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Partial sums of generalized harmonic starlike univalent

functions generated by a (p, q)−Ruscheweyh-type

harmonic differential operator

Om P Ahuja1 Asena Çetinkaya2,∗ Raj Kumar3

Abstract. Let H denote the class of complex-valued harmonic functions f defined in the open

unit disc D and normalized by f(0) = fz(0)− 1 = 0. In this paper, we define a new generalized

subclass of H associated with the (p, q)−Ruscheweyh-type harmonic differential operator in

D. We first obtain a sufficient coefficient condition that guarantees that a function f in H is

sense-preserving harmonic univalent in D and belongs to the aforementioned class. Using this

coefficient condition, we then examine ratios of partial sums of f in H. In all cases the results

are sharp. In addition, the results so obtained generalize the related works of some authors, and

many other new results are obtained.

§1 Introduction

Let A be the class of functions h that are analytic in the open unit disc D := {z : |z| < 1}
with the normalization h(0) = h′(0)− 1 = 0. A function h ∈ A can be expressed in the form

h(z) = z +
∞∑

n=2

anz
n, (z ∈ D). (1.1)

For 0 < q < p ≤ 1, a modified (p, q)−derivative operator Dp,q of a function h ∈ A is shown by

(Dp,qh)(z) = 1 +
∞∑

n=2

[n]p,qanz
n−1,

where [n]p,q−bracket or twin basic number is defined, for any natural number n, by

[n]p,q =
pn − qn

p− q
, (q ̸= p);
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(see [6]). For a function h ∈ A, it is straightforward to observe that

(Dp,qh)(z) =
h(pz)− h(qz)

(p− q)z
, (q ̸= p; z ̸= 0)

and (Dp,qh)(0) = h′(0) provided that the function h is differentiable at z = 0. Note that for

p = 1, the (p, q)−derivative operator of a function h ∈ A reduces to the q−derivative operator

(Dqh)(z) =
h(z)− h(qz)

(1− q)z
= 1 +

∞∑
n=2

[n]qanz
n−1, (z ∈ D)

where

[n]q =
1− qn

1− q
, (0 < q < 1).

The (p, q)−gamma function and the (p, q)−factorial are, respectively, defined by

Γp,q(n+ 1) = [n]p,qΓp,q(n),

[n]p,q! = [1]p,q[2]p,q...[n− 1]p,q[n]p,q, (n > 0) and [0]p,q! = 1.

The (p, q)−shifted factorial is defined as

([n]p,q)m = [n]p,q[n+ 1]p,q...[n+m− 1]p,q, (m ≥ 1) and ([n]p,q)0 = 1.

For definitions and properties of (p, q)−calculus or post quantum calculus, one may refer to

[13], and references therein. Also, for definitions and properties of q−derivative operator, one

may refer to [4, 10, 11, 12].

In 1975, Ruscheweyh [19] defined the operator Rλ : A → A given by

Rλh(z) = h(z) ∗ z

(1− z)λ+1
, (λ > −1; z ∈ D).

The operator Rλ is called λ-Ruscheweyh differential operator. In the last four decades,

several researchers defined and studied many Ruscheweyh-type differential operators; see for

example [3, 5, 7]. Motivated by these researchers, we define (p, q)−Ruscheweyh-type differential

operator Rλ
p,q in the following.

Definition 1. Let 0 < q < p ≤ 1 and λ > −1. For an analytic function h ∈ A given by (1.1),

the (p, q)−Ruscheweyh-type differential operator is defined by

Rλ
p,qh(z) = h(z) ∗ Fp,q,λ+1(z)

= z +

∞∑
n=2

Γp,q(λ+ n)

[n− 1]p,q!Γp,q(1 + λ)
anz

n, (z ∈ D) (1.2)

where ∗ denotes the convolution and

Fp,q,λ+1(z) = z +
∞∑

n=2

Γp,q(λ+ n)

[n− 1]p,q!Γp,q(1 + λ)
zn = z +

∞∑
n=2

([λ+ 1]p,q)n−1

[n− 1]p,q!
zn.

