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The super-connectivity of graphs with two orbits

CHEN Lai-huan1 MENG Ji-xiang2,∗

YANG Wei-hua3 LIU Feng-xia2

Abstract. A graph G is said to be super-connected or simply super-κ, if each minimum vertex

cut of G isolates a vertex. A graph G is said to be a k-vertex-orbit graph if there are k vertex

orbits when Aut(G) acts on V (G). A graph G is said to be a k-edge-orbit graph if there are k

edge orbits when Aut(G) acts on edge set E(G). In this paper, we give a necessary and sufficient

condition for connected bipartite 2-vertex-orbit graphs to be super-κ. For 2-edge-orbit graphs,

we give a sufficient condition for connected 2-edge-orbit graphs to be super-κ. In addition, we

show that if G is a k-regular connected irreducible II-kind 2-edge-orbit graph with k ≤ 6 and

girth g(G) ≥ 6, or G is a k-regular connected irreducible III-kind 2-edge-orbit graph with k ≤ 6

and girth g(G) ≥ 8, then G is super-connected.

§1 Introduction

With the rapid development of information networks, the network comes into focus. The

topology of information network is very important to influence the network performance. When

designing the underlying topology of a multiprocessor network, what we care about is the

reliability of the network, that is, the ability of the network to function even when some vertices

or edges fail. The underlying topology of a network is often modelled as a graph, hence, some

classical notations of graph theory, such as the vertex connectivity and the edge connectivity,

are utilized to measure the reliability of networks.

It is well known that the underlying topology of an interconnection network can be modelled

by a graph G, and the connectivity κ(G) of G is the minimum cardinality of a set S ⊆ V (G) such

that G−S is either disconnected or trivial, which is an important measure for fault tolerance of

the network. Whitney in [9] observed that κ(G) never exceeds δ(G), the minimum degree of G.

Graphs for which κ(G) = δ(G) are called maximally connected. However, this parameter has

some intrinsic shortcomings. To overcome this shortcoming, Harary in [8] generalized the notion
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of connectivity by introducing conditional connectivity. The conditional connectivity of a graph

G with respect to some graph-theoretic property P is the size of the smallest set S of vertices (or

edges), if such a set exists, such that G−S is disconnected and every remaining component has

property P . The conditional connectivity not only integrates all kinds of classical connectivity

concepts, but also produces a large number of new concepts of connectivity in the network

optimization design. On the basis of conditional connectivity, Boesch proposed the concept of

super-connected graphs in [1]. A graph G is said to be super-connected or simply super-κ, if

each minimum vertex cut of G isolated a vertex. In recent years, there are many studies on

this subject, see [5,7,11,23] for example.

Let G = (V,E) be a simple undirected connected graph with the vertex set V = V (G) and

the edge set E = E(G). For each vertex x ∈ V (G), the neighborhood N(x) is defined as the set

of vertices adjacent to x, and the degree d(x) is the cardinality of N(x), that is, d(x) = |N(x)|.
The minimum degree of a graph G is δ(G) = min{d(x) : x ∈ V (G)}, and the maximum degree

of a graph G is ∆(G) = max{d(x) : x ∈ V (G)}. If δ(G) = ∆(G) = k, then the graph is

regular of degree k, where k is a positive integer. Denote by Γ = Aut(G) the automorphism

group of G. A graph G is said to be edge transitive if Aut(G) acts transitively on E(G), and

G is said to be vertex transitive if Aut(G) acts transitively on V (G). For v ∈ V (G), the set

Γ(v) = {φ(v) : φ ∈ Γ} is called a Γ-vertex-orbit, and for e ∈ E(G), the set Γ(e) = {φ(e) : φ ∈ Γ}
is called a Γ-edge-orbit. Clearly, all Γ-vertex-orbits constitute a partition of V (G), and all Γ-

edge-orbits constitute a partition of E(G). If there is only one Γ-vertex (edge)-orbit, then we

say that G is Γ-vertex (edge) transitive. Clearly, vertex(edge) transitive is Aut(G)-vertex(edge)

transitive. Aut(G)-vertex (edge)-orbits are simply called the vertex (edge) orbits of G. A graph

G is said to be reducible if there exist two vertices u and v satisfying N(u) = N(v), otherwise

G is irreducible.

It is well known that the edge connectivity of vertex transitive graphs is regularity, and

the connectivity of edge transitive graphs is equal to the minimum degree (to see [18]). If

there are exactly two vertex orbits, then we say that G is a 2-vertex-orbit graph. Similarly,

we can define the m(≥ 3)-vertex-orbit graph, for a short multiorbit graph. Compared with the

vertex transitive graph, the symmetry of multiorbit graphs becomes weaker. The study of the

influence of the number of vertex orbits on connectivity becomes a natural extension of the

study of vertex transitive graphs. In this paper, we mainly focus on the super-connectivity of

the 2-vertex-orbit graph.

