y
i−1z. It follows

that (abkx)j−1−tabk = abkx1y
i−1z. So x2(ab

kx)j−2−tabk = yi−1z. We obtain the

(lg(x2) + 1)th letter in y is a. But by y = (abkx)tu, we see that the (lg(x2) + 1)th

letter in y is b. This is a contradiction.

From all above, we know AQ(i)B ̸= Q(j) for every i, j ≥ 2.

We cite some results from some references which will be used in the proof of our next

proposition.

Lemma 3.7. (Lemma 3.9 of [8]) Let A be a maximal prefix code and B, D ∈ M\{1}. Then

AQ(i)B ̸= Q(i)D for any i ≥ 2.

Lemma 3.8. (Proposition 2.13 of [5]) Let A, B, C, D, E be languages and AB = CD = E.

Then A B = C D = E and lg(A) + lg(B) = lg(C) + lg(D) = lg(E).
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Proposition 3.9. Let A ∈ P (X)\{1}, and B, D ∈ M \{1}. Then AQ(i)B ̸= Q(j)D for every

i, j ≥ 2.

Proof. Assume there exist i ≥ 2 and j ≥ 2 such that AQ(i)B = Q(j)D. We consider the cases

that i = j and i ̸= j.

(1) If i = j, we consider the cases that A is a maximal prefix code and A is not a maximal

prefix code.

(1-1) If A is a maximal prefix code, by Lemma 3.7, we have a contradiction.

(1-2) If A is not a maximal prefix code, then there exists u1 ∈ X+\A such that A∪{u1} ∈
P (X). For the word u1, by Lemma 3.2, we have u1a ∈ Q or u1b ∈ Q for two distinct

letters a, b ∈ X. Without loss of generality, we may assume u1a ∈ Q. For any

d1 ∈ D, by the assumption AQ(i)B = Q(j)D, we have (u1a)
id1 ∈ Q(i)D = AQ(i)B.

There exist y ∈ A, p ∈ Q and v1 ∈ B such that (u1a)
id1 = ypiv1. Since A ∪ {u1} is

a prefix code and u1, y ∈ A ∪ {u1}, then u1 = y. Since y ∈ A, then u1 ∈ A. This

contradicts that u1 ∈ X+\A.

Thus for every i, j ≥ 2, if i = j, then AQ(i)B ̸= Q(j)D.

(2) If i ̸= j, by the assumption AQ(i)B = Q(j)D, we have AQ(i)B = Q(j)D by Lemma

3.8. Take u2 ∈ A, d2 ∈ D and k = 2max{lg(u2), lg(d2)}. Since k ≥ 2lg(u2), then

k ≥ lg(u2) + 1 = lg(au2) for a ∈ X. By Lemma 3.4, we have abk(au2) ∈ Q for b ∈ X

and a ̸= b. Hence u2ab
ka ∈ Q by Lemma 3.5. Then (u2ab

ka)jd2 ∈ Q(j)D = AQ(i)B.

There exist x ∈ A, q ∈ Q and v2 ∈ B such that (u2ab
ka)jd2 = xqiv2. Since A is a prefix

code and u2, x ∈ A, then x = u2. Hence (abkau2)
j−1abkad2 = qiv2. In the following, we

consider lg(q) and lg(abkau2).

(2-1) If lg(q) = lg(abkau2), then q = abkau2. We consider the following cases.

(2-1-1) When i > j, since qj−1abkad2 = qiv2, then abkad2 = qi−j+1v2. So d2 =

u2q
i−jv2. Calculating the lengths of the two words in the equation, we have

k > lg(d2) = lg(u2)+(i−j)(2+k+ lg(u2))+ lg(v2) > k. This is a contradiction.

(2-1-2) When i < j, since qj−1abkad2 = qiv2, then qj−i−1abkad2 = v2 ∈ B. By

abk+2u2 ∈ Q, we have u2(ab
k+2u2)

iqj−i−1abkad2 ∈ AQ(i)B = Q(j)D. There

exist g ∈ Q and z ∈ D such that u2(ab
k+2u2)

iqj−i−1abkad2 = gjz. Since

d2 ∈ D, then lg(d2) ≤ lg(z). So z = z1d2 for some z1 ∈ X∗. It follows

that u2(ab
k+2u2)

iqj−i−1abka = gjz1. So lg(g) = 2 + k + lg(u2) +
i−lg(z1)

j . If

i − lg(z1) ̸= 0, then 0 < i−lg(z1)
j < 1. This contradicts that lg(g) is an integer.