Remark 2. From (1.2), we obtain

R0
p,qh(z) = h(z)

R1
p,qh(z) = zDp,q(h(z))

...

Rm
p,qh(z) =

zDm
p,q(z

m−1h(z))

[m]p,q!
, (λ = m,m ∈ N0 := N ∪ {0}).
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Remark 3. In particular, for p = 1, we obtain q−Ruscheweyh differential operator which was

defined by Kanas and Raducanu [15];

Rλ
qh(z) = z +

∞∑
n=2

Γq(λ+ n)

[n− 1]q!Γq(1 + λ)
anz

n = z +

∞∑
n=2

([λ+ 1]q)n−1

[n− 1]q!
anz

n.

Remark 4. Note that for p = 1 and q → 1−, we obtain

lim
q→1−

Rλ
1,qh(z) = z +

∞∑
n=2

Γ(λ+ n)

[n− 1]!Γ(1 + λ)
anz

n = z +
∞∑

n=2

(λ+ 1)n−1

(n− 1)!
anz

n

= h(z) ∗ z

(1− z)λ+1
≡ Rλh(z).

This shows that the differential operator Rλh(z) defined by Ruscheweyh in [19] is a special

case of the operator Rλ
p,qh(z) defined in (1.2).

Let H be the family of complex-valued harmonic functions f = h + g, where h and g are

analytic and have the following power series expansions

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n, |b1| < 1. (1.3)

Note that f = h + g is sense-preserving in D if and only if h′(z) ̸= 0 in D and the second

dilatation of f satisfies the condition |w(z)| = |g′(z)/h′(z)| < 1 in D. Let SH be a subclass of

functions f in H that are sense-preserving and univalent in D. Clunie and Sheil-Small studied

the class SH in their remarkable paper [8].

A function f ∈ SH is harmonic starlike in Dr = {z : |z| < r} if ∂
∂t (arg f(r

eit)) > 0, (t ∈
[0, 2π]) i.e., f maps the circle ∂(Dr) onto a closed curve that is starlike with respect to the

origin. It is easy to verify that the above condition is equivalent to

Re

(
DHf(z)

f(z)

)
> 0, (|z| = r) where DHf(z) = zh′(z)− zg′(z).

We also recall that the convolution of two complex-valued harmonic functions

f1(z) = z +

∞∑
n=2

a1nz
n +

∞∑
n=1

b1nzn and f2(z) = z +

∞∑
n=2

a2nz
n +

∞∑
n=1

b2nzn

is defined by

f1(z) ∗ f2(z) = (f1 ∗ f2)(z) = z +
∞∑

n=2

a1na2nz
n +

∞∑
n=1

b1nb2nzn, (z ∈ D).

For a comprehensive study of the theory of harmonic univalent functions, one may refer to

[1, 2, 9] and references therein.

Using the (p, q)−Ruscheweyh-type differential operator Rλ
p,q defined by (1.2), for the func-

tion f = h+ g given by (1.3), we define a harmonic differential operator by

Hλ
p,qf(z) = Rλ

p,qh(z) +Rλ
p,qg(z)

= z +
∞∑

n=2

Φp,q(n, λ)anz
n +

∞∑
n=1

Φp,q(n, λ)bnzn, |b1| < 1 (1.4)

where

Φp,q(n, λ) =
Γp,q(λ+ n)

[n− 1]p,q!Γp,q(1 + λ)
, (λ > −1). (1.5)
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Motivated by the above-discussed literature, we introduce a new subclass of harmonic uni-

valent functions of complex order τ (τ ∈ C \ {0}) and type α (0 ≤ α < 1) by using the operator

Hλ
p,qf(z) defined by (1.4).

Definition 5. A function f = h+ g ∈ H is said to belong to the class (p, q)−Ruscheweyh-type

harmonic starlike of complex order τ and type α, denoted by SHλ
p,q(τ, α), if

Re

[
1 +

1

τ

(
zDp,q(Hλ

p,qf(z))

Hλ
p,qf(z)

− 1

)]
≥ α, (z ∈ D) (1.6)

where 0 < q < p ≤ 1, τ ∈ C \ {0}, 0 ≤ α < 1, λ > −1 and

zDp,q(Hλ
p,qf(z)) = zDp,q(Rλ

p,qh(z))− zDp,qRλ
p,qg(z).

