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Abstract. The presented study deals with the investigation of nonlinear Bogoyavlenskii e-

quations with conformable time-derivative which has great importance in plasma physics and

non-inspectoral scattering problems. Travelling wave solutions of this nonlinear conformable

model are constructed by utilizing two powerful analytical approaches, namely, the modified

auxiliary equation method and the Sardar sub-equation method. Many novel soliton solutions

are extracted using these methods. Furthermore, 3D surface graphs, contour plots and para-

metric graphs are drawn to show dynamical behavior of some obtained solutions with the aid of

symbolic software such as Mathematica. The constructed solutions will help to understand the

dynamical framework of nonlinear Bogoyavlenskii equations in the related physical phenomena.

§1 Introduction

In recent decades, the mathematical modeling and numerical simulation of physical phe-

nomena appearing in various fields such as hydrodynamics, optics, biology, fluid mechanics,

physics, and many others, has been achieved by utilizing the nonlinear partial differential equa-

tions (NLPDEs) [1-4]. Exploring the traveling wave solutions and the effects due to different

differential operators has been an active area of research. In recent decades, numerical and

the experimental study of seismic wave propagation in complex media, from ultrasonic (MHz)

to seismic scale (Hz) has become an active area of research [5-6]. Bouchaala et al. discussed

the compressional and shear wave attenuations from walkway VSP and sonic data in an off-

shore Abu Dhabi oilfield [7]. Aslanova discussed a comparative study of the hardness and force

analysis methods used in truss optimization with metaheuristic algorithms and under dynamic

loading [8]. Moghadam and Ebrahimi presented an analysis of a torsional mode MEMS disk

resonator for RF applications [9]. Kumar et al. discussed performance analysis of 1×4 RMPA
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array using step cut and DGS techniques with different feeds techniques for LTE, wi-fi, wlan

and military communications [10]. Among the traveling wave solutions, solitary waves with

nonlinear dispersive effects, known as solitons, are of great significance due to their additional

property of holding a permanent shape [11-13]. Solitons play a key role in the telecommuni-

cation industry as signals can proceed far away without any distortion in the form of solitons

[14-16].

Many powerful techniques are applied to study and discuss the explicit solutions as well as

the physical behaviour of these models. Some of the techniques are the extended tanh-function

method [17], the modified kudryashov method [18], the simplified bilinear method [19], the

sub-equation method [20], the first integral method [21], the new transfer function method [22],

the new version of the trial equation method [23] and so on [24-30]. Over the past few years,

many researchers have discussed the modified auxiliary equation method, which is powerful

and effective, to seek novel soliton solutions for different kinds of NLPDEs [31-34]. Moreover,

a powerful and direct method called the Sardar sub-equation method is utilized to get exact

soliton solutions of various PDE [35-37].

The (2 + 1)-dimensional Bogoyavlenskii equation is an important nonlinear mathematical

model to elucidate the hydrodynamic model of shallow water wave, plasma physics, the wave of

leading fluid flow etc [38]. Kudryashov and Pickering [39] proposed the nonlinear Bogoyavlen-

skii equations as a member of a (2 + 1) Schwarzian breaking soliton hierarchy. Clarkson et

al. [40] examined Bogoyavlenskii equations as one of the equations associated to nonisospectral

scattering problems. Peng and Shen applied the singular manifold method to extract the shock

wave solution as well as the complex solitary wave solution for Bogoyavlenskii equations [41]. In

2016, Yu and Sun [42] used the modified simplest equation method to derive few of the analyt-

ical traveling wave solutions for Bogoyavlenskii equations. Li and Ziao [43] used the improved

fractional sub-equation method to derive some solitary wave solutions of the (2+1)-dimensional

space-time fractional Bogoyavlenskiis breaking soliton equation. In 2018, Liu et al. [44] used

new B cklund transformation and found the residual symmetry of the (2+1)-dimensional Bo-

goyavlenskii equation. In 2018, Feng [45] used specific fractional transformation and the Jacobi

elliptic equation to get the analytical solutions of the above equation. In 2020, Alam and Tunc

[46] successfully applied the generalized (G′/G)-expansion method to construct some new soli-

tary wave phenomena. Nisar et al. [47] derived analytical solutions of fractional Bogoyavlenskii

equations by exp(−K(ϕ))−expansion method and rational tan(K(ϕ))−expansion method.

In this study, we consider the nonlinear Bogoyavlenskii equations model with respect to the

conformable derivative, as

4Dk
t p+ pxxy − 4p2py − 4pxq = 0,

qx = ppy,
(1)

where p(x, y, t) and q(x, y, t) are the unknown functions. Dk
t represents the conformable time-

derivative.