The lexicographic product of a graph G by a graph H, denoted by G(H), is the graph

with vertex set V (G(H)) = {(u, v)|u ∈ V (G) and v ∈ V (H)}, and edge set E(G(H)) =

{(u1, v1)(u2, v2)| either u1 is adjacent to u2 in G or u1 = u2 and v1 is adjacent to v2 in H}.
Graphs with multiple edges are called multiple graphs. Graphs without edges are called null

graphs. A null graph on m vertices is denoted by Nm. Denote by Ck the cycle of length k, when

k is even, Ck is a bipartite graph with V (Ck) = V1 ∪ V2, for any u ∈ V1 and v ∈ V2, we replace

u with Nm and v with Nn, respectively, if uv ∈ E(G), then G[Nm ∪Nn] is a complete bipartite

graph with two parts of vertices number m and n, thus we get a new graph G = Ck(Nm, Nn),

where k is even. Denote by Q3 the 3-cube, L (Q3) the line graph of Q3, and Kn the complete

graph with n vertices, Km,n the complete bipartite graph with two parts of vertices number
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m and n. For graph-theoretical terminology and notation not defined here we follow [2]. In a

bipartite graph G, if for any two vertices u and v in a same part, there exists an automorphism

φ ∈ Aut(G) satisfying φ(u) = v, then G is said to be semi-transitive.

Up to now, there are not many researches on the super-connectivity of vertex (edge) transi-

tive graphs. In [15], Meng described the maximal connectedness of vertex and edge transitive

graphs, and proved when G is a connected vertex and edge transitive graph, G is not super-κ

if and only if G ∼= Cn(Nm)(n ≥ 6 and m ≥ 1) or G ∼= L (Q3)(Nm)(m ≥ 1). In [11], Liang et.al.

characterized the super-connectivity of vertex transitive bipartite graphs. In [23], Zhang and

Meng described the Super-connectivity of edge transitive graphs, and proved: If G is a con-

nected edge transitive graph, and G is semi-transitive, then G is super-connected, where G is a

quotient of G. If G is a connected irreducible edge transitive graph, then G is super-connected

with the only exception when G ∼= Cn(n ≥ 6) or L (Q3).

So far, the study of multiple graphs is concentrated mainly on the 2-vertex-orbit graph.

In [10], Liang and Meng characterized the maximal connectedness of bipartite 2-vertex-orbit

graphs. In [12], Liu and Meng characterized the edge connectivity of regular 2-vertex-orbit

graphs. In [20], Yang et.al. described the edge connectivity of 2-vertex-orbit graphs of the

same size. In [14], Lin et.al. characterized the super restricted edge connectivity of regular

2-vertex-orbit graphs.

In this paper, we describe the super-connectivity of 2-vertex-orbit graphs. In section 2, we

give some preliminaries. In section 3, we prove that if G is an irreducible connected bipartite

2-vertex-orbit graph, then G is super-connected. In section 4, we mainly research the Super-

connectivity of 2-edge-orbit graphs.

§2 Preliminaries

Let G = (V (G), E(G)) be a connected graph and F be a non-empty subset of V (G). Set

N(F ) = {x ∈ V (G) \ F : there exists y ∈ F satisfying xy ∈ E(G)}, C(F ) = F ∪ N(F ) and

R(F ) = V (G) \ C(F ). Clearly, the set N(F ) is a vertex cut set if R(F ) ̸= ∅. A vertex set

F ⊂ V (G) is said to be a fragment if |N(F )| = κ(G) and R(F ) ̸= ∅. A fragment of minimum

cardinality is called an atom of G. A fragment F with 2 ≤ |F | ≤ |V (G)| − κ(G) − 2 is called

a strict fragment of G. If there exists a strict fragment in G, then G is said to be degenerate.

Clearly, if F is a strict fragment of G, so is R(F ). A strict fragment of G with minimum

cardinality is called a superatom of G. The cardinality of a superatom of G is denoted by ω(G).

If A ⊆ V (G), then G[A] denotes the subgraph of G induced by A.

An imprimitive block of G is a vertex set F ⊆ V (G) such that, for any automorphism

φ ∈ Aut(G), either φ(F ) = F or φ(F ) ∩ F = ∅.
In [23], we can find the relationship between a superatom and a strict fragment of a graph

G.

Theorem 2.1. ([23]) Let G be a connected degenerate graph with ω(G) ≥ 3 and g(G) ≥ 4,

where g(G) is the girth of G. Let A be a superatom of G and B be a strict fragment of G. If

A ∩B ̸= ∅, then A ⊆ B.
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The following theorem plays an important role in discussing the vertex connectivity of

graphs.