In view of (1.3), we observe that

zDp,q(Hλ
p,qf(z)) = zDp,q(Rλ

p,qh(z))− zDp,q(Rλ
p,qg(z))

= z +

∞∑
n=2

[n]p,qΦp,q(n, λ)anz
n −

∞∑
n=1

[n]p,qΦp,q(n, λ)bnzn. (1.7)

For special values of λ, p, q, τ and α, we obtain the corresponding results for several known

subclasses as special cases:

(i) If τ = 1, λ = 0, p = 1 and q → 1−, then SHλ
p,q(τ, α) ≡ S∗

H(α), [14].

(ii) If τ = 1, λ = 0, α = 0, p = 1 and q → 1−, then SHλ
p,q(τ, α) ≡ S∗

H, [21].

(iii) If τ = 1, p = 1, q → 1− and g(z) ≡ 0, then SHλ
p,q(τ, α) ≡ S∗(λ, α), [3].

(iv) If λ = 0, p = 1, q → 1−, α = 0 and g(z) ≡ 0, then SHλ
p,q(τ, α) ≡ S∗(τ), [16].

We may also get several new subclasses as special cases, for example

(v) If p = 1, then SHλ
p,q(τ, α) ≡ SHλ

q (τ, α).

(vi) If g(z) ≡ 0, then SHλ
p,q(τ, α) ≡ S∗,λ

p,q (τ, α).

(vii) If p = 1 and g(z) ≡ 0, then SHλ
p,q(τ, α) ≡ S∗,λ

q (τ, α).

In Section 2, we first obtain a sufficient coefficient condition that shows that a function of

the form (1.3) is sense-preserving univalent in D and belongs to the class SHλ
p,q(τ, α). We then

obtain the sharp lower bounds of the real parts of different ratios of a harmonic function f of

the form (1.3) to certain sequences of partial sums, where the coefficients {an} and {bn} satisfy

a sufficient condition for a function f in the family SHλ
p,q(τ, α).

§2 Partial Sums of Functions Related to The Class SHλ
p,q(τ, α)

Let a function f = h+ g ∈ H of the form (1.3) with b1 = 0. Then the sequences of partial

sums of functions f are defined by

Sl(f) = z +
l∑

n=2

anz
n +

∞∑
n=2

bnzn := Sl(h) + g,
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Sm(f) = z +
∞∑

n=2

anz
n +

m∑
n=2

bnzn := h+ Sm(g),

Sl,m(f) = z +
l∑

n=2

anz
n +

m∑
n=2

bnzn := Sl(h) + Sm(g).

Silverman [20] and Silvia [22] studied partial sums for starlike and convex functions. Re-

cently, Porwal [17], Porwal and Dixit [18] studied some results on the partial sums of certain

harmonic univalent functions. In order to obtain partial sums related to the class SHλ
p,q(τ, α),

we need the following sufficient condition for a function to be in this class.

Lemma 6. Let 0 < q < p ≤ 1, τ ∈ C \ {0}, 0 ≤ α < 1, λ > −1, and z ∈ D. If a harmonic

function f = h+ g of the form (1.3) holds the condition
∞∑

n=2

ξn|an|+
∞∑

n=1

µn|bn| ≤ |τ |(1− α), (2.1)

where

ξn = ([n]p,q − 1 + |τ |(1− α))Φp,q(n, λ), (n ≥ 2) (2.2)

µn = ([n]p,q + 1− |τ |(1− α))Φp,q(n, λ), (n ≥ 1) (2.3)

and Φp,q(n, λ) is given by (1.5), then the function f is sense-preserving harmonic univalent in

D and f ∈ SHλ
p,q(τ, α).

