Partial sums of generalized harmonic starlike univalent functions generated by a (p,q)-Ruscheweyh-type harmonic differential operator

Om P Ahuja¹ Asena Çetinkaya^{2,*} Raj Kumar³

Abstract. Let \mathcal{H} denote the class of complex-valued harmonic functions f defined in the open unit disc \mathbb{D} and normalized by $f(0) = f_z(0) - 1 = 0$. In this paper, we define a new generalized subclass of \mathcal{H} associated with the (p,q)-Ruscheweyh-type harmonic differential operator in \mathbb{D} . We first obtain a sufficient coefficient condition that guarantees that a function f in \mathcal{H} is sense-preserving harmonic univalent in \mathbb{D} and belongs to the aforementioned class. Using this coefficient condition, we then examine ratios of partial sums of f in \mathcal{H} . In all cases the results are sharp. In addition, the results so obtained generalize the related works of some authors, and many other new results are obtained.

§1 Introduction

Let \mathcal{A} be the class of functions h that are analytic in the open unit disc $\mathbb{D} := \{z : |z| < 1\}$ with the normalization h(0) = h'(0) - 1 = 0. A function $h \in \mathcal{A}$ can be expressed in the form

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in \mathbb{D}).$$

$$(1.1)$$

For $0 < q < p \leq 1$, a modified (p,q)-derivative operator $D_{p,q}$ of a function $h \in \mathcal{A}$ is shown by

$$(D_{p,q}h)(z) = 1 + \sum_{n=2}^{\infty} [n]_{p,q} a_n z^{n-1},$$

where $[n]_{p,q}$ -bracket or twin basic number is defined, for any natural number n, by

$$[n]_{p,q} = \frac{p^n - q^n}{p - q}, \quad (q \neq p);$$

Received: 2020-07-30. Revised: 2021-12-25.

MR Subject Classification: 30C45, 30C50, 30C99.

Keywords: (p,q)-calculus, (p,q)-derivative operator, q-calculus, q-derivative operator, (p,q)-Ruscheweyhtype harmonic differential operator, partial sums, coefficient estimate.

Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-024-4226-1.

 $^{^{*}}$ Corresponding Author

(see [6]). For a function $h \in \mathcal{A}$, it is straightforward to observe that

$$(D_{p,q}h)(z) = \frac{h(pz) - h(qz)}{(p-q)z}, \quad (q \neq p; z \neq 0)$$

and $(D_{p,q}h)(0) = h'(0)$ provided that the function h is differentiable at z = 0. Note that for p = 1, the (p,q)-derivative operator of a function $h \in \mathcal{A}$ reduces to the q-derivative operator

$$(D_q h)(z) = \frac{h(z) - h(qz)}{(1-q)z} = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}, \quad (z \in \mathbb{D})$$

where

$$[n]_q = \frac{1 - q^n}{1 - q}, \quad (0 < q < 1).$$

The (p,q)-gamma function and the (p,q)-factorial are, respectively, defined by

$$\Gamma_{p,q}(n+1) = [n]_{p,q}\Gamma_{p,q}(n)$$

$$[n]_{p,q}! = [1]_{p,q}[2]_{p,q}...[n-1]_{p,q}[n]_{p,q}, (n > 0)$$
 and $[0]_{p,q}! = 1$.
fted factorial is defined as

The (p,q)-shifted factorial is defined as

$$([n]_{p,q})_m = [n]_{p,q}[n+1]_{p,q}...[n+m-1]_{p,q}, (m \ge 1) \text{ and } ([n]_{p,q})_0 = 1.$$

For definitions and properties of (p,q)-calculus or post quantum calculus, one may refer to [13], and references therein. Also, for definitions and properties of q-derivative operator, one may refer to [4, 10, 11, 12].

In 1975, Ruscheweyh [19] defined the operator $\mathcal{R}^{\lambda} : \mathcal{A} \to \mathcal{A}$ given by

$$\mathcal{R}^{\lambda}h(z) = h(z) * \frac{z}{(1-z)^{\lambda+1}}, \quad (\lambda > -1; z \in \mathbb{D}).$$

The operator \mathcal{R}^{λ} is called λ -Ruscheweyh differential operator. In the last four decades, several researchers defined and studied many Ruscheweyh-type differential operators; see for example [3, 5, 7]. Motivated by these researchers, we define (p, q)-Ruscheweyh-type differential operator $\mathcal{R}_{p,q}^{\lambda}$ in the following.

Definition 1. Let $0 < q < p \le 1$ and $\lambda > -1$. For an analytic function $h \in \mathcal{A}$ given by (1.1), the (p,q)-Ruscheweyh-type differential operator is defined by

$$\mathcal{R}_{p,q}^{\lambda}h(z) = h(z) * F_{p,q,\lambda+1}(z)$$

= $z + \sum_{n=2}^{\infty} \frac{\Gamma_{p,q}(\lambda+n)}{[n-1]_{p,q}!\Gamma_{p,q}(1+\lambda)} a_n z^n, \quad (z \in \mathbb{D})$ (1.2)

where * denotes the convolution and

$$F_{p,q,\lambda+1}(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma_{p,q}(\lambda+n)}{[n-1]_{p,q}!\Gamma_{p,q}(1+\lambda)} z^n = z + \sum_{n=2}^{\infty} \frac{([\lambda+1]_{p,q})_{n-1}}{[n-1]_{p,q}!} z^n.$$