Theorem 2.2. ([18]) Let G be a connected graph, and A, F and C be its atom, fragment and

minimum vertex cut of G, respectively. Then

(1) A ∩ F = ∅ or A ⊂ F ;

(2) A ∩ C = ∅ or A ⊂ C.

In the following, we will classify the connected graphs with two edge orbits. To this end,

we introduce a well-known result.

Theorem 2.3. ([6]) Let G be a graph with δ(G) > 0 and Γ be a subgroup of Aut(G). If G is

Γ-edge transitive, then either G is Γ-vertex transitive or G is a bipartite graph whose sets of

bipartition are its Γ-vertex-orbits.

Let A be a vertex set (or an edge set) of G, and G[A] be introduced by A. We have the

following classification result for connected 2-edge-orbit graphs.

Theorem 2.4. Let G be a connected 2-edge-orbit graph, E1 and E2 be its two edge orbits under

Γ = Aut(G), G1 = G[E1] and G2 = G[E2]. Then one of the following cases occurs.

(i) G = G1∪G2, V (G1) = V (G2) = V (G), thus G is the union of two edge disjoint Γ-vertex

transitive graphs on V (G).

(ii) G = G1 ∪ G2, where G1 is a bipartite graph with bipartition (U,W ), U and W are its

two Γ-vertex-orbits and G2 = G[W ] is a Γ-vertex transitive graph (see Figure 1. (a)).

(iii) G = G1 ∪G2, where G1 is a bipartite graph with bipartition (U,W ), U and W are its

two Γ-vertex-orbits, and G2 is a bipartite graph with bipartition (U ′,W ), U ′ and W are its two

Γ-vertex-orbits, and U ∩ U ′ = ∅ (see Figure 1. (b)).

Figure 1. The 2-edge-orbit graphs.

Proof. Since Γ = Aut(G), we have Γ ≤ Aut(Gi) and Gi is Γ-edge transitive for i = 1, 2. Set

Vi = V (Gi)(i = 1, 2).

If V2 ̸= V , we take v ∈ V \V2. Since δ(G) > 0, we have v ∈ V1, and the edge set incident with

v in G1 is the edge set incident with v in G. By Theorem 2.3, either G1 is Γ-vertex transitive or a

bipartite graph. If G1 is Γ-vertex transitive, then for any u ∈ V (G1), the edge set incident with
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u in G is that in G1. If V1 ̸= V , then G is not connected, a contradiction. Thus G1 is a bipartite

graph. Let U and W be its two Γ-vertex-orbits, then G1 has bipartition (U,W ). Without loss

of generality, assume that v ∈ U , then U ∩ V2 = ∅. Since G is connected, W ∩ V2 ̸= ∅. Since Γ

is vertex transitive on W , we have W ⊆ V2. If G2 is Γ-vertex transitive, then, since vertices of

G2 have some neighbors in G, we have W = V2 and therefore G2 = G[W ](see Figure 1.(a)).

If G2 is not Γ-vertex transitive, then G2 has two Γ-vertex-orbits, say U ′ and W ′, and G2

is a bipartite graph with bipartition (U ′,W ′). Since G2 is not Γ-vertex transitive, we have

U ′ ∩ W = ∅ or W ′ ∩ W = ∅. Without loss of generality, assume that U ′ ∩ W = ∅, then

W ′ ∩W ̸= ∅, and therefore W ′ = W (see Figure 1.(b)).

Let the graph G of (i), (ii) and (iii) in Theorem 2.4 be denoted by I-kind, II-kind and III-kind

2-edge-orbit graph, respectively. By Theorem 2.2, we have the following result.

Theorem 2.5. Let G be a connected 2-edge-orbit graph, A be a vertex atom with |A| ≥ 2. Then

G[A] is a connected component of G1 or G2, where G1 and G2 are edge transitive parts of G.

Proof. Let Ei = E(Gi) for i = 1, 2. We show by contradiction that Gi[A] is a connected

component of Gi if E(G[A]) ∩Ei ̸= ∅. If otherwise, then there exist two adjacent edges e1 and

e2 in Ei satisfying e1 ∈ E(G[A]) and e2 /∈ E(G[A]). Since Ei is an edge orbit, there exists

some α ∈ Aut(G) satisfying e2 ∈ α(e1). But then, the two distinct atoms A and α(A) are not

disjoint, contradicting Theorem 2.2. Thus if E(G[A]) ∩ Ei ̸= ∅ for i = 1, 2, then Gi[A] is a

connected component of Gi. But then G is not connected. Therefore, if E(G[A]) ∩ E1 ̸= ∅,
then E(G[A]) ∩ E2 = ∅, and G1[A] = G[A] is a connected component of G1.