Proof. Let f = h + g be of the form (1.3), and assume that there exists n ∈ {1, 2, 3, . . . } such

that an ̸= 0 or bn ̸= 0. It is clear that the condition (2.1) equivalent to
∞∑

n=2

[n]p,q|an|+
∞∑

n=1

[n]p,q|bn| ≤ 1. (2.4)

Thus we have

|Dp,qh(z)| ≥ 1−
∞∑

n=2

[n]p,q|an||z|n−1

> 1−
∞∑

n=2

(
[n]p,q − 1 + |τ |(1− α)

)
Φp,q(n, λ)

|τ |(1− α)
|an|

≥
∞∑

n=1

(
[n]p,q + 1− |τ |(1− α)

)
Φp,q(n, λ)

|τ |(1− α)
|bn|

>
∞∑

n=1

[n]p,q|bn||z|n−1 ≥ |Dp,qg(z)|,

which proves |Dp,qh(z)| > |Dp,qg(z)|, that is, the function f is locally univalent and sense-

preserving in D. If z1, z2 ∈ D and for some p, q such that pz1 ̸= qz2, then∣∣∣∣ (pz1)n − (qz2)
n

(pz1)− (qz2)

∣∣∣∣ =
∣∣∣∣∣

n∑
l=1

(pz1)
l−1(qz2)

n−l

∣∣∣∣∣
≤

n∑
l=1

pl−1qn−l|z1|l−1|z2|n−l < [n]p,q, (n = 1, 2, 3, . . . ).
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Hence, using this relation with (2.1) and (2.4), we have∣∣∣∣f(pz1)− f(qz2)

h(pz1)− h(qz2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(pz1)− g(qz2)

h(pz1)− h(qz2)

∣∣∣∣
= 1−

∣∣∣∣
∞∑

n=1
bn((pz1)n − (qz2)n)

(pz1 − qz2) +
∞∑

n=2
an((pz1)n − (qz2)n)

∣∣∣∣

> 1−

∞∑
n=1

[n]p,q|bn|

1−
∞∑

n=2
[n]p,q|an|

≥ 1−

∞∑
n=1

(
[n]p,q+1−|τ |(1−α)

)
Φp,q(n,λ)

|τ |(1−α) |bn|

1−
∞∑

n=2

(
[n]p,q−1+|τ |(1−α)

)
Φp,q(n,λ)

|τ |(1−α) |an|
≥ 0.

This proves the univalence of f .

In view of (1.6) and using the fact that Re(w) > α if and only if |1− α+ w| > |1 + α−w|,
it suffices to show that ∣∣(2τ − τα− 1)Hλ

p,qf(z) + zDp,q(Hλ
p,qf(z))

∣∣
−
∣∣(τα+ 1)Hλ

p,qf(z)− zDp,q(Hλ
p,qf(z))

∣∣ ≥ 0.
(2.5)

Therefore, setting (1.4) and (1.7) into the left side of (2.5), we get

=

∣∣∣∣τ(2− α)z +

∞∑
n=2

([n]p,q − 1 + τ(2− α))Φp,q(n, λ)anz
n

−
∞∑

n=1

([n]p,q + 1− τ(2− α))Φp,q(n, λ)bnzn
∣∣∣∣

−
∣∣∣∣ταz − ∞∑

n=2

([n]p,q − 1− τα)Φp,q(n, λ)anz
n +

∞∑
n=1

([n]p,q + 1 + τα))Φp,q(n, λ)bnzn
∣∣∣∣

≥ 2|τ |(1− α)|z| − 2

∞∑
n=2

([n]p,q − 1 + |τ |(1− α))Φp,q(n, λ)|an||z|n

− 2

∞∑
n=1

([n]p,q + 1− |τ |(1− α))Φp,q(n, λ)|bn||z|n

≥ |τ |(1− α)|z|
(
1−

∞∑
n=2

ξn
|τ |(1− α)

|an||z|n−1 −
∞∑

n=1

µn

|τ |(1− α)
|bn||z|n−1

)
≥ 0,

by (2.1). This proves that f ∈ SHλ
p,q(τ, α). The function

f(z) = z +

∞∑
n=2

|τ |(1− α)

ξn
xnz

n +

∞∑
n=1

|τ |(1− α)

µn
ynzn,

where
∞∑

n=2
|xn|+

∞∑
n=1

|yn| = 1 shows that the coefficient bound given by (2.1) is sharp.