Remark 2. From (1.2), we obtain

$$\begin{aligned} \mathcal{R}_{p,q}^{0}h(z) &= h(z) \\ \mathcal{R}_{p,q}^{1}h(z) &= zD_{p,q}(h(z)) \\ &\vdots \\ \mathcal{R}_{p,q}^{m}h(z) &= \frac{zD_{p,q}^{m}(z^{m-1}h(z))}{[m]_{p,q}!}, \quad (\lambda = m, m \in \mathbb{N}_{0} := \mathbb{N} \cup \{0\}) \end{aligned}$$

Remark 3. In particular, for p = 1, we obtain q-Ruscheweyh differential operator which was defined by Kanas and Raducanu [15];

$$\mathcal{R}_{q}^{\lambda}h(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma_{q}(\lambda+n)}{[n-1]_{q}!\Gamma_{q}(1+\lambda)} a_{n}z^{n} = z + \sum_{n=2}^{\infty} \frac{([\lambda+1]_{q})_{n-1}}{[n-1]_{q}!} a_{n}z^{n}.$$

Remark 4. Note that for p = 1 and $q \to 1^-$, we obtain

$$\lim_{q \to 1^-} \mathcal{R}_{1,q}^{\lambda} h(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(\lambda+n)}{[n-1]! \Gamma(1+\lambda)} a_n z^n = z + \sum_{n=2}^{\infty} \frac{(\lambda+1)_{n-1}}{(n-1)!} a_n z^n$$
$$= h(z) * \frac{z}{(1-z)^{\lambda+1}} \equiv \mathcal{R}^{\lambda} h(z).$$

This shows that the differential operator $\mathcal{R}^{\lambda}h(z)$ defined by Ruscheweyh in [19] is a special case of the operator $\mathcal{R}^{\lambda}_{p,q}h(z)$ defined in (1.2).

Let \mathcal{H} be the family of complex-valued harmonic functions $f = h + \overline{g}$, where h and g are analytic and have the following power series expansions

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=1}^{\infty} b_n z^n$, $|b_1| < 1.$ (1.3)

Note that $f = h + \overline{g}$ is sense-preserving in \mathbb{D} if and only if $h'(z) \neq 0$ in \mathbb{D} and the second dilatation of f satisfies the condition |w(z)| = |g'(z)/h'(z)| < 1 in \mathbb{D} . Let $\mathcal{S}_{\mathcal{H}}$ be a subclass of functions f in \mathcal{H} that are sense-preserving and univalent in \mathbb{D} . Clunie and Sheil-Small studied the class $\mathcal{S}_{\mathcal{H}}$ in their remarkable paper [8].

A function $f \in S_{\mathcal{H}}$ is harmonic starlike in $\mathbb{D}_r = \{z : |z| < r\}$ if $\frac{\partial}{\partial t}(\arg f(r^{eit})) > 0, (t \in [0, 2\pi])$ i.e., f maps the circle $\partial(\mathbb{D}_r)$ onto a closed curve that is starlike with respect to the origin. It is easy to verify that the above condition is equivalent to

$$\operatorname{Re}\left(\frac{D_{\mathcal{H}}f(z)}{f(z)}\right) > 0, \ (|z|=r) \quad \text{where} \quad D_{\mathcal{H}}f(z) = zh'(z) - zg'(z).$$

We also recall that the convolution of two complex-valued harmonic functions

$$f_1(z) = z + \sum_{n=2}^{\infty} a_{1n} z^n + \sum_{n=1}^{\infty} \overline{b_{1n} z^n}$$
 and $f_2(z) = z + \sum_{n=2}^{\infty} a_{2n} z^n + \sum_{n=1}^{\infty} \overline{b_{2n} z^n}$

is defined by

$$f_1(z) * f_2(z) = (f_1 * f_2)(z) = z + \sum_{n=2}^{\infty} a_{1n} a_{2n} z^n + \sum_{n=1}^{\infty} \overline{b_{1n} b_{2n} z^n}, \quad (z \in \mathbb{D})$$

For a comprehensive study of the theory of harmonic univalent functions, one may refer to [1, 2, 9] and references therein.

Using the (p,q)-Ruscheweyh-type differential operator $\mathcal{R}_{p,q}^{\lambda}$ defined by (1.2), for the function $f = h + \overline{g}$ given by (1.3), we define a harmonic differential operator by

$$\mathcal{H}_{p,q}^{\lambda}f(z) = \mathcal{R}_{p,q}^{\lambda}h(z) + \overline{\mathcal{R}_{p,q}^{\lambda}g(z)}$$
$$= z + \sum_{n=2}^{\infty} \Phi_{p,q}(n,\lambda)a_n z^n + \sum_{n=1}^{\infty} \Phi_{p,q}(n,\lambda)\overline{b_n z^n}, \quad |b_1| < 1$$
(1.4)

where

$$\Phi_{p,q}(n,\lambda) = \frac{\Gamma_{p,q}(\lambda+n)}{[n-1]_{p,q}!\Gamma_{p,q}(1+\lambda)}, \quad (\lambda > -1).$$
(1.5)

Motivated by the above-discussed literature, we introduce a new subclass of harmonic univalent functions of complex order τ ($\tau \in \mathbb{C} \setminus \{0\}$) and type α ($0 \le \alpha < 1$) by using the operator $\mathcal{H}_{p,q}^{\lambda}f(z)$ defined by (1.4).