§3 Super-connectivity of 2-vertex-orbit Graphs

In [10], Liang and Meng characterized the connected bipartite 2-vertex-orbit graphs which

are maximally connected. In [11], Liang, Meng and Zhang gave a necessary and sufficient

condition for the super-connectivity of vertex transitive bipartite graphs. In this section, we

will characterize the super-connectivity of connected bipartite 2-vertex-orbit graphs.

The following result is about the connectivity of semi-transitive graphs.

Theorem 3.1. ([10]) If G = (V,E) is a connected semi-transitive graph, then κ(G) = δ(G),

where δ(G) is the minimum degree of G.

Let G = (V,E) be a connected semi-transitive graph. In this section, we use V1 and V2

to denote the two parts of G. Without loss of generality, we may assume that m and n are

regularity of V1 and V2, respectively, and m ≤ n, thus the minimum degree δ(G) = m.

About the cardinality of a superatom of semi-transitive graphs, we have the following result.

Lemma 3.2. Let G be a connected degenerate semi-transitive graph. Then ω(G) = 2.

Proof. Clearly, ω(G) ≥ 2. Assume ω(G) ≥ 3. Let A be a superatom of G. Since G is a semi-

transitive graph, we have Ai = A∩Vi ̸= ∅ for i = 1, 2, and each vertex of G lies in a superatom.

We have g(G) ≥ 4 since G is a bipartite graph. By Theorem 2.1, distinct superatoms are

disjoint, thus V (G) is a disjoint union of distinct superatoms.
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Set C(A) = A ∪ N(A) and R(A) = V (G) \ C(A). Since G is a degenerate graph, R(A)

is a strict fragment of G. By Theorem 2.1, R(A) is a disjoint union of distinct superatoms of

G, and so N(A) is also a disjoint union of distinct superatoms of G, thus ω(G) ≤ |N(A)| =
κ(G) = δ(G) = m. If ω(G) = m, then N(A) is a superatom of G, and |A ∪N(A)| = 2m. Since

δ(G) = m, we have m = n and G[A ∪ N(A)] ∼= Km,m is a connected component of G, which

contradicts that G is connected. If ω(G) < m, then |A ∪N(A)| < 2m. N(x) ⊆ A ∪N(A) for

any x ∈ A, and G[A ∪ N(A)] is a bipartite subgraph of G, thus there exists a vertex x ∈ A

satisfying |N(x)| < m = δ(G), a contradiction.

Let A be a superatom of G, and G[A] be introduced by A. If G[A] is connected, then we

have the following result.

Lemma 3.3. Let G be a connected degenerate semi-transitive graph, and A be a superatom of

G. If G[A] ∼= K2, then G ∼= Ck for some k ≥ 6.

Proof. If m ̸= n, that is, m < n, then since G[A] ∼= K2, we have m + n − 2 = |N(A)| =
κ(G) = m, and so n = 2 and m = 1, and G[A ∪ N(A)] ∼= K1,2 is a connected component of

G, a contradiction. Thus m = n. Since 2(m − 1) = |N(A)| = κ(G) = m, we have m = 2 and

G ∼= Ck, where k ≥ 6 because Ck is not degenerate for k ≤ 5.

Since Ck is vertex transitive, in the following, we assume that G is a connected degenerate

bipartite 2-vertex-orbit graph. Now define an equivalence relationR on V (G): for v1, v2 ∈ V (G),

v1Rv2 if and only if N(v1) = N(v2). According to this equivalence and V (G) = V1 ∪ V2, V1

is partitioned into some non-empty sets F11, · · · , F1p(p ≥ 1), and V2 is partitioned into some

non-empty sets F21, · · · , F2q(q ≥ 1). Thus F1i and F2j are imprimitive blocks of V1 and V2,

respectively, and G[F1i] and G[F2j ] are independent sets for any 1 ≤ i ≤ p and 1 ≤ j ≤ q,

where G[F1i] and G[F2j ] are the subgraph of G induced by F1i and F2j , respectively.

Define a quotient graph G = G/R of G as follows: the vertices of G are f1i(1 ≤ i ≤ p) and

f2j(1 ≤ j ≤ q), f1i and f2j are adjacent in G if and only if there is one vertex in F1i which is

adjacent to some vertex of F2j in G. Clearly, the quotient graph G is irreducible for any graph

G.

We have the following results about the quotient graph G of a graph G, where G is a

connected degenerate bipartite 2-vertex-orbit graph.

Lemma 3.4. G is an irreducible connected semi-transitive graph.

Proof. Clearly, G is connected. Since G is a bipartite 2-vertex-orbit graph and F1i(1 ≤ i ≤ p)

and F2j(1 ≤ j ≤ q) are imprimitive blocks of G, for any u ∈ F1l and v ∈ F1k (1 ≤ l ̸= k ≤ p),

uv /∈ E(G), we have f1lf1k /∈ E(G), we can see that G is a bipartite graph. For any l ̸= k, there

exists φ1, φ2 ∈ Aut(G) satisfying φ1(F1l) = F1k and φ2(F2s) = F2t, thus the restriction of φ1

and φ2 on V (G) is an automorphism of G mapping f1l to f1k and f2s to f2k, thus the number

of vertex orbits of G is at most two.