Theorem 7. Let 0 < q < p ≤ 1, τ ∈ C \ {0}, 0 ≤ α < 1, λ > −1 and z ∈ D. Suppose ξn and
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µn given by (2.2) and (2.3) satisfy the conditions

ξn ≥


|τ |(1− α), n=2,3,...,l

ξl+1, n=l+1,l+2,...,

(2.6)

and

µn ≥ |τ |(1− α), (n = 2, 3, ...). (2.7)

If a function f = h+ g of the form (1.3) with b1 = 0 satisfies the condition (2.1), then

i) Re

(
f(z)

Sl(f)(z)

)
≥ 1− |τ |(1− α)

ξl+1
, (2.8)

ii) Re

(
Sl(f)(z)

f(z)

)
≥ ξl+1

ξl+1 + |τ |(1− α)
. (2.9)

These estimates are sharp for the function given by

f(z) = z +
|τ |(1− α)

ξl+1
zl+1. (2.10)

Proof. i) In order to prove (2.8), we may write

ψ1(z) :=
ξl+1

|τ |(1− α)

{
f(z)

Sl(f)(z)
−
(
1− |τ |(1− α)

ξl+1

)}

= 1 +

ξl+1

|τ |(1−α)

∞∑
n=l+1

anz
n

z +
l∑

n=2
anzn +

∞∑
n=2

bnzn
.

It is sufficient to show that Re(ψ1(z)) > 0, or equivalently∣∣∣∣ψ1(z)− 1

ψ1(z) + 1

∣∣∣∣ ≤ 1.

Note that ∣∣∣∣ψ1(z)− 1

ψ1(z) + 1

∣∣∣∣ ≤
ξl+1

|τ |(1−α)

∞∑
n=l+1

|an|

2− 2(
l∑

n=2
|an|+

∞∑
n=2

|bn|)− ξl+1

|τ |(1−α)

∞∑
n=l+1

|an|
.

This last expression is bounded above by 1 if and only if
l∑

n=2

|an|+
∞∑

n=2

|bn|+
ξl+1

|τ |(1− α)

∞∑
n=l+1

|an| ≤ 1. (2.11)

In view of sufficient condition (2.1) with b1 = 0, it is therefore sufficient to show that left side

of (2.11) is bounded above by
∞∑

n=2

ξn
|τ |(1− α)

|an|+
∞∑

n=2

µn

|τ |(1− α)
|bn|,

which is equivalent to
l∑

n=2

ξn − |τ |(1− α)

|τ |(1− α)
|an|+

∞∑
n=2

µn − |τ |(1− α)

|τ |(1− α)
|bn|+

∞∑
n=l+1

ξn − ξl+1

|τ |(1− α)
|an| ≥ 0.

But the last inequality is true because of the given conditions (2.6) and (2.7). If we take
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f(z) = z + |τ |(1−α)
ξl+1

zl+1 with z = reiπ/l and r approaches to 1 from left, then we get

f(z)

Sl(f)(z)
= 1 +

|τ |(1− α)

ξl+1
zl → 1− |τ |(1− α)

ξl+1
,

which shows that the bound in (2.8) best possible. This completes the first part of the proof.

ii) Similarly, we have

ψ2(z) :=
ξl+1 + |τ |(1− α)

|τ |(1− α)

{
Sl(f)(z)

f(z)
−
(
1− |τ |(1− α)

ξl+1 + |τ |(1− α)

)}

= 1−

ξl+1+|τ |(1−α)
|τ |(1−α)

∞∑
n=l+1

anz
n

z +
∞∑

n=2
anzn +

∞∑
n=2

bnzn
.

