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Convergence analysis for complementary-label learning

with kernel ridge regression

NIE Wei-lin1 WANG Cheng1 XIE Zhong-hua2

Abstract. Complementary-label learning (CLL) aims at finding a classifier via samples with

complementary labels. Such data is considered to contain less information than ordinary-label

samples. The transition matrix between the true label and the complementary label, and some

loss functions have been developed to handle this problem. In this paper, we show that CLL

can be transformed into ordinary classification under some mild conditions, which indicates

that the complementary labels can supply enough information in most cases. As an example,

an extensive misclassification error analysis was performed for the Kernel Ridge Regression

(KRR) method applied to multiple complementary-label learning (MCLL), which demonstrates

its superior performance compared to existing approaches.

§1 Introduction

Weakly supervised learning problems have attracted great interest in machine learning soci-

ety since high-quality supervised data sometimes is difficult or expensive to obtain. One notable

instance of such a problem is CLL, which was introduced by Ishida et al. (2017) [8]. In CLL,

the training sample is labeled with a class it does not belong to, and the goal is to learn a

proper classifier as in the traditional multi-class classification problem.

We follow the settings in Cucker and Smale, (2002) [3]. Let the input space be X ⊂ Rd

and the output space Y = {e1, · · · , en} where ei is the vector with the i-th element 1 and

others 0, standing for the i-th class. For any classifier f : X → Y , the misclassification error

is PrX×Y {f(x) ̸= y} = EIf(x)̸=y where I is the indicator function. In traditional problems,

samples are drawn according to a joint distribution ρ defined on the sample space Z := X ×Y .
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In the CLL problem, the true labels of the training samples are always unknown. Different

from most literature, we denote the complementary label ỹ as a vector in {0, 1}n. 0 means

a complementary label, and 1 indicates a possible true label. We should be aware that the

complementary output space is Ỹ = {⃗1 − eA, A ⊂ {0, 1, · · · , n}}. Here 1⃗ = (1, · · · , 1) ∈ Rn, A

is an index set, and we denote eA = (a1, · · · , an) where ai = 1 if i ∈ A and ai = 0 otherwise.

Then the complementary-label samples are drawn from another distribution ρ̃ on the space

Z̃ : X × Ỹ . Also, we can consider the sample as (x, y, ỹ) where the true label y is a latent

variable.

The generation method of complementary labels is important in CLL problems. Ishida et

al., (2017) [8] considered a single complementary label for each sample. They assumed the

complementary label is uniformly distributed. That is, all the labels other than the true label

has the same probability to be the complementary label. Then one versus all (OVA) and pairwise

comparison (PC) loss were applied in an empirical risk minimization (ERM) scheme. Later Yu

et al. (2018) [17] studied a transition matrix Q with different elements Qij = Pr{ȳ = j|y = i},
which extended the above setting. Here ȳ denotes the complementary label. A new loss function

was introduced to deal with this condition, and convergence analysis was conducted. Feng et

al., (2020) [6] introduced the multiple CLL (MCLL) problem, in which the data contain multi-

complementary labels. But for a fixed size of complementary-label set, labels in this set were

still uniformly distributed. Recently, Wang et al. (2023) [13] proposed a mild condition, stating

that the sampling of complementary labels is independent of the input variable x. Based on this

condition, the authors reformulated the expected risk and addressed the problem by minimizing

the empirical risk.

After generating the complementary-label samples, the above literature and Ishida et al.,

(2019) [9] designed several complementary losses, to approximate the conditional distribution

ρ(y|x) given x via the relationship Q. Different from these analyses, Gao et al., (2021) [7]

directly modelled ρ(ȳ|x) by minimizing the gap between ȳ and 1−f(x) where f is the prediction

function. Xu et al., (2020) [16] studied the two conditional distributions simultaneously, by a

ganerative adversarial net (GAN).