Lemma 3.5. G is not super-κ if and only if G ∼= Ck(k ≥ 6), where k is even.
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Proof. The sufficiency is obvious.

Now we prove the necessity. Assume that G is not super-κ, then G is degenerate. Let A

be a superatom of G. By Lemma 3.2, we have |A| = 2. G[A] cannot be an independent set

because G is irreducible, thus G[A] ∼= K2. By Lemma 3.3, G ∼= Ck for some k ≥ 6.

Since Ck is vertex transitive, by Lemmas 3.4 and 3.5, we have the following theorems about

the super-connectivity of connected bipartite 2-vertex-orbit graphs.

Theorem 3.6. Let G be an irreducible connected bipartite 2-vertex-orbit graph. Then G is

super-κ.

Theorem 3.7. Let G be a connected bipartite 2-vertex-orbit graph. Then G is not super-κ if

and only if G ∼= Ck(Nm, Nn), where k ≥ 6 is even and m ̸= n.

§4 Super-connectivity of 2-edge-orbit Graphs

In the former part of this section, we will characterize the super-connected graphs with two

edge orbits. Let G = (V,E) be a connected 2-edge-orbit graph, Γ = Aut(G), E1 and E2 be

its two edge orbits. Then E1 ∪ E2 = E. Let Gi = G[Ei] be the subgraph of G induced by Ei,

Vi = V (Gi). Then Γ ≤ Aut(Gi) and Gi is Γ-edge transitive for i = 1, 2.

In the following, if G is a II-kind 2-edge-orbit graph, assume G = G1 ∪ G2, where G1 is a

bipartite graph with bipartition (U,W ), U and W are its two Γ-vertex-orbits and G2 = G[W ]

is a Γ-vertex transitive graph. In the subgraph G1, the regularity of the vertex in U is k1 and

the regularity of the vertex in W is k′1. In the subgraph G2, the regularity of the vertex is k2.

If G is a III-kind 2-edge-orbit graph, assume G = G1 ∪ G2, where G1 is a bipartite graph

with bipartition (U,W ), U and W are its two Γ-vertex-orbits, and G2 is a bipartite graph with

bipartition (U ′,W ), U ′ and W are its two Γ-vertex-orbits, and U ∩ U ′ = ∅. In the subgraph

G1, the regularity of the vertex in U is k1 and the regularity of the vertex in W is k′1. In the

subgraph G2, the regularity of the vertex in U ′ is k2 and the regularity of the vertex in W is

k′2.

In the next discussion, we need the following results.

Theorem 4.1. Let G be a 2-edge-orbit graph. Let G1 and G2 be its edge transitive parts at

least one of which is not connected. Let Hi be a connected component (if any) of Gi for i = 1, 2.

If κ(G) < δ(G), we have

(1) If V (Hi) ( V (G) for i = 1, 2, then κ(G)=min{|NG1(V (H2))|, |NG2(V (H1))|};
(2) If V (H1) ( V (G) and V (H2) = V (G), then κ(G) = |NG2(V (H1))|;
(3) If V (H1) = V (G) and V (H2) ( V (G), then κ(G) = |NG1(V (H2))|.

Proof. Let A be a vertex atom of G. Since κ(G) < δ(G), we have |A| ≥ 2, and by Theorem

2.5 we see that G[A] is a connected component of G1 or G2. If G[A] is a connected component

G1, then κ(G) = |NG(A)| = |NG2(V (H1))|. If G[A] is a connected component of G2, then

κ(G) = |NG(A)| = |NG1(V (H2))|.
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Corollary 4.2. Let G be a connected II-kind 2-edge-orbit graph. Let G1 and G2 be its edge

transitive parts such that G1 is not connected and G2 is connected. Then κ(G) = δ(G).

Proof. By contradiction. Let A be a vertex atom of G. If κ(G) < δ(G), then G[A] is a connected

component of G1. Since G[A] is connected, we have A∩U ̸= ∅ and A∩W ̸= ∅. Let A1 = A∩U

and A2 = A∩W . Since U and W are Γ-vertex-orbits, each vertex must be in a vertex atom of

G, and each vertex atom has non-empty intersection both with U and W . On the other hand,

NG(A) = NG2(A2) ⊂ W , which contradicts that A is a vertex atom.

In [9], the authors characterized the maximal connectedness of II-kind and III-kind 2-edge-

orbit graphs. The results follow:

Theorem 4.3. ([9]) Let G be a connected II-kind 2-edge-orbit graph. If |U | ≥ |W |, then

κ(G) = δ(G).