Definition 5. A function $f = h + \overline{g} \in \mathcal{H}$ is said to belong to the class (p,q)-Ruscheweyh-type harmonic starlike of complex order τ and type α , denoted by $\mathcal{SH}_{p,q}^{\lambda}(\tau,\alpha)$, if

$$\operatorname{Re}\left[1+\frac{1}{\tau}\left(\frac{zD_{p,q}(\mathcal{H}_{p,q}^{\lambda}f(z))}{\mathcal{H}_{p,q}^{\lambda}f(z)}-1\right)\right] \ge \alpha, \ (z\in\mathbb{D})$$
(1.6)

where $0 < q < p \le 1$, $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$, $\lambda > -1$ and

$$zD_{p,q}(\mathcal{H}_{p,q}^{\lambda}f(z)) = zD_{p,q}(\mathcal{R}_{p,q}^{\lambda}h(z)) - \overline{zD_{p,q}\mathcal{R}_{p,q}^{\lambda}g(z)}.$$

In view of (1.3), we observe that

$$zD_{p,q}(\mathcal{H}_{p,q}^{\lambda}f(z)) = zD_{p,q}(\mathcal{R}_{p,q}^{\lambda}h(z)) - \overline{zD_{p,q}(\mathcal{R}_{p,q}^{\lambda}g(z))}$$
$$= z + \sum_{n=2}^{\infty} [n]_{p,q} \Phi_{p,q}(n,\lambda) a_n z^n - \sum_{n=1}^{\infty} [n]_{p,q} \Phi_{p,q}(n,\lambda) \overline{b_n z^n}.$$
(1.7)

For special values of λ , p, q, τ and α , we obtain the corresponding results for several known subclasses as special cases:

(i) If $\tau = 1$, $\lambda = 0$, p = 1 and $q \to 1^-$, then $\mathcal{SH}^{\lambda}_{p,q}(\tau, \alpha) \equiv \mathcal{S}^*_{\mathcal{H}}(\alpha), [14].$

(ii) If
$$\tau = 1$$
, $\lambda = 0$, $\alpha = 0$, $p = 1$ and $q \to 1^-$, then $\mathcal{SH}^{\lambda}_{p,q}(\tau, \alpha) \equiv \mathcal{S}^*_{\mathcal{H}}, [21]$.

(iii) If $\tau = 1, p = 1, q \to 1^-$ and $g(z) \equiv 0$, then $\mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha) \equiv \mathcal{S}^*(\lambda, \alpha), [3]$.

(iv) If
$$\lambda = 0, p = 1, q \to 1^-, \alpha = 0$$
 and $g(z) \equiv 0$, then $\mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha) \equiv \mathcal{S}^*(\tau), [16]$.

We may also get several new subclasses as special cases, for example

(v) If
$$p = 1$$
, then $\mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha) \equiv \mathcal{SH}_{q}^{\lambda}(\tau, \alpha)$.

(vi) If
$$g(z) \equiv 0$$
, then $\mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha) \equiv \mathcal{S}_{p,q}^{*,\lambda}(\tau, \alpha)$.

(vii) If p = 1 and $g(z) \equiv 0$, then $\mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha) \equiv \mathcal{S}_{q}^{*,\lambda}(\tau, \alpha)$.

In Section 2, we first obtain a sufficient coefficient condition that shows that a function of the form (1.3) is sense-preserving univalent in \mathbb{D} and belongs to the class $\mathcal{SH}_{p,q}^{\lambda}(\tau,\alpha)$. We then obtain the sharp lower bounds of the real parts of different ratios of a harmonic function f of the form (1.3) to certain sequences of partial sums, where the coefficients $\{a_n\}$ and $\{b_n\}$ satisfy a sufficient condition for a function f in the family $\mathcal{SH}_{p,q}^{\lambda}(\tau,\alpha)$.

§2 Partial Sums of Functions Related to The Class $S\mathcal{H}_{p,q}^{\lambda}(\tau, \alpha)$

Let a function $f = h + \overline{g} \in \mathcal{H}$ of the form (1.3) with $b_1 = 0$. Then the sequences of partial sums of functions f are defined by

$$S_l(f) = z + \sum_{n=2}^l a_n z^n + \sum_{n=2}^\infty \overline{b_n z^n} := S_l(h) + \overline{g},$$

Appl. Math. J. Chinese Univ.

Vol. 39, No. 4

$$S_m(f) = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=2}^{m} \overline{b_n z^n} := h + S_m(\overline{g}),$$

$$S_{l,m}(f) = z + \sum_{n=2}^{l} a_n z^n + \sum_{n=2}^{m} \overline{b_n z^n} := S_l(h) + S_m(\overline{g})$$

Silverman [20] and Silvia [22] studied partial sums for starlike and convex functions. Recently, Porwal [17], Porwal and Dixit [18] studied some results on the partial sums of certain harmonic univalent functions. In order to obtain partial sums related to the class $\mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha)$, we need the following sufficient condition for a function to be in this class.