Theoretical analysis of classifier consistency was considered in more recent literature. In

Wang et al., (2023) [12], the authors considered least-square-based loss to single uniformly

distributed CLL. They proved the ERM estimator with respect to their loss is consistent with

a traditional ERM problem with the least square loss and ordinary labels. Both Wang et al.,

(2023) [13] and Liu et al., (2023) [10] claimed that their estimators are consistent with the

Bayes classifier. The latter paper further conducted a regret transfer bound, which leads to an

estimation for the misclassification error.

It is also of theoretical interest to derive a sharp convergence rate for CLL problems.

Op(n
2m−1/2) rate was obtained in Ishida et al., (2017) [8] for the excess generalization error.

When each size mi of samples with complementary-label ȳ = i is m/n, Yu et al., (2018) [17]

stated a Op(n
3/2m−1/2) rate. For MCLL, Feng et al., (2020) [6] presented an excess generaliza-

tion error Op(n
∑n

j=1 m
−1/2
j ). There mj is the number of examples whose complementary-label
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size is j. Wang et al., (2023) [13] proved a sharper bound Op(
∑n

j=1 m
−1/2
j + m

′−1/2
j ) where

mj +m′
j = m.

In summary, most of the existing literature considers the (multi) complementary label con-

tain less information than the ordinary-label, as the lack of true label in the sample data. Hence

restrictive conditions on the sample distribution are required. And complicated loss functions

are needed to derive consistent estimators. In this paper, we propose a weak condition for the

distribution of the complementary label. Under this condition, we show that MCLL can be

equivalent to learning with ordinary labels. Furthermore, if the conditional distribution ρ̃(ỹ|x),
given x (to be defined in the next section), satisfies an additional mild condition, a comparison

theorem can be established. As an example, we focus on applying the kernel ridge regression

(KRR) method to the MCLL, and we provide optimal bounds for both the excess generalization

error and the excess misclassification error associated with the KRR method.

§2 Bayes classification consistency

In this section, we prove that CLL can be transformed to ordinary-label learning under

weak condition on ρ(ỹ|x). Firstly we recall the basic settings as follows. X ⊂ Rd is the

input space, the output space is Y = {e1, · · · , en} where ek stands for the k-th class. For any

input x ∈ X, we assume the true label is y ∈ Y , and the complentary-label is ỹ ∈ Ỹ , where

Ỹ = {⃗1 − eA, A ⊂ {1, · · · , n}}. A complementary label ỹ = 1⃗ − eA means the input does not

belong to the class with indexes in A. In the sequel, we denote y(k) as the k-th element of

vector y, and yi as the (latent) output of the i-th sample.

We assume the true sample data z = (xi, yi)
m
i=1 ∈ Zm := (X ×Y )m is drawn according to a

joint distribution ρ on Z. The marginal distribution of ρ is ρX and the conditional distribution is

ρ(y|x) on Y . And the complementary-label sample we obtained is z̃ = (xi, ỹi)
m
i=1 ∈ Z̃m := (X×

Ỹ )m, which is drawn according to another joint distribution ρ̃ on X × Ỹ . ρ̃ can be decomposed

to ρX and ρ̃(ỹ|x) as well. A classifier can be considered as a function g : X → Y . However, in

practice, we often find some scoring function f : X → Rn from data, then use a splitter function

to derive a classifier. The splitter function is S(α) = ejα where jα = argmaxk=1,··· ,n α
(k) for a

score vector α ∈ Rn.

The Bayes classifier fc(x) = ejρ(x), with jρ(x) = argmaxj=1,··· ,n Pr{y = ej |x}, is the min-

imizer of the misclassification error R(f) = Pr{f(x) ̸= y}, which is our goal function. It is

also known that if we denote the regression function by fρ(x) = E(y|x) = (Pr{y(k) = 1|x})nk=1,

then fc(x) = S(fρ(x)). Hence we would like to estimate the performance of a classifier g by the

excess misclassification error R(g)−R(fc) = R(g)−R(S(fρ)).

To this end, we need some conditions on the generation for the complementary-label set.