Therefore,

∣∣∣∣ψ2(z)− 1

ψ2(z) + 1

∣∣∣∣ ≤
ξl+1+|τ |(1−α)

|τ |(1−α)

∞∑
n=l+1

|an|

2− 2(
l∑

n=2
|an|+

∞∑
n=2

|bn|)− ξl+1−|τ |(1−α)
|τ |(1−α)

∞∑
n=l+1

|an|
≤ 1

if and only if
l∑

n=2

|an|+
∞∑

n=2

|bn|+
ξl+1

|τ |(1− α)

∞∑
n=l+1

|an| ≤ 1. (2.12)

Since the left side of (2.12) is bounded above by
∞∑

n=2

ξn
|τ |(1− α)

|an|+
∞∑

n=2

µn

|τ |(1− α)
|bn|,

the proof is completed because of the arguments as used in the proof of part (i).

Theorem 8. Let 0 < q < p ≤ 1, τ ∈ C \ {0}, 0 ≤ α < 1, λ > −1 and z ∈ D. Suppose ξn and

µn given by (2.2) and (2.3) satisfy the conditions

µn ≥


|τ |(1− α), n=2,3,...,m

µm+1, n=m+1,m+2,...,

(2.13)

and

ξn ≥ |τ |(1− α), (n = 2, 3, ...). (2.14)

If a function f = h+ g of the form (1.3) with b1 = 0 satisfies the condition (2.1), then

i) Re

(
f(z)

Sm(f)(z)

)
≥ 1− |τ |(1− α)

µm+1
, (2.15)

ii) Re

(
Sm(f)(z)

f(z)

)
≥ µm+1

µm+1 + |τ |(1− α)
. (2.16)
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These estimates are sharp for the function given by

f(z) = z +
|τ |(1− α)

µm+1
zm+1. (2.17)

Proof. i) In order to prove (2.15), we may write

ψ3(z) :=
µm+1

|τ |(1− α)

{
f(z)

Sm(f)(z)
−
(
1− |τ |(1− α)

µm+1

)}

= 1 +

µm+1

|τ |(1−α)

∞∑
n=m+1

bnzn

z +
∞∑

n=2
anzn +

m∑
n=2

bnzn
.

It suffices to show that Re(ψ3(z)) > 0, or equivalently

∣∣∣∣ψ3(z)− 1

ψ3(z) + 1

∣∣∣∣ ≤
µm+1

|τ |(1−α)

∞∑
n=m+1

|bn|

2− 2(
∞∑

n=2
|an|+

m∑
n=2

|bn|)− µm+1

|τ |(1−α)

∞∑
n=m+1

|bn|
≤ 1

if and only if
∞∑

n=2

|an|+
m∑

n=2

|bn|+
µm+1

|τ |(1− α)

∞∑
n=m+1

|bn| ≤ 1. (2.18)

It is now sufficient to show that left side of (2.18) is bounded above by
∞∑

n=2

ξn
|τ |(1− α)

|an|+
∞∑

n=2

µn

|τ |(1− α)
|bn|,

which is equivalent to
∞∑

n=2

ξn − |τ |(1− α)

|τ |(1− α)
|an|+

m∑
n=2

µn − |τ |(1− α)

|τ |(1− α)
|bn|+

∞∑
n=m+1

µn − µm+1

|τ |(1− α)
|an| ≥ 0.

Due to the given conditions (2.13) and (2.14), the above inequality is true. This completes the

first part of the theorem.

To prove that f(z) = z + |τ |(1−α)
µm+1

zm+1 gives the sharp result, we observe that for z =

reiπ/m+2 we have
f(z)

Sm(f)(z)
= 1 +

|τ |(1− α)

µm+1
rme−i(m+2) π

m+2 → 1− |τ |(1− α)

µm+1
,

when r → 1−.

ii) Similarly, by using the method of proof of part (i), we obtain the proof of (2.16).