Lemma 6. Let $0 < q < p \le 1$, $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$, $\lambda > -1$, and $z \in \mathbb{D}$. If a harmonic function $f = h + \overline{g}$ of the form (1.3) holds the condition

$$\sum_{n=2}^{\infty} \xi_n |a_n| + \sum_{n=1}^{\infty} \mu_n |b_n| \le |\tau| (1-\alpha),$$
(2.1)

where

$$\xi_n = ([n]_{p,q} - 1 + |\tau|(1 - \alpha))\Phi_{p,q}(n,\lambda), \ (n \ge 2)$$
(2.2)

$$\mu_n = ([n]_{p,q} + 1 - |\tau|(1 - \alpha))\Phi_{p,q}(n,\lambda), \ (n \ge 1)$$
(2.3)

and $\Phi_{p,q}(n,\lambda)$ is given by (1.5), then the function f is sense-preserving harmonic univalent in \mathbb{D} and $f \in \mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha)$.

Proof. Let $f = h + \overline{g}$ be of the form (1.3), and assume that there exists $n \in \{1, 2, 3, ...\}$ such that $a_n \neq 0$ or $b_n \neq 0$. It is clear that the condition (2.1) equivalent to

$$\sum_{n=2}^{\infty} [n]_{p,q} |a_n| + \sum_{n=1}^{\infty} [n]_{p,q} |b_n| \le 1.$$
(2.4)

Thus we have

$$\begin{split} |D_{p,q}h(z)| &\geq 1 - \sum_{n=2}^{\infty} [n]_{p,q} |a_n| |z|^{n-1} \\ &> 1 - \sum_{n=2}^{\infty} \frac{\left([n]_{p,q} - 1 + |\tau|(1-\alpha) \right) \Phi_{p,q}(n,\lambda)}{|\tau|(1-\alpha)} |a_n| \\ &\geq \sum_{n=1}^{\infty} \frac{\left([n]_{p,q} + 1 - |\tau|(1-\alpha) \right) \Phi_{p,q}(n,\lambda)}{|\tau|(1-\alpha)} |b_n| \\ &> \sum_{n=1}^{\infty} [n]_{p,q} |b_n| |z|^{n-1} \geq |D_{p,q}g(z)|, \end{split}$$

which proves $|D_{p,q}h(z)| > |D_{p,q}g(z)|$, that is, the function f is locally univalent and sensepreserving in \mathbb{D} . If $z_1, z_2 \in \mathbb{D}$ and for some p, q such that $pz_1 \neq qz_2$, then

$$\left| \frac{(pz_1)^n - (qz_2)^n}{(pz_1) - (qz_2)} \right| = \left| \sum_{l=1}^n (pz_1)^{l-1} (qz_2)^{n-l} \right|$$

$$\leq \sum_{l=1}^n p^{l-1} q^{n-l} |z_1|^{l-1} |z_2|^{n-l} < [n]_{p,q}, \quad (n = 1, 2, 3, ...).$$

Hence, using this relation with (2.1) and (2.4), we have

$$\begin{aligned} \left| \frac{f(pz_1) - f(qz_2)}{h(pz_1) - h(qz_2)} \right| &\geq 1 - \left| \frac{g(pz_1) - g(qz_2)}{h(pz_1) - h(qz_2)} \right| \\ &= 1 - \left| \frac{\sum_{n=1}^{\infty} \overline{b_n((pz_1)^n - (qz_2)^n)}}{(pz_1 - qz_2) + \sum_{n=2}^{\infty} a_n((pz_1)^n - (qz_2)^n)} \right| \\ &> 1 - \frac{\sum_{n=1}^{\infty} [n]_{p,q} |b_n|}{1 - \sum_{n=2}^{\infty} [n]_{p,q} |a_n|} \\ &\geq 1 - \frac{\sum_{n=1}^{\infty} \frac{([n]_{p,q} + 1 - |\tau|(1-\alpha)) \Phi_{p,q}(n,\lambda)}{|\tau|(1-\alpha)} |b_n|}{1 - \sum_{n=2}^{\infty} \frac{([n]_{p,q} - 1 + |\tau|(1-\alpha)) \Phi_{p,q}(n,\lambda)}{|\tau|(1-\alpha)} |a_n|} \geq 0. \end{aligned}$$

This proves the univalence of f.

In view of (1.6) and using the fact that $\operatorname{Re}(w) > \alpha$ if and only if $|1 - \alpha + w| > |1 + \alpha - w|$, it suffices to show that

$$\left| (2\tau - \tau\alpha - 1)\mathcal{H}_{p,q}^{\lambda}f(z) + zD_{p,q}(\mathcal{H}_{p,q}^{\lambda}f(z)) \right| - \left| (\tau\alpha + 1)\mathcal{H}_{p,q}^{\lambda}f(z) - zD_{p,q}(\mathcal{H}_{p,q}^{\lambda}f(z)) \right| \ge 0.$$

$$(2.5)$$

Therefore, setting (1.4) and (1.7) into the left side of (2.5), we get $\stackrel{\sim}{\longrightarrow}$