Assumption 1. Assume the largest element with index jρ(x) of fρ(x) is unique. And

Pr{ỹ(k) = 0|x} > Pr{ỹ(jρ(x)) = 0|x}, k = 1, · · · , n. (1)

The uniqueness assumption is often considered necessary and practical because, in many

real-world scenarios, the true label for a given instance is not ambiguous. The formula (1)
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means the true label has the least probability of appearing in the complementary-label set,

which is also realistic. Compared with the existing assumptions, we can see (1) is much weaker.

Example 1. In Ishida et al., (2017) [8], Pr{ȳ(k) = 1|x, y(k) = 1} = 0, and Pr{ȳ(k′) =

1|x, y(k) = 1} = 1
n−1 for any k′ ̸= k were assumed. Then from the notation ỹ = 1⃗ − ȳ,

i.e., ỹ(k) = 1− ȳ(k), we deduce that

Pr{ỹ(k) = 0|x} =

n∑
j=1

Pr{ỹ(k) = 0, y(j) = 1|x}

=
n∑

j=1

Pr{ỹ(k) = 0|x, y(j) = 1} · Pr{y(j) = 1|x}

=
n∑

j=1,j ̸=k

1

n− 1
· f (j)

ρ (x) =
1

n− 1

[ n∑
j=1

f (j)
ρ (x)− f (k)

ρ (x)
]

=
1

n− 1
(1− f (k)

ρ (x)).

If k = jρ(x), the above formula is the smallest one as jρ(x) = argmaxk f
(k)
ρ (x).

It is worth noting that our assumption covers cases that have not been previously con-

sidered. For example, the distribution of complementary-label can depend on the input x,

Pr{ȳ(k) = 1|y(k) = 1} for some k can be positive, which means people may make a mistake

when annotating a label for an input. Pr{ȳ = 0⃗|x} or Pr{ȳ = 1⃗|x} can be positive too, which

allows a complementary-label to be empty and universal set. Now we prove the main result

in this section that MCLL under such conditions is consistent with the Bayes classifier. This

implies that any classification method designed for ordinary-label samples can also be applied to

MCLL problems. Furthermore, our assumption may be extended to other partial label learning

problems, Cour et al., (2011) [2] and etc..

Theorem 1. With the notations above and Assumption 1, we have S(f̃ρ(x)) = S(fρ(x)), where

f̃ρ(x) = E(ỹ|x).

Proof. From the definition

f̃ρ(x) = E(ỹ|x) =
∑

A⊂[n]

(⃗1− eA) Pr{ỹ = 1⃗− eA|x}

=
∑

A⊂[n]

1⃗ · Pr{ỹ = 1⃗− eA|x} −
∑

A⊂[n]

eA · Pr{ỹ = 1⃗− eA|x}.

Here [n] = {1, 2, · · · , n}. Then the k-th element of f̃ρ(x) is∑
A⊂[n]

Pr{ỹ = 1⃗− eA|x} −
∑

A⊂[n]

Ik∈A Pr{ỹ = 1⃗− eA|x}.

Note that the second term is∑
A⊂[n],
k∈A

Pr{ỹ = 1⃗− eA|x} = Pr{ỹ(k) = 0|x},

we have f̃
(jρ(x))
ρ (x) > f̃

(k)
ρ (x) for any k ̸= jρ(x) from Assumption 1 where jρ(x) = argmaxj f

(j)
ρ

(x). Hence the result is proved.
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§3 Comparison Theorem

Assumption 1 and Theorem 1 indicate that the index of the largest element in f̃ρ should be

the same as the one in fρ, i.e., jρ(x) = j̃ρ(x). However, it is not enough to get a satisfactory

convergence result with only this condition. Consider a single CLL problem, for a given input

x, if the complementary-label distribution satisfies f̃
(k)
ρ (x) = 1

n − ϵ for all k ̸= j̃ρ(x) and

f̃
(j̃ρ(x))
ρ (x) = 1

n + (n− 1)ϵ for a very small ϵ > 0. Then f̃
(jρ(x))
ρ (x)− f̃

(k)
ρ (x) = nϵ. In this case,

we can hardly find the true label correctly since the largest element is not prominent enough

in the conditional probabilities f̃
(k)
ρ (x). This simple example suggests the distribution for the

complementary label should not be close to a uniform one. Motivated by this observation, we

introduce another condition below.