Theorem 9. Let 0 < q < p ≤ 1, τ ∈ C \ {0}, 0 ≤ α < 1, λ > −1 and z ∈ D. Suppose ξn and

µn given by (2.2) and (2.3) satisfy the conditions

ξn ≥


|τ |(1− α), n=2,3,...,l

ξl+1, n=l+1,l+2,...,

(2.19)

µn ≥


|τ |(1− α), n=2,3,...,l

ξl+1, n=l+1,l+2,... .

(2.20)
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If a function f = h+ g given by (1.3) with b1 = 0 satisfies the condition (2.1), then

i) Re

(
f(z)

Sl,m(f)(z)

)
≥ 1− |τ |(1− α)

ξl+1
, (2.21)

ii) Re

(
Sl,m(f)(z)

f(z)

)
≥ ξl+1

ξl+1 + |τ |(1− α)
. (2.22)

These estimates are sharp for the function given by (2.10).

Proof. i) In order to prove (2.21), we may write

ψ4(z) :=
ξl+1

|τ |(1− α)

{
f(z)

Sl,m(f)(z)
−
(
1− |τ |(1− α)

ξl+1

)}

= 1 +

ξl+1

|τ |(1−α)

( ∞∑
n=l+1

anz
n +

∞∑
n=m+1

bnzn
)

z +
l∑

n=2
anzn +

m∑
n=2

bnzn
.

It suffices to show that Re(ψ4(z)) > 0, or equivalently

∣∣∣∣ψ4(z)− 1

ψ4(z) + 1

∣∣∣∣ ≤
ξl+1

|τ |(1−α)

( ∞∑
n=l+1

|an|+
∞∑

n=m+1
|bn|

)
2− 2(

l∑
n=2

|an|+
m∑

n=2
|bn|)− ξl+1

|τ |(1−α)

( ∞∑
n=l+1

|an|+
∞∑

n=m+1
|bn|

) .
This last expression is bounded above by 1 if and only if

l∑
n=2

|an|+
m∑

n=2

|bn|+
ξl+1

|τ |(1− α)

( ∞∑
n=l+1

|an|+
∞∑

n=m+1

|bn|
)

≤ 1. (2.23)

In view of (2.1) with b1 = 0, it is now sufficient to show that the left side of (2.23) is bounded

above by
∞∑

n=2

ξn
|τ |(1− α)

|an|+
∞∑

n=2

µn

|τ |(1− α)
|bn|,

which is equivalent to
l∑

n=2

ξn − |τ |(1− α)

|τ |(1− α)
|an|+

m∑
n=2

µn − |τ |(1− α)

|τ |(1− α)
|bn|+

∞∑
n=l+1

ξn − ξl+1

|τ |(1− α)
|an|+

∞∑
n=m+1

µn − ξl+1

|τ |(1− α)
|bn| ≥ 0.

In view of (2.19) and (2.20), we conclude that the above inequality is true.

To see that f(z) = z + |τ |(1−α)
ξl+1

zl+1 gives the sharp result, we observe that for z = reiπ/l,

we have
f(z)

Sl,m(f)(z)
= 1 +

|τ |(1− α)

ξl+1
zl → 1− |τ |(1− α)

ξl+1
, (r → 1−).

ii) Similarly, we prove (2.22).

Theorem 10. Let 0 < q < p ≤ 1, τ ∈ C \ {0}, 0 ≤ α < 1, λ > −1 and z ∈ D. Suppose ξn and
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µn given by (2.2) and (2.3) satisfy the conditions

ξn ≥


|τ |(1− α), n=2,3,...,m

µm+1, n=m+1,m+2,...,

(2.24)

µn ≥


|τ |(1− α), n=2,3,...,m

µm+1, n=m+1,m+2,... .

(2.25)

If a function f = h+ g given by (1.3) with b1 = 0 satisfies the condition (2.1), then

i) Re

(
f(z)

Sl,m(f)(z)

)
≥ 1− |τ |(1− α)

µm+1
, (2.26)

ii) Re

(
Sl,m(f)(z)

f(z)

)
≥ µm+1

µm+1 + |τ |(1− α)
. (2.27)

These estimates are sharp for the function given by (2.17).

Proof. It is omitted because it is similar to the proof of Theorem 9.
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