$$= \left| \tau(2-\alpha)z + \sum_{n=2} ([n]_{p,q} - 1 + \tau(2-\alpha))\Phi_{p,q}(n,\lambda)a_n z^n - \sum_{n=1}^{\infty} ([n]_{p,q} + 1 - \tau(2-\alpha))\Phi_{p,q}(n,\lambda)\overline{b_n z^n} \right| \\ - \left| \tau\alpha z - \sum_{n=2}^{\infty} ([n]_{p,q} - 1 - \tau\alpha)\Phi_{p,q}(n,\lambda)a_n z^n + \sum_{n=1}^{\infty} ([n]_{p,q} + 1 + \tau\alpha))\Phi_{p,q}(n,\lambda)\overline{b_n z^n} \right| \\ \ge 2|\tau|(1-\alpha)|z| - 2\sum_{n=2}^{\infty} ([n]_{p,q} - 1 + |\tau|(1-\alpha))\Phi_{p,q}(n,\lambda)|a_n||z|^n \\ - 2\sum_{n=1}^{\infty} ([n]_{p,q} + 1 - |\tau|(1-\alpha))\Phi_{p,q}(n,\lambda)|b_n||z|^n \\ \ge |\tau|(1-\alpha)|z| \left(1 - \sum_{n=2}^{\infty} \frac{\xi_n}{|\tau|(1-\alpha)}|a_n||z|^{n-1} - \sum_{n=1}^{\infty} \frac{\mu_n}{|\tau|(1-\alpha)}|b_n||z|^{n-1}\right) \ge 0,$$

by (2.1). This proves that $f \in \mathcal{SH}_{p,q}^{\lambda}(\tau, \alpha)$. The function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{|\tau|(1-\alpha)}{\xi_n} x_n z^n + \sum_{n=1}^{\infty} \frac{|\tau|(1-\alpha)}{\mu_n} \overline{y_n z^n},$$

where $\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1$ shows that the coefficient bound given by (2.1) is sharp. \Box

Theorem 7. Let $0 < q < p \le 1$, $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$, $\lambda > -1$ and $z \in \mathbb{D}$. Suppose ξ_n and

 μ_n given by (2.2) and (2.3) satisfy the conditions

$$\xi_n \ge \begin{cases} |\tau|(1-\alpha), & n=2,3,...,l \\ \\ \xi_{l+1}, & n=l+1,l+2,..., \end{cases}$$
(2.6)

and

$$\mu_n \ge |\tau|(1-\alpha), \ (n=2,3,...).$$
 (2.7)

If a function $f = h + \overline{g}$ of the form (1.3) with $b_1 = 0$ satisfies the condition (2.1), then

$$i) \operatorname{Re}\left(\frac{f(z)}{S_{l}(f)(z)}\right) \ge 1 - \frac{|\tau|(1-\alpha)}{\xi_{l+1}},$$

$$(2.8)$$

ii)
$$\operatorname{Re}\left(\frac{S_{l}(f)(z)}{f(z)}\right) \ge \frac{\xi_{l+1}}{\xi_{l+1} + |\tau|(1-\alpha)}.$$
 (2.9)

These estimates are sharp for the function given by

$$f(z) = z + \frac{|\tau|(1-\alpha)}{\xi_{l+1}} z^{l+1}.$$
(2.10)

Proof. i) In order to prove (2.8), we may write

$$\psi_1(z) := \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \left\{ \frac{f(z)}{S_l(f)(z)} - \left(1 - \frac{|\tau|(1-\alpha)}{\xi_{l+1}}\right) \right\}$$
$$= 1 + \frac{\frac{\xi_{l+1}}{|\tau|(1-\alpha)} \sum_{n=l+1}^{\infty} a_n z^n}{z + \sum_{n=2}^l a_n z^n + \sum_{n=2}^{\infty} \overline{b_n z^n}}.$$

It is sufficient to show that $\operatorname{Re}(\psi_1(z)) > 0$, or equivalently

$$\left| \frac{\psi_1(z) - 1}{\psi_1(z) + 1} \right| \le 1.$$

Note that

$$\left|\frac{\psi_1(z) - 1}{\psi_1(z) + 1}\right| \le \frac{\frac{\xi_{l+1}}{|\tau|(1-\alpha)} \sum_{n=l+1}^{\infty} |a_n|}{2 - 2(\sum_{n=2}^l |a_n| + \sum_{n=2}^\infty |b_n|) - \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \sum_{n=l+1}^\infty |a_n|}.$$

This last expression is bounded above by 1 if and only if

$$\sum_{n=2}^{l} |a_n| + \sum_{n=2}^{\infty} |b_n| + \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \sum_{n=l+1}^{\infty} |a_n| \le 1.$$
(2.11)

 ∞

In view of sufficient condition (2.1) with $b_1 = 0$, it is therefore sufficient to show that left side of (2.11) is bounded above by

$$\sum_{n=2}^{\infty} \frac{\xi_n}{|\tau|(1-\alpha)|} |a_n| + \sum_{n=2}^{\infty} \frac{\mu_n}{|\tau|(1-\alpha)|} |b_n|,$$

which is equivalent to

$$\sum_{n=2}^{l} \frac{\xi_n - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} |a_n| + \sum_{n=2}^{\infty} \frac{\mu_n - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} |b_n| + \sum_{n=l+1}^{\infty} \frac{\xi_n - \xi_{l+1}}{|\tau|(1-\alpha)} |a_n| \ge 0.$$