Assumption 2. For any 1 ≤ k ≤ n and x ∈ X, we assume

f (jρ(x))
ρ (x)− f (k)

ρ (x) ≤ α(f̃ (j̃ρ(x))
ρ (x)− f̃ (k)

ρ (x))

for some constant α > 0 where jρ(x) = argmaxj f
(j)
ρ (x) and j̃ρ(x) = argmaxj f̃

(j)
ρ (x).

This is a weak condition for the distribution of complementary-label as well. Indeed, a

trivial bound holds that f
(jρ(x))
ρ (x) − f

(k)
ρ (x) ≤ 1 for any k and x. If f̃

(j̃ρ(x))
ρ (x) − f̃

(k)
ρ (x) ≥ ϵ

for any k and x, then Assumption 2 holds with α = 1
ϵ . This means the first and second largest

element in f̃ρ(x) should not be too close, which is a mild condition.

A comparison theorem can be proved under this condition for least squares loss. We denote

the generalization error E(f) :=
∫
Z
∥f(x) − y∥22dρ =

∫
Z

∑n
j=1(f

(j)(x) − y(j))2dρ and Ẽ(f) =∫
Z̃
∥f(x) − ỹ∥22dρ̃. We can verify that Ẽ(f) − Ẽ(f̃ρ) =

∫
X
∥f(x) − f̃ρ(x)∥22dρX := ∥f − f̃ρ∥22,ρ

and E(f)− E(fρ) = ∥f − fρ∥22,ρ.

Theorem 2. (Comparison) With the notations above and Assumption 1,2, we have for any

f : X → Rn,

R(S(f))−R(fc) ≤ α

√
2(Ẽ(f)− Ẽ(f̃ρ)).

Proof. Note that from the previous section, S(f̃ρ) = S(fρ) = fc, hence

R(S(f))−R(S(f̃ρ)) = Pr{y ̸= S(f(x))} − Pr{y ̸= S(f̃ρ(x))}

= Pr{y = S(f̃ρ(x))} − Pr{y = S(f(x))}

=

∫
X

[
Pr{y = S(f̃ρ(x))|x} − Pr{y = S(f(x))|x}

]
dρX

=

∫
X

[
Pr{y = etildejρ(x)|x} − Pr{y = ejf (x)|x}

]
dρX

where jf (x) = argmaxj f
(j)(x). On the other hand,

fρ(x) = E(y|x) =
n∑

k=1

ek Pr{y = ek|x} =
(
Pr{y = ek|x}

)n

k=1
.

Hence

R(S(f))−R(S(f̃ρ)) =

∫
X

[
f (j̃ρ(x))
ρ (x)− f

(jf (x))
ρ (x)

]
dρX .
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By Theorem 1 j̃ρ(x) = jρ(x) for any x ∈ X and Assumption 2 we have

R(S(f))−R(S(f̃ρ)) ≤ α

∫
X

[
f̃ (j̃ρ(x))
ρ (x)− f̃

(jf (x))
ρ (x)

]
dρX .