Theorem 4.4. ([9]) Let G be a connected III-kind 2-edge-orbit graph.

(1) If |W | ≤ min{|U |, |U ′|}, then κ(G) = δ(G);

(2) If Hi is one component of Gi for i = 1, 2 satisfying |NG1(V (H2))| = |NG2(V (H1))|, then
κ(G) = δ(G).

Theorem 4.5. ([9]) Let G be a k-regular connected 2-edge-orbit graph with k ≤ 6.

(1) If G is a II-kind 2-edge-orbit graph with g(G) ≥ 6, then κ(G) = k;

(2) If G is a III-kind 2-edge-orbit graph with g(G) ≥ 8, then κ(G) = k.

We have the following result about the cardinality of a superatom for connected II-kind

2-edge-orbit graphs.

Lemma 4.6. Let G be a connected degenerate II-kind 2-edge-orbit graph with g(G) ≥ 4. If one

of the following conditions occurs, then ω(G) = 2.

(1) G1 is not connected and G2 is connected;

(2) |U | ≥ |W | and G2 � K2 ∪ · · · ∪K2.

Proof. Clearly, ω(G) ≥ 2. Suppose ω(G) ≥ 3. Since g(G) ≥ 4, the intersection of any distinct

superatoms of G is empty by Theorem 2.1. Let A be a superatom of G. By Theorem 2.5, G[A]

is a connected component of G1 or G2.

(1) Since G2 is connected, if G[A] is a connected component of G2, then N(A) = U and

R(A) = ∅, a contradiction. Thus G[A] is a connected component of G1. Set A1 = A ∩ U

and A2 = A ∩W . Since U and W are Γ-vertex-orbits of G, each superatom has a non-empty

intersection both with U and W , and each vertex of G1 lies in a superatom. By Theorem 2.1,

G − G[A ∪ N(A)] is a disjoint union of distinct superatoms, and so there is a superatom A′

satisfying v ∈ A′ for some v ∈ N(A), and A′ ⊆ N(A). Hence, we obtain a contradiction by

N(A) ⊆ W .

(2) Since |U | ≥ |W |, we have k1 ≤ k′1 and κ(G) = k1 = min{k1, k′1 + k2}. If G[A] is a

connected component of G1, then A1 = A∩U ̸= ∅. By a similar argument as (1), we also have

a contradiction. If G[A] is a connected component of G2, then A ⊆ W and k1 = |N(A)| ≥ k′1.

Since k1 ≤ k′1, we have |A| = 1, a contradiction.
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We have the following result about the cardinality of a superatom for k-regular connected

II-kind 2-edge-orbit graphs.

Lemma 4.7. Let G be a k-regular connected degenerate II-kind 2-edge-orbit graph with k ≤ 6

and g(G) ≥ 6. Then ω(G) = 2.

Proof. Clearly, ω(G) ≥ 2. Suppose ω(G) ≥ 3. Since g(G) ≥ 6 > 4, the intersection of any

distinct superatoms of G is empty by Theorem 2.1. Let A be a superatom of G. By Theorem

2.5, G[A] is a connected component of G1 or G2.

If G[A] is a connected component of G1, then A1 = A ∩ U ̸= ∅, A2 = A ∩ W ̸= ∅. Since

U and W are Γ-vertex-orbits of G, each superatom has a non-empty intersection both with U

and W , and each vertex of G1 lies in a superatom. By Theorem 2.1, G − G[A ∪ N(A)] is a

disjoint union of distinct superatoms, and so there is a superatom A′ satisfying v ∈ A′ for some

v ∈ N(A), and A′ ⊆ N(A). Hence, we obtain a contradiction by N(A) ⊆ W .

If G[A] is a connected component of G2, then A ⊆ W . Since G2 is a vertex and edge

transitive graph, if k2 = 1, then G2[A] ∼= K2, a contradiction. Hence, k2 ≥ 2.

Set NG2(v) = {v1, v2, ..., vk2} for some v ∈ A, and NG2(v1) = {u1, u2, ..., uk2−1, v}. Clearly,
NG2(v) ∩ NG2(v1) = ∅. Since g(G) ≥ 6, we have NG1(wi) ∩ NG1(wj) = ∅ for any wi, wj ∈
NG2(v) ∪ NG2(v1). Thus, |N(A)| ≥ k′1 + k′1k2 + k1(k2 − 1) = 2k′1k2. Since 2k′1k2 − k′1 − k2 =

k′1(k2 − 1) + k2(k1 − 1) > 0, we obtain a contradiction by |N(A)| = k = k′1 + k2.

When G is a connected II-kind 2-edge-orbit graph, we have the following theorem about the

super-connectivity of G.

Theorem 4.8. Let G be a connected irreducible II-kind 2-edge-orbit graph with g(G) ≥ 4. If

one of the following conditions occurs, then G is super-connected.