Hence i − lg(z1) = 0. Then q = u2ab
k+1 = bu2ab

k. We can see that the

(lg(u2) + 2)th letter in q is a. On the other hand, we know 2(k+ 1)− (k+ 4) =

2k + 2 − k − 4 = k − 2 ≥ 0 because k = 2max{lg(u2), lg(d2)} ≥ 2. So

k + 1 ≥ k+4
2 = k

2 + 2. Since abkau2 = q and 3 ≤ lg(u2) + 2 ≤ (k2 ) + 2 ≤ k + 1,

then the (lg(u2) + 2)th letter in q is b. This is a contradiction.
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(2-2) If lg(q) ̸= lg(abkau2), let q = (abkau2)
tx1 for some 0 ≤ t ≤ j − 1 and x1 ∈

X∗. Assume x1 = 1, then q = (abkau2)
t. Since q ∈ Q, then t = 1. We have a

contradiction by case (2-1). Hence x1 ∈ X+. We consider the following cases.

(2-2-1) When 0 ≤ t < j − 1, we have x1 <p abkau2. One of the following cases may

occur.

(2-2-1-1) If x1 = abs1 for some 0 ≤ s1 < k, then (abkau2)
j−1abkad2 = qiv2 =

qqi−1v2 = (abkau2)
tabs1qi−1v2. So (ab

kau2)
j−1−tabkad2 = abs1qi−1v2. Then

bk−s1au2(ab
kau2)

j−2−tabkad2 = qi−1v2. Hence q starts with the letter b.

But by q = (abkau2)
tx1, we know that q starts with the letter a. This is a

contradiction.

(2-2-1-2) If x1 = abk, then we have (abkau2)
j−1abkad2 = qiv2 = qqi−1v2 =

(abkau2)
tabkqi−1v2. So (abkau2)

j−1−tabkad2 = abkqi−1v2. It follows that

au2(ab
kau2)

j−2−tabkad2 = qi−1v2. Hence the (lg(u2) + 2)th letter in q is

a. But by q = (abkau2)
tx1, we know that the (lg(u2) + 2)th letter in q is b

because (lg(u2) + 2) ≤ k + 1. This is a contradiction.

(2-2-1-3) If x1 = abka, then we have (abkau2)
j−1abkad2 = qiv2 = qqi−1v2 =

(abkau2)
tabkaqi−1v2. So (abkau2)

j−1−tabkad2 = abkaqi−1v2. It follows that

u2(ab
kau2)

j−2−tabkad2 = qi−1v2. Hence the (lg(u2) + 1)th letter in q is a.

On the other hand, we know 2(k+1)− (k+4) = 2k+2− k− 4 = k− 2 ≥ 0

because k = 2max{lg(u2), lg(d2)} ≥ 2. So k + 1 ≥ k+4
2 = k

2 + 2. By

q = (abkau2)
tx1 = (abkau2)

tabka and 3 ≤ lg(u2) + 2 ≤ (k2 ) + 2 ≤ k + 1, we

can see that (lg(u2) + 2)th letter in q is b. This is a contradiction.

(2-2-1-4) If x1 = abkau′
2 for some u′

2, u′′
2 ∈ X+ such that u2 = u′

2u
′′
2 , then

we have (abkau2)
j−1abkad2 = qiv2 = qqi−1v2 = (abkau2)

tabkau′
2q

i−1v2.

So (abkau2)
j−1−tabkad2 = abkau′

2q
i−1v2. Then u′′

2(ab
kau2)

j−2−tabkad2 =

qi−1v2. Hence the (lg(u′′
2) + 1)th letter in q is a. But by q = (abkau2)

tx1,

we know that the (lg(u′′
2)+ 1)th letter in q is b because (lg(u′′

2)+ 1) ≤ k+1.

This is a contradiction.

(2-2-2) When t = j − 1, we have q = (abkau2)
j−1x1 and x1 <p abkad2. This

implies that (abkau2)
j−1abkad2 = qiv2 = ((abkau2)

j−1x1)
iv2. So abkad2 =

x1((ab
kau2)

j−1x1)
i−1v2. Calculating the lengths of the two words in the equa-

tion, we obtain k+2+ lg(d2) = i · lg(x1)+ (j− 1)(i− 1)(k+2+ lg(u2))+ lg(v2).

So i · lg(x1) + (ij − i − j)(k + 2 + lg(u2)) + lg(v2) − lg(d2) − k − 2 = 0. This

contradicts that lg(d2) ≤ k
2 .

Thus for every i, j ≥ 2, if i ̸= j, then AQ(i)B ̸= Q(j)D.

From all above, we know AQ(i)B ̸= Q(j)D for any i, j ≥ 2.

Lemma 3.10. (Lemma 3.6 of [8]) Let B, D ∈ M . If there exist i, j ≥ 2 such that Q(i)B =

Q(j)D, then Q(i) = Q(j) and B = D.
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Since P (X) is free, then ˚P (X) is a code and it is the unique irreducible generating set

of P (X). So a prefix code A in ˚P (X) cannot be represented in the form A = BC with

B, C ∈ P (X). We have the following theorem on ˚P (X) ∪ {Q(i) | i = 2, 3, 4, . . .}.