From Jensen’s inequality,

f̃ (j̃ρ(x))
ρ (x)− f̃

(jf (x))
ρ (x)

= [f̃ (j̃ρ(x))
ρ (x)− f (j̃ρ(x))(x)] + [f (j̃ρ(x))(x)− f (jf (x))(x)] + [f (jf (x))(x)− f̃

(jf (x))
ρ (x)]

≤ [f̃ (jρ̃(x))
ρ (x)− f (jρ̃(x))(x)] + [f (jf (x))(x)− f̃

(jf (x))
ρ (x)]

≤

√√√√2

n∑
k=1

(f (k)(x)− f̃
(k)
ρ (x))2,

we deduce that

R(S(f))−R(S(f̃ρ)) ≤ α

√√√√2

∫
X

n∑
k=1

(f (k)(x)− f̃
(k)
ρ (x))2dρX

= α

√
2

∫
X

∥f(x)− f̃ρ(x)∥22dρX

which proves the result from the fact that Ẽ(f)− Ẽ(f̃ρ) = ∥f − f̃ρ∥22,ρ.

§4 Error analysis

In this section, we focus on analyzing the error bound for the classical Kernel Ridge Re-

gression (KRR) method applied to the MCLL problem. Let K be a Mercer kernel defined on

X ×X, which is continuous, symmetric and positive semi-definite. HK := {span(Kx) : x ∈ X}
is the reproducing kernel Hilbert space (RKHS) where Kx(t) = K(x, t), x, t ∈ X. Denote

κ := supx∈X

√
K(x, x) and Hn

K = {(f (1), · · · , f (n)) : f (k) ∈ HK , k = 1, · · · , n}. The KRR

scheme is defined as

f̃z = arg min
f∈Hn

K

1

m

m∑
i=1

∥f(xi)− ỹi∥22 + λ∥f∥2
K⃗
,

where ∥f∥2
K⃗

=
∑n

k=1 ∥f (k)∥2K . Then a classifier can be derived by splitter function S(f̃z).

We would like to estimate the excess misclassification error for S(f̃z) in this section. To this

end, we have to introduce some notations as in the classical learning theory as Wang and Guo

(2012), [11].

Definition 1. For a metric space (H, D), and F ⊂ H, the covering number N (F , η,D) is

defined to be the minimal integer N , such that there exists a function set f1, · · · , fN , for any

f ∈ F , we can find some j ∈ {1, 2, · · · , N} satisfying D(f, fj) ≤ η.

Assumption 3. Denote B1 = {f ∈ HK : ∥f∥K ≤ 1}, we assume

logN (B1, η, ∥ · ∥∞) ≤ csη
−s.

Denote integral operator LKg(t) :=
∫
Z
g(x)K(x, t)dρX . And Lr

K

∑
i≥1 ciϕi =

∑
i≥1 ciµiϕi

where {µi, ϕi}i≥1 are the eigen-pairs of LK and {ϕi}i≥1 form an orthogonal basis of L2
ρX

. Then
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the regularity condition is as follows.

Assumption 4. Assume f̃
(k)
ρ ∈ Lr

K(L2
ρX

) with some constant r > 0. And

Mρ := max1≤k≤n ∥L−r
K f̃

(k)
ρ ∥ρ.

These two assumptions are general in the learning theory literature as in Wu and Zhou,

(2006) [14]. The first one describes the capacity for the hypothesis space, and the second one

characterize the regularity of the goal function. We also need the Bernstein inequality from

Bennett, (1962) [1] for the error analysis.

Lemma 1. Let ξ be a random variable on a probability space Z with variance σ2(ξ) = σ2, and

satisfy |ξ(z)− Eξ| ≤ M for almost all z ∈ Z. Then for all ε > 0,

Pr
{ 1

m

m∑
i=1

ξ(zi)− Eξ ≥ ε
}
≤ exp

{
− mε2

2(σ2 + 1
3Mε)

}
.

Set the right-hand side to δ, we can prove that

1

m

m∑
i=1

ξ(zi)− Eξ ≤
(2M
3m

+

√
2σ2

m

)
log

1

δ
(2)

holds with confidence 1− δ. Now we state the convergence result as follows.

Theorem 3. Under assumptions 1, 2, 3, 4, let λ = m− 1
(1+s)min{2r+1,2} , then with confidence

1− δ, we have

R(S(f̃z))−R(fc) ≤ C̃
√
n log

1
2
4

δ
·m−min{ 1

4(1+s)
, r
(1+s)(2r+1)}

for some constant C̃ independent of m,n and δ.