But the last inequality is true because of the given conditions (2.6) and (2.7). If we take

$$\begin{split} f(z) &= z + \frac{|\tau|(1-\alpha)}{\xi_{l+1}} z^{l+1} \text{ with } z = r e^{i\pi/l} \text{ and } r \text{ approaches to 1 from left, then we get} \\ \frac{f(z)}{S_l(f)(z)} &= 1 + \frac{|\tau|(1-\alpha)}{\xi_{l+1}} z^l \to 1 - \frac{|\tau|(1-\alpha)}{\xi_{l+1}}, \end{split}$$

which shows that the bound in (2.8) best possible. This completes the first part of the proof.

ii) Similarly, we have

$$\psi_2(z) := \frac{\xi_{l+1} + |\tau|(1-\alpha)}{|\tau|(1-\alpha)} \left\{ \frac{S_l(f)(z)}{f(z)} - \left(1 - \frac{|\tau|(1-\alpha)}{\xi_{l+1} + |\tau|(1-\alpha)}\right) \right\}$$
$$= 1 - \frac{\frac{\xi_{l+1} + |\tau|(1-\alpha)}{|\tau|(1-\alpha)} \sum_{n=l+1}^{\infty} a_n z^n}{z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=2}^{\infty} \overline{b_n z^n}}.$$

Therefore,

$$\left|\frac{\psi_2(z) - 1}{\psi_2(z) + 1}\right| \le \frac{\frac{\xi_{l+1} + |\tau|(1-\alpha)}{|\tau|(1-\alpha)} \sum_{n=l+1}^{\infty} |a_n|}{2 - 2(\sum_{n=2}^l |a_n| + \sum_{n=2}^\infty |b_n|) - \frac{\xi_{l+1} - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} \sum_{n=l+1}^\infty |a_n|} \le 1$$

if and only if

$$\sum_{n=2}^{l} |a_n| + \sum_{n=2}^{\infty} |b_n| + \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \sum_{n=l+1}^{\infty} |a_n| \le 1.$$
(2.12)

Since the left side of (2.12) is bounded above by

$$\sum_{n=2}^{\infty} \frac{\xi_n}{|\tau|(1-\alpha)} |a_n| + \sum_{n=2}^{\infty} \frac{\mu_n}{|\tau|(1-\alpha)} |b_n|,$$

the proof is completed because of the arguments as used in the proof of part (i).

Theorem 8. Let $0 < q < p \le 1$, $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$, $\lambda > -1$ and $z \in \mathbb{D}$. Suppose ξ_n and μ_n given by (2.2) and (2.3) satisfy the conditions

$$\mu_n \ge \begin{cases} |\tau|(1-\alpha), & n=2,3,...,m \\ \\ \mu_{m+1}, & n=m+1,m+2,..., \end{cases}$$
(2.13)

and

$$\xi_n \ge |\tau|(1-\alpha), \ (n=2,3,...).$$
 (2.14)

If a function $f = h + \overline{g}$ of the form (1.3) with $b_1 = 0$ satisfies the condition (2.1), then

i)
$$\operatorname{Re}\left(\frac{f(z)}{S_m(f)(z)}\right) \ge 1 - \frac{|\tau|(1-\alpha)}{\mu_{m+1}},$$
 (2.15)

ii)
$$\operatorname{Re}\left(\frac{S_m(f)(z)}{f(z)}\right) \ge \frac{\mu_{m+1}}{\mu_{m+1} + |\tau|(1-\alpha)}.$$
 (2.16)

These estimates are sharp for the function given by

$$f(z) = z + \frac{|\tau|(1-\alpha)}{\mu_{m+1}} \overline{z}^{m+1}.$$
(2.17)

Vol. 39, No. 4

Proof. i) In order to prove (2.15), we may write

$$\psi_{3}(z) := \frac{\mu_{m+1}}{|\tau|(1-\alpha)} \left\{ \frac{f(z)}{S_{m}(f)(z)} - \left(1 - \frac{|\tau|(1-\alpha)}{\mu_{m+1}}\right) \right\}$$
$$= 1 + \frac{\frac{\mu_{m+1}}{|\tau|(1-\alpha)} \sum_{n=m+1}^{\infty} \overline{b_{n} z^{n}}}{z + \sum_{n=2}^{\infty} a_{n} z^{n} + \sum_{n=2}^{m} \overline{b_{n} z^{n}}}.$$

It suffices to show that $\operatorname{Re}(\psi_3(z)) > 0$, or equivalently

$$\left|\frac{\psi_3(z)-1}{\psi_3(z)+1}\right| \le \frac{\frac{\mu_{m+1}}{|\tau|(1-\alpha)}}{2-2(\sum_{n=2}^{\infty}|a_n|+\sum_{n=2}^{m}|b_n|)-\frac{\mu_{m+1}}{|\tau|(1-\alpha)}}\sum_{n=m+1}^{\infty}|b_n| \le 1$$

if and only if

$$\sum_{n=2}^{\infty} |a_n| + \sum_{n=2}^{m} |b_n| + \frac{\mu_{m+1}}{|\tau|(1-\alpha)} \sum_{n=m+1}^{\infty} |b_n| \le 1.$$
(2.18)

It is now sufficient to show that left side of (2.18) is bounded above by

$$\sum_{n=2}^{\infty} \frac{\xi_n}{|\tau|(1-\alpha)|} |a_n| + \sum_{n=2}^{\infty} \frac{\mu_n}{|\tau|(1-\alpha)|} |b_n|,$$

which is equivalent to

$$\sum_{n=2}^{\infty} \frac{\xi_n - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} |a_n| + \sum_{n=2}^{m} \frac{\mu_n - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} |b_n| + \sum_{n=m+1}^{\infty} \frac{\mu_n - \mu_{m+1}}{|\tau|(1-\alpha)} |a_n| \ge 0.$$

Due to the given conditions (2.13) and (2.14), the above inequality is true. This completes the first part of the theorem.