(1) G1 is not connected and G2 is connected;

(2) |U | ≥ |W | and G2 � K2 ∪ · · · ∪K2.

Proof. Suppose G is not super-connected. Let A be a superatom of G. Since G is irreducible,

by Lemma 4.6, we have G[A] ∼= K2. By Theorem 2.5, G[A] is a connected component of G1 or

G2.

(1) Since G2 is connected, G[A] is a connected component of G1. Set A1 = A ∩ U and

A2 = A∩W . Since G[A] ∼= K2, we have |A1| = |A2| = 1, k1 = k′1 = 1, and |N(A)| = k2 · |A2| =
k2 =min{k1, k′1 + k2} = 1, and so G2

∼= K2, a contradiction.

(2) If G[A] is a connected component of G1. Set A1 = A∩U and A2 = A∩W , then |A1| =
|A2| = 1, k1 = k′1 = 1, and |U | = |W |. Since |N(A)| = k2 = 1, we have G2

∼= K2 ∪ · · · ∪K2, a

contradiction.

If G[A] is a component of G2, then since G[A] ∼= K2 and G2 is an edge transitive graph, we

have G2
∼= K2 ∪ · · · ∪K2, a contradiction.

In Theorem 4.8, we demand g(G) ≥ 4. If g(G) = 3, then G is not super-connected and we

give a remark in the following.
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Remark 1. Let G (see Figure 2.) be a II-kind 2-edge-orbit graph with g(G) = 3, where

G1
∼= K1,4 ∪ K1,4 ∪ K1,4, and G2

∼= L (Q3), then κ(G) = δ(G) = 4, {v1, v2, v3, v4} is a

minimum vertex cut of G, and there is not a singleton in G − {v1, v2, v3, v4}, thus G is not

super-connected.

Figure 2. A II-kind 2-edge-orbit graph with g(G)=3.

If G2
∼= K2 ∪ · · · ∪ K2, then G is also not super-connected, and we give a remark in the

following.

Remark 2. Let G (see Figure 3.) be a II-kind 2-edge-orbit graph with |U | ≥ |W | and G2
∼=

K2 ∪ · · · ∪ K2, where G1
∼= K2,3 ∪ K2,3 ∪ K2,3 ∪ K2,3 and G2

∼= K2 ∪ K2 ∪ K2 ∪ K2, then

κ(G) = δ(G) = 2, {v3, v5} is a minimum vertex cut of G, and there is not a singleton in

G\{v3, v5}, thus G is not super-connected.

Figure 3. A II-kind 2-edge-orbit graph with |U | ≥ |W | and G2
∼= K2 ∪ · · · ∪K2.

When G is a k-regular connected II-kind 2-edge-orbit graph, we have the following theorem

about the super-connectivity of G.

Theorem 4.9. Let G be a k-regular connected irreducible II-kind 2-edge-orbit graph with k ≤ 6

and g(G) ≥ 6. Then G is super-connected.

Proof. Suppose G is not super-connected. Let A be a superatom of G. Since G is irreducible,

by Lemma 4.7, we have G[A] ∼= K2. By Theorem 2.5, G[A] is a connected component of G1 or

G2. If G[A] is a component of G1, then k1 = k′1 = 1 and G ∼= G[A], a contradiction. If G[A]

is a component of G2, then |N(A)| = 2k′1, k2 = 1, and |N(A)| = κ(G) = k = k′1 + k2. Thus

k′1 = k2 = 1 and k1 = 2, and so G is a cycle, a contradiction.

Next, we will consider the super-connectivity for the connected III-kind 2-edge-orbit graph.

In the first, we have the following result about the cardinality of a superatom for connected

III-kind 2-edge-orbit graphs.
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Lemma 4.10. Let G be a connected degenerate III-kind 2-edge-orbit graph. If one of the

following conditions occurs, then ω(G) = 2.

(1) |W | ≤ min{|U |, |U ′|};
(2) Hi is one component of Gi for i = 1, 2 satisfying |NG1(V (H2))| = |NG2(V (H1))|.

Proof. Clearly, ω(G) ≥ 2. Suppose ω(G) ≥ 3. Since G is a III-kind 2-edge-orbit graph, we have

g(G) ≥ 4, and the intersection of any distinct superatoms of G is empty by Theorem 2.1. Let

A be a superatom of G. By Theorem 2.5, G[A] is a connected component of G1 or G2.

(1) Since |W | ≤ min{|U |, |U ′|}, we have k1 ≤ k′1 and k2 ≤ k′2. Without loss of generality,

assume that G[A] is a connected component of G1, then A1 = A∩U ̸= ∅ and A2 = A∩W ̸= ∅.
When k1 ≤ k2. k1 = |N(A)| = |NG2(A2)| ≥ k′2. Hence k1 = k2 = k′1 = k′2. If |A2| ≥ 2,

then NG2(v1) = NG2(v2) for any v1, v2 ∈ A2, and so G[A ∪ N(A)] is a component of G, a

contradiction. If |A2| = 1, then N(v) = NG1(v) = A2 for any v ∈ A1, that is k1 = 1. Hence,

G[A ∪N(A)] is a component of G, a contradiction.