Proof. Firstly we note that from the previous section there holds

R(S(f̃z))−R(fc) ≤ α
√
2(Ẽ(f̃z)− Ẽ(f̃ρ))

for the least squares loss. So what is left is to estimate the excess generalization error.

We denote a stepping-stone function f̃λ = (f̃
(1)
λ , · · · , f̃ (n)

λ ) where

f̃
(k)
λ = arg min

f∈HK

∫
Z̃

(f(x)− ỹ)2dρ̃+ λ∥f∥2K , k = 1, · · · , n.

Then the error decomposition can be stated as follows.

Ẽ(f̃z)− Ẽ(f̃ρ) ≤ Ẽ(f̃z)− Ẽ(f̃ρ) + λ∥f̃z∥2K⃗
≤

[(
Ẽ(f̃z)− Ez̃(f̃ρ)

)
−

(
Ez̃(f̃z)− Ez̃(f̃ρ)

)]
+
[(

Ez̃(f̃λ)− Ez̃(f̃ρ)
)
−
(
Ẽ(f̃λ)− Ẽ(f̃ρ)

)]
+
[
Ẽ(f̃λ)− Ẽ(f̃ρ) + λ∥f̃λ∥2K⃗

]
:= S1 + S2 + D̃(λ)

where Ez̃(f) = 1
m

∑m
i=1 ∥f(xi)− ỹi∥22. The first two terms are sample errors and the third one

is regularization error.
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It is known that f̃
(k)
λ = (LK + λI)−1LK f̃

(k)
ρ from classical analysis, Cucker and Zhou,

(2007) [4]. Since

Ẽ(fλ)− Ẽ(f̃ρ) =
n∑

k=1

∥f̃ (k)
λ − f̃ (k)

ρ ∥2ρ ≤ λmin{2r,2}(κ2 + 1)Mρn

and

λ∥f̃λ∥2K⃗ = λ
n∑

k=1

∥f̃λ,k∥2K ≤ λmin{2r,1}(κ4r−2 + 1)M2
ρn,

we can estimate the regularization error bound

D̃(λ) ≤ C1λ
min{2r,1}n,

where C1 = (κ2 + κ4r−2 + 1)M2
ρ .

We next estimate S2 by the Bernstein inequality. Let random variable ξ(z̃) = ∥f̃λ(x) −
ỹ∥22 − ∥f̃ρ(x) − ỹ∥22, then S2 = 1

m

∑m
i=1 ξ(z̃i) − Eξ(z̃). Since |f̃ (k)

λ (x)| ≤ |f̃ (k)
ρ (x)| ≤ 1, and

ỹ(k) ∈ {0, 1}, we deduce that |ξ(z̃)| ≤ 4n and σ2(ξ) ≤ 16n(Ẽ(f̃λ) − Ẽ(f̃ρ)) ≤ 16nD̃(λ). From

Bernstein inequality we have with confidence 1− δ

S2 ≤
(11n

m
+ D̃(λ)

)
log

2

δ
.

Now we present a covering number-based upper bound for S1. Denote

Bn
R = {f ∈ Hn

K : ∥f (k)∥2K ≤ R2, k = 1, · · · , n},
we notice that logN (Bn

R, η, ∥ · ∥∞) ≤ csR
sη−sn from Assumption 3. Here the metric is ∥f∥∞

= maxk=1,··· ,n ∥f (k)∥∞. For any f ∈ Bn
R, denote ζ(z̃) = ∥f(x)− ỹ∥22 − ∥f̃ρ(x)− ỹ∥22, then(

Ẽ(f)− Ẽ(f̃ρ)
)
−
(
Ez̃(f)− Ez̃(f̃ρ)

)
=

1

m

m∑
i=1

ζ(z̃i)− E(ζ).