To prove that $f(z) = z + \frac{|\tau|(1-\alpha)}{\mu_{m+1}} \overline{z}^{m+1}$ gives the sharp result, we observe that for $z = re^{i\pi/m+2}$ we have

$$\frac{f(z)}{S_m(f)(z)} = 1 + \frac{|\tau|(1-\alpha)}{\mu_{m+1}} r^m e^{-i(m+2)\frac{\pi}{m+2}} \to 1 - \frac{|\tau|(1-\alpha)}{\mu_{m+1}},$$

when $r \to 1^-$.

ii) Similarly, by using the method of proof of part (*i*), we obtain the proof of (2.16). \Box

Theorem 9. Let $0 < q < p \le 1$, $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$, $\lambda > -1$ and $z \in \mathbb{D}$. Suppose ξ_n and μ_n given by (2.2) and (2.3) satisfy the conditions

$$\xi_n \ge \begin{cases} |\tau|(1-\alpha), & n=2,3,...,l \\ & \\ \xi_{l+1}, & n=l+1,l+2,..., \end{cases}$$
(2.19)

$$\mu_n \ge \begin{cases} |\tau|(1-\alpha), & n=2,3,\dots,l \\ \\ \xi_{l+1}, & n=l+1,l+2,\dots \end{cases}$$
(2.20)

If a function $f = h + \overline{g}$ given by (1.3) with $b_1 = 0$ satisfies the condition (2.1), then $f(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(z) dz = \int_{-\infty}^{\infty} |\tau| (1 - \alpha)$

i)
$$\operatorname{Re}\left(\frac{f(z)}{S_{l,m}(f)(z)}\right) \ge 1 - \frac{|f|(1-\alpha)}{\xi_{l+1}},$$
 (2.21)
..., $\operatorname{Re}\left(\frac{S_{l,m}(f)(z)}{\xi_{l+1}}\right) \ge -\frac{\xi_{l+1}}{\xi_{l+1}},$ (2.22)

ii) Re
$$\left(\frac{S_{l,m}(f)(z)}{f(z)}\right) \ge \frac{\xi_{l+1}}{\xi_{l+1} + |\tau|(1-\alpha)}$$
. (2.22)

These estimates are sharp for the function given by (2.10).

Proof. i) In order to prove (2.21), we may write

$$\psi_4(z) := \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \left\{ \frac{f(z)}{S_{l,m}(f)(z)} - \left(1 - \frac{|\tau|(1-\alpha)}{\xi_{l+1}}\right) \right\}$$
$$= 1 + \frac{\frac{\xi_{l+1}}{|\tau|(1-\alpha)} \left(\sum_{n=l+1}^{\infty} a_n z^n + \sum_{n=m+1}^{\infty} \overline{b_n z^n}\right)}{z + \sum_{n=2}^l a_n z^n + \sum_{n=2}^m \overline{b_n z^n}}.$$

It suffices to show that $\operatorname{Re}(\psi_4(z)) > 0$, or equivalently

$$\left|\frac{\psi_4(z) - 1}{\psi_4(z) + 1}\right| \le \frac{\frac{\xi_{l+1}}{|\tau|(1-\alpha)} \left(\sum_{n=l+1}^{\infty} |a_n| + \sum_{n=m+1}^{\infty} |b_n|\right)}{2 - 2\left(\sum_{n=2}^l |a_n| + \sum_{n=2}^m |b_n|\right) - \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \left(\sum_{n=l+1}^\infty |a_n| + \sum_{n=m+1}^\infty |b_n|\right)}.$$

This last expression is bounded above by 1 if and only if

$$\sum_{n=2}^{l} |a_n| + \sum_{n=2}^{m} |b_n| + \frac{\xi_{l+1}}{|\tau|(1-\alpha)} \left(\sum_{n=l+1}^{\infty} |a_n| + \sum_{n=m+1}^{\infty} |b_n| \right) \le 1.$$
(2.23)

In view of (2.1) with $b_1 = 0$, it is now sufficient to show that the left side of (2.23) is bounded above by

$$\sum_{n=2}^{\infty} \frac{\xi_n}{|\tau|(1-\alpha)|} |a_n| + \sum_{n=2}^{\infty} \frac{\mu_n}{|\tau|(1-\alpha)|} |b_n|,$$

which is equivalent to

$$\sum_{n=2}^{l} \frac{\xi_n - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} |a_n| + \sum_{n=2}^{m} \frac{\mu_n - |\tau|(1-\alpha)}{|\tau|(1-\alpha)} |b_n| + \sum_{n=2+1}^{\infty} \frac{\xi_n - \xi_{l+1}}{|\tau|(1-\alpha)} |a_n| + \sum_{n=m+1}^{\infty} \frac{\mu_n - \xi_{l+1}}{|\tau|(1-\alpha)} |b_n| \ge 0.$$

In view of (2.19) and (2.20), we conclude that the above inequality is true.