Theorem 3.11. The family P = ˚P (X) ∪ {Q(i) | i = 2, 3, 4, . . .} is a code, so P ∗ is a free

monoid properly containing all prefix codes.

Proof. Let A1A2 · · ·Am = B1B2 · · ·Bn for any A1, A2, . . ., Am, B1, B2, . . ., Bn ∈ P . We will

show that m = n and Ai = Bi for i = 1, 2, . . . , n. We prove the theorem by induction on m.

(1) If m = 1, then A1 = B1B2 · · ·Bn.

(1-1) If A1 and B1 are both in ˚P (X), then A1 = B1 and B2 · · ·Bn = {1}. So m = n and

A1 = B1.

(1-2) If A1 and B1 are both in {Q(i) | i = 2, 3, 4, . . .}, there exist i1, j1 ≥ 2 such that

Q(i1) = Q(j1)B2 · · ·Bn. By Lemma 3.10, we have Q(i1) = Q(j1) and B2 · · ·Bn = {1}.
So m = n and A1 = B1.

(1-3) If A1 ∈ ˚P (X) and B1 ∈ {Q(i) | i = 2, 3, 4, . . .}, then A1 = Q(j2)B2 · · ·Bn for

some j2 ≥ 2. By Proposition 3.2, we know that Q(i)B is not a prefix code. But

A1 ∈ ˚P (X) ⊆ P (X). This is a contradiction.

(1-4) If A1 ∈ {Q(i) | i = 2, 3, 4, . . .} and B1 ∈ ˚P (X), then Q(i2) = B1B2 · · ·Bn

for some i2 ≥ 2. If none of Bp belongs to {Q(i) | i = 2, 3, 4, . . .} where

p ∈ {2, 3, . . . , n}, then B1B2 · · ·Bn is a prefix code. But Q(i2) is not a prefix

code. This is a contradiction. If some of Bp are in {Q(i) | i = 2, 3, 4, . . .} where

p ∈ {2, 3, , . . . , n}, let Bt = Q(j3) for some j3 ≥ 2 and 2 ≤ t ≤ n such that Bt

is the first one of B2, B3, . . . , Bn in {Q(i) | i = 2, 3, 4, . . .}. Then Q(i2) =

B1B2 · · ·Bt−1Q
(j3)Bt+1 · · ·Bn where B1, B2, . . . , Bt−1 ∈ ˚P (X). By Proposition

3.6, we know that this cannot be true.

(2) Assume that the theorem is true for integers proper less than m. For the integer m, we

let A1A2 · · ·Am = B1B2 · · ·Bn. We consider the following cases.

(2-1) If A1 and B1 are both in ˚P (X), then A1 = B1 and A2 · · ·Am = B2 · · ·Bn. Accord-

ing to the assumption, we have m− 1 = n− 1 and Ai = Bi for i = 2, 3, . . . , m. So

m = n and Ai = Bi for i = 1, 2, 3, . . . , m.

(2-2) If A1 and B1 are both in {Q(i) | i = 2, 3, 4, . . .}, then Q(i3)A2 · · ·Am =

Q(j4)B2 · · ·Bn for some i3, j4 ≥ 2. By Lemma 3.10, we have Q(i3) = Q(j4), then

A2 · · ·Am = B2 · · ·Bn. According to the assumption, we know that the result holds.

(2-3) If A1 ∈ ˚P (X) and B1 ∈ {Q(i) | i = 2, 3, 4, . . .}, then A1A2 · · ·Am =

Q(j5)B2 · · ·Bn for some j5 ≥ 2. If some of A2, A3, . . ., Am are in {Q(i) | i =

2, 3, 4, . . .}, let As = Q(i4) for some i4 ≥ 2 such that As is the first one of A2,

A3, . . ., Am in {Q(i) | i = 2, 3, 4, . . .}. Then A1A2 · · ·As−1Q
(i4)As+1 · · ·Am =

Q(j5)B2 · · ·Bn where A1, A2, . . ., As−1 ∈ ˚P (X). Since A1A2 · · ·As−1 is a prefix
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code, by Proposition 3.9, this is impossible. If none of A2, A3, . . ., Am is in {Q(i) |
i = 2, 3, 4, . . .}, then A1A2 · · ·Am is a prefix code. By proposition 3.3, we know

that Q(j5)B2 · · ·Bn is not a prefix code. Since A1A2 · · ·Am = Q(j5)B2 · · ·Bn, this is

a contradiction. Similarly, we can discuss the case A1 ∈ {Q(i) | i = 2, 3, 4, . . .}
and B1 ∈ ˚P (X).

In summary, we know P = ˚P (X) ∪ {Q(i) | i = 2, 3, 4, . . .} is a code. So P ∗ is a free

monoid containing all the prefix codes in connection with the sets of ith powers of primitive

words for all i ≥ 2.
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