We can verify that |ζ(z̃)| ≤ n(κ + 1)2R2, and σ2(ζ) ≤ (κ + 3)2R2 · (Ẽ(f) − Ẽ(f̃ρ)). Therefore

with confidence 1−Nδ(
Ẽ(fj)− Ẽ(f̃ρ)

)
−
(
Ez̃(fj)− Ez̃(f̃ρ)

)
≤ 3n(κ+ 3)2R2

m
log

2

δ
+

1

2
(Ẽ(fj)− Ẽ(f̃ρ))

where {fj}Nj=1 forms a η-net of Bn
R with N = N (Bn

R, η, ∥ · ∥∞). On the other hand,

∥f̃z(x)− ỹ∥22 − ∥fj(x)− ỹ∥22

=
n∑

k=1

[(f̃ (k)
z (x)− f

(k)
j (x))(f̃ (k)

z (x) + f
(k)
j (x)− 2ỹ(k))] ≤ 2η(κ+ 1)Rn.

Therefore with confidence 1−Nδ, there holds

S1 =
(
Ẽ(f̃z)− Ez̃(f̃ρ)

)
−
(
Ez̃(f̃z)− Ez̃(f̃ρ)

)
=

[(
Ẽ(f̃z)− Ez̃(f̃ρ)

)
−
(
Ez̃(f̃z)− Ez̃(f̃ρ)

)]
+
(
Ẽ(f̃z)− Ẽ(fj)

)
+
(
Ez̃(fj)− Ez̃(f̃z)

)
≤ 3n(κ+ 3)2R2

m
log

2

δ
+ 5ηn(κ+ 1)R+

1

2
(Ẽ(f̃z)− Ẽ(f̃ρ)).

Scaling Nδ to δ and choosing η = Rm− 1
1+s , we have with confidence 1− δ

S1 ≤ C2
nR2

m
1

1+s

log
2

δ
+

1

2
(Ẽ(f̃z)− Ẽ(f̃ρ)),
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where C2 = 6cs(κ+ 3)2 + 5(κ+ 1).

From the definition of f̃z we have

f̃ (k)
z = arg min

f(k)∈HK

1

m

m∑
i=1

|f (k)(xi)− ỹ
(k)
i |2 + λ∥f (k)∥2K ,

then λ∥f̃ (k)
z ∥2K ≤ 1

m

∑m
i=1 ∥ỹi∥22 ≤ n. Hence R2 = 1

λ . Then with confidence 1 − 2δ, the whole

excess generalization error can be bounded by

Ẽ(f̃z)− Ẽ(f̃ρ) ≤ C3n log
2

δ

( 1

m
1

1+sλ
+ λmin{2r,1}

)
where C3 = 2(2C1 +C2 +11). By taking λ = m− 1

(1+s)min{2r+1,2} , we have with confidence 1− δ,

Ẽ(f̃z)− Ẽ(f̃ρ) ≤ 2C3n log
4

δ
·m−min{ 1

2(1+s)
, 2r
(1+s)(2r+1)}. (3)

Hence we can deduce the misclassification error bound

R(S(f̃z))−R(fc) ≤ 2α
√
C3

√
n log

1
2
4

δ
·m−min{ 1

4(1+s)
, r
(1+s)(2r+1)}

with confidence 1− δ. This proves the result.

In this theorem, we establish that under certain mild conditions, solving the Kernel Ridge

Regression (KRR) problem yields a classifier that converges to the Bayes classifier at the rate

Op(
√
nm− 1

4(1+s) ) if r ≥ 1
2 (i.e., f̃

(k)
ρ ∈ HK , we refer to Cucker and Smale, (2002) [3] for more

details). Moreover, if kernel K ∈ C∞, then the capacity parameter s tends to 0 from Zhou,

(2002) [19], this rate can be close to Op(
√
nm− 1

4 ), which is optimal compared with the existing

literature and matches the findings of Wang et al., (2023) [13].

§5 Comparisons and discussions

In this section, we will show some comparisons with existing results and discussions on

different loss functions.