To see that $f(z) = z + \frac{|\tau|(1-\alpha)}{\xi_{l+1}} z^{l+1}$ gives the sharp result, we observe that for $z = re^{i\pi/l}$, we have

$$\frac{f(z)}{S_{l,m}(f)(z)} = 1 + \frac{|\tau|(1-\alpha)}{\xi_{l+1}} z^l \to 1 - \frac{|\tau|(1-\alpha)}{\xi_{l+1}}, \ (r \to 1^-).$$

ii) Similarly, we prove (2.22).

Theorem 10. Let $0 < q < p \le 1$, $\tau \in \mathbb{C} \setminus \{0\}$, $0 \le \alpha < 1$, $\lambda > -1$ and $z \in \mathbb{D}$. Suppose ξ_n and

 μ_n given by (2.2) and (2.3) satisfy the conditions

$$\xi_{n} \geq \begin{cases} |\tau|(1-\alpha), & n=2,3,...,m \\ \\ \mu_{m+1}, & n=m+1,m+2,..., \\ \\ \mu_{n} \geq \end{cases}$$
(2.24)
$$\mu_{n} \geq \begin{cases} |\tau|(1-\alpha), & n=2,3,...,m \\ \\ \end{array}$$
(2.25)

If a function $f = h + \overline{g}$ given by (1.3) with $b_1 = 0$ satisfies the condition (2.1), then

$$i) \operatorname{Re}\left(\frac{f(z)}{S_{l,m}(f)(z)}\right) \ge 1 - \frac{|\tau|(1-\alpha)}{\mu_{m+1}},$$

$$(2.26)$$

ii)
$$\operatorname{Re}\left(\frac{S_{l,m}(f)(z)}{f(z)}\right) \ge \frac{\mu_{m+1}}{\mu_{m+1} + |\tau|(1-\alpha)}.$$
 (2.27)

These estimates are sharp for the function given by (2.17).

Proof. It is omitted because it is similar to the proof of Theorem 9. \Box

Declarations

Conflict of interest The authors declare no conflict of interest.

References

- O P Ahuja. Planar harmonic univalent and related mappings, J Inequal Pure Appl Math, 2005, 6: 1-18.
- [2] O P Ahuja. Recent advances in the theory of harmonic univalent mappings in the plane, The Math Student, 2014, 83: 1-31.
- [3] O P Ahuja, H Silverman. Convolutions of prestarlike functions, Int J Math Math Sci, 1983, 6(1): 59-68.
- [4] O P Ahuja, A Çetinkaya. Use of Quantum Calculus Approach In Mathematical Sciences and Its Role In Geometric Function Theory, AIP Conf Proc, 2019, 2095(1), DOI: 10.1063/1.50-97511.
- [5] O P Ahuja. On the generalized Ruscheweyh class of analytic functions of complex order, Bull Austral Math Soc, 1993, 47: 247-257.
- [6] O P Ahuja, A Çetinkaya, V Ravichandran. Harmonic univalent functions defined by post quantum calculus, Acta Univ Sapientiae, Mathematica, 2019, 11: 5-17.
- [7] H S Al-Amiri. On Ruscheweyh derivative, Ann Polon Math, 1980, 38: 87-94.
- [8] J Clunie, T Sheil-Small. Harmonic univalent functions, Ann Acad Sci Fenn Ser A I Math, 1984, 9: 3-25.
- [9] P L Duren. Harmonic mappings in the plane, Cambridge Tracts in Math, 2004.
- [10] G Gasper, M Rahman. Basic hypergeometric series, CUP, 2004.

- [11] F H Jackson. On q-functions and a certain difference operator, Trans Royal Soc Edinburgh, 1909, 46(2): 253-281.
- [12] F H Jackson. q-difference equations, Amer J Math, 1910, 32: 305-314.
- [13] R Jagannathan, K S Rao. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, 2006, DOI: 10.48550/arXiv.math/0602613.
- [14] J Jahangiri. Harmonic functions starlike in the unit disc, J Math Anal Appl, 1999, 235: 470-477.
- [15] S Kanas, D Raducanu. Some subclass of analytic functions related to conic domains, Math Slovaca, 2014, 64(5): 1183-1196.
- [16] S Owa, G Salagean. On an open problem of S. Owa, J Math Anal Appl, 1998, 218(2): 453-457.
- [17] S Porwal. Partial sums of certain harmonic univalent function, Lobachevskii J Math, 2011, 32: 366-375.
- [18] S Porwal, K K Dixit. Partial sums of starlike harmonic univalent function, Kyungpook Math J, 2010, 50: 433-445.
- [19] S Ruscheweyh. New criteria for univalent functions, Proc Amer Math Soc, 1975, 49: 109-115.
- [20] H Silverman. Partial sums of starlike and convex functions, J Math Anal Appl, 1997, 209: 221-227.
- [21] H Silverman. Harmonic univalent functions with negative coefficients, J Math Anal Appl, 1998, 220: 283-289.
- [22] E M Silvia. On partial sums of convex functions of order alpha, Houston J Math, 1985, 11: 397-404.
- ¹Department of Mathematical Sciences, Kent State University, Ohio, 44021, USA. Email: oahuja@kent.edu
- ²Department of of Mathematics and Computer Science, İstanbul Kültür University, İstanbul, Turkey. Email: asnfigen@hotmail.com
- ³Department of of Mathematics, DAV University, Jalandhar, India. Email: rajgarg2012@yahoo.co.in