When k1 > k2. By a similar argument as above, we observe a contradiction.

(2) Without loss of generality, assume that G[A] is a connected component of G1. Then

G[A] ∼= H1, A1 = A ∩ U ̸= ∅, and A2 = A ∩W ̸= ∅.
Since U and W are Γ-vertex-orbits of G, each vertex of G1 lies in a superatom, and each

superatom has a non-empty intersection both with U and W . Since H2 is a component of

G2, we have V (H2) ∩ W ̸= ∅, and there is a superatom A′ satisfying v ∈ A′ for some v ∈
V (H2) ∩W . V (H2) is a strict fragment of G by |NG1(V (H2))| = |NG2(V (H1))|. By Theorem

2.1, A′ ⊆ V (H2), and A′∩U = ∅, we obtain a contradiction in which each superatom is disjoint

with U and W .

We have the following result about the cardinality of a superatom for k-regular connected

III-kind 2-edge-orbit graphs.

Lemma 4.11. Let G be a k-regular connected degenerate III-kind 2-edge-orbit graph with k ≤ 6

and g(G) ≥ 8. Then ω(G) = 2.

Proof. Clearly, ω(G) ≥ 2. Suppose ω(G) ≥ 3. Since g(G) ≥ 8 > 4, the intersection of any

distinct superatoms of G is empty by Theorem 2.1. Let A be a superatom of G. By Theorem

2.5, G[A] is a connected component of G1 or G2.

Without loss of generality, assume thatG[A] is a connected component ofG1. Set A1 = A∩U
and A2 = A ∩W , and k = k1 = k2 = k′1 + k′2.

When k′1 = 1. Since G[A] is a connected component of G1, we have |A1| = 1 and G[A] ∼=
K1,k. By g(G) ≥ 8, we have |N(A)| = k′2|A2| = k = 1+k′2. Hence, k′2 = 1, |A2| = 2, and k = 2.

Thus, G is a cycle, a contradiction.

When k′1 ≥ 2. Since G1 is a 2-vertex-orbit graph, we have |A1| ≥ 2. Assume v1, v2 ∈ A1.

Set N(v1) = {u11, u12, ..., u1k}, N(v2) = {u21, u22, ..., u2k}. Clearly, |N(v1) ∩ N(v2)| ≤ 1 by

g(G) ≥ 8. Hence, |N(A)| ≥ |NG2(N(v1) ∪ N(v2))| ≥ k′2(2k − 1). Since k′2(2k − 1) − k =

k(k′2 − 1) + k′2k − 1 > 0, we have a contradiction by |N(A)| = k.

When G is a connected III-kind 2-edge-orbit graph, we have the following theorem about

the super-connectivity of G.



582 Appl. Math. J. Chinese Univ. Vol. 39, No. 4

Theorem 4.12. Let G be a connected irreducible III-kind 2-edge-orbit graph. If one of the

following conditions occurs, then G is super-connected.

(1) |W | ≤ min{|U |, |U ′|};
(2) Hi is a connected component of Gi for i = 1, 2 satisfying |NG1(V (H2))| = |NG2(V (H1))|.

Proof. Suppose G is not super-connected. Let A be a superatom of G. By Lemma 4.10, G[A] ∼=
K2. By Theorem 2.5, G[A] is a connected component of G1 or G2. Without loss of generality,

we assume that G[A] is a connected component of G1. Set A1 = A ∩ U and A2 = A ∩ W .

Since G[A] ∼= K2, we have |A1| = |A2| = 1 and k1 = k′1 = 1, and so |N(A)| = k2 = 1, then

G[A ∪N(A)] is a component of G, a contradiction.

When G is a k-regular III-kind 2-edge-orbit graph, we have the following theorem about the

super-connectivity of G.

Theorem 4.13. Let G be a k-regular connected irreducible III-kind 2-edge-orbit graph with

k ≤ 6 and g(G) ≥ 8. Then G is super-connected.

Proof. Suppose G is not super-connected. Let A be a superatom of G. By Lemma 4.11,

G[A] ∼= K2. By Theorem 2.5, G[A] is a connected component of G1 or G2. Without loss

of generality, we assume that G[A] is a connected component of G1. Set A1 = A ∩ U and

A2 = A ∩ W . Since G[A] ∼= K2, we have |A1| = |A2| = 1 and k1 = k′1 = 1. Since G is a

k-regular graph, we have k = k1 = k2 = k′1 + k′2 = 1, a contradiction.
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