Most of the existing results focus on the excess generalization error bound, so we will

compare their results with (3). In the first paper on the CLL problem, Ishida et al., (2017) [8]

proposed two complementary losses for the single CLL problem: one-versus-all (OVA) and

pairwise-comparison (PC), based on the ordinary ones. Excess generalization error bound was

given in the rate Op(n
2/sqrtm). Gao and Zhang, (2021) [7] developed another series of losses

to directly model ρ(ȳ|x), which has a learning rate of Op(n
2/
√
m). In Liu et al., (2023) [10], an

order-preserving loss was proposed. A comparison theorem was stated for one of such loss and

the final excess generalization error bound was Op(n/
√
m). Notice that all the above results are

for the single CLL problem and on assumption is needed that the corresponding Rademacher

complexities are bounded by Op(1/
√
m).

Feng et al., (2020) [6] considered the MCLL problem. When the loss function is Lipschitz

with respect to the first parameter and bounded, their excess generalization error bound was

Op(n
2
∑n−1

j=1 Pr{s = j} 1√
mj

). Here s is the size of the multi-complementary label set, and mj is

the size of the corresponding sample set. When Pr{s = 1} = 1 the problem reduces to the single

CLL problem and the best rate Op(n
2/
√
m) can be achieved. But for true MCLL problem,
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this rate may degenerate greatly. More recently, Wang et al., (2023) [13] constructed a novel

unbiased risk estimator to deal with both single and multiple CLL problems. For each class k,

the data set was separated into two parts: negative sample set DN
k and unlabeled sample set

DU
k , where |DN

k |+ |DU
k | = m. Error bound can be written as Op(

∑n
k=1(1/

√
|DN

k |+1/
√
|DU

k |)).
When the sizes of the two parts for each k are all in the rate O(1/m), the rate becomes the

optimal one Op(n/
√
m).

In all, for single CLL problem, the excess generalization error has been estimated well in

different literature, Op(n/
√
m) can be derived when Rademacher complexity bounds hold. Error

estimated for MCLL are less considered. Optimal rate can also be obtained when the sample

distributions satisfy some special conditions. However, in our result (3), Op(n/
√
m) bound can

be achieved if the kernel is carefully chosen.

In the previous sections, we conduct a comparison theorem and error analysis for the least

squares loss. Results for other loss functions may be deduced by similar proofs. Zhang,

(2004) [18] proved comparison theorems for some basic losses such as hinge loss, exponen-

tial loss, logistic loss. In Fan and Xiang, (2020) [5], a large series of losses called large-margin

unified machines (LUM) losses were studied and excess misclassification error was estimated.

Comparison theorem for LUM losses is also provided. Though the above results are on the bi-

nary class classification problems, similar ideas may be introduced to derive the corresponding

comparison theorem for multi-class classification. In the error analysis, the regularization error

bound may be more involved for alternative losses which depends on the kernel. We refer to

Xiang and Zhou, (2009) [15] for a detail analysis of general convex loss and varying Gaussian

kernels.

§6 Conclusions

In this paper, we propose a straightforward and intuitive condition for the distribution of

complementary labels. Under this condition, we show that the MCLL problem is equivalent

to a traditional multi-class classification problem. In other words, the MCLL problem aims

to find the largest element of the conditional expectation function fρ(x), which is also the

objective of multi-class classification. Moreover, we introduce a comparison condition between

ρ̃(ỹ|x), the distribution of complementary labels, and ρ(y|x), the distribution of true labels.

This comparison condition allows us to establish an excess misclassification error bound based

on the excess generalization error bound. To illustrate these concepts, we consider the Kernel

Ridge Regression (KRR) method as an example. KRR is a popular machine learning algorithm

that can be applied to both the MCLL problem and traditional multi-class classification. We

demonstrate that under the proposed conditions, the KRR method achieves an optimal learning

rate in terms of both the sample size m and the number of classes n.
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