The primary goal of this work is to retrieve the new solitary wave solutions to nonlinear

time conformable Bogoyavlenskii equations by utilizing two efficient and powerful analytical

approaches, the modified auxiliary equation method and the Sardar sub-equation method. The

proposed techniques are utilized for the first time to obtain a new type of solution of the
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considered conformable model. Comparing these two methods to the previous results, it can be

noticed that our approaches are more effective. The obtained results will help in understanding

the mechanism of the suggested problem, which is one of the cardinal focuses.

The strategy of the given article is given as, some preliminaries of conformable derivative

are given in section 2. The fundamental steps of the proposed methods are described in section

3. Exact solutions for the concerned equation are extracted in Section 4. The results and

discussion given are discussed in section 5. The modulation instability analysis of the provided

model is represented in section 6. Finally, some conclusions are drawn in the last section.

§2 Basic Preliminaries of Conformable Derivative

In recent decades, various non-integer derivatives have been introduced such as Caputo,

RiemannLiouville and Grunwald Letnikov to understand the nonlinear phenomena [48-50]. Re-

cently, the Khalil et al. introduced a new simple and intriguing definition of the non-integer

derivative called conformable derivative [51]. The definition of the conformable derivative of

order k is given below:

Definition 2.1.

The conformable derivative for a function f : (0,∞) → R of order 0 < k ≤ 1 at t > 0 is

defined as

Dk(f)(t) = lim
ϵ→0

f(t+ ϵt(1−k))

ϵ
.

Note that if the function f is k-differentiable in (0, a) then Dk(f)(t) = (t)1−kf ′(t).

The definition of conformable derivative satisfies the properties stated in the theorem given

below [52-53]:

Theorem 2.2.

Let g, h be the k-differentiable at a point t and 0 < k ≤ 1, then

(i) Dk(ag + bh) = aDk(g) + bDk(h), for a, b ∈ R,

(ii) Dk(tη) = ηtη−k, ∀ η ∈ R,

(iii) Dk(gh) = gtDk(h) + htDk(g),

(iv) Dk
( g
h

)
=
gtDk(h)− htDk(g)

h2
.

Theorem 2.3.

A function f : (0,∞) → R of order 0 < k ≤ 1 at t > 0, so that it is differentiable and also

it is α-differentiable. Let h be a differentiable function described in the range of f , then, the

following rule holds

tD
k(foh)(t) = (tD

kf)(h(t))(tD
kh)(t)h(t)k−1.

when t = 0,

tD
k(foh)(0) = lim

t→0+
(tD

kf)(h(t))(tD
kh)(t)h(t)k−1.

§3 The General Structure of The Proposed Methods

The main focus of the presented study is to investigate the nonlinear Bogoyavlenskii equa-

tions using the concept of conformable derivative for the first time with the modified auxiliary
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equation method and the Sardar sub-equation method. The suggested methodologies are pro-

ficient, easy to proceed, and reliable for retrieving new-wave solutions of NLPDEs. These

approaches can generate a variety of closed-form solutions, including trigonometric, hyperbolic,

and rational functions. Theoretically, some remarkable kind of wave solutions can be extracted

by assigning arbitrary values to free parameters appearing in the aforementioned techniques

for the proposed conformable model. In the laboratory, these solutions can be used as prior

knowledge to generate desired possible soliton pulses in fluids.

The general structure of The proposed methods is given below:

By letting a nonlinear conformable partial differential equation having the form given below:

U(Dk
t p, px, py, D

2k
t p, pxx, pyy, pxy, ...) = 0, (2)

where U is a polynomial in p(x, y, t) and its higher-order partial derivatives. Dk
t represents the

conformable time derivative.

Using the wave transformation:

p(x, y, t) = P (ξ), where ξ = x+ y − c
tk

k
. (3)

Using the above wave transformation on Eq. (3), the NFPDE is being converted into an ODE

having the form:

U(p, p′, p′′, ...) = 0. (4)

3.1 The Modified Auxiliary Equation Method

The fundamental steps of the suggested method are given below:

Step 1: By letting the solutions of the above ODE (4) have the following form:

p(x, y, t) =
Z∑

i=0

aiK
if(ξ) + a0 +

Z∑
i=0

biK
−if(ξ), (5)

where the arbitrary constants ai, a0 and bi will be evaluate afterward, while f(ξ) satisfies the

ODE:

f ′(ζ) =
1

lnK
(αK−f(ξ) + β + σKf(ξ)). (6)

Step 2: Evaluate the positive integer Z in Eq. (5) by the balancing method of the highest

order derivative terms and the nonlinear terms.

Step 3: Using Eq. (5) and Eq. (6) in Eq. (4) and then collecting the terms having same

powers of (Kif(ξ)), where i = −Z, ..., Z and by equating these terms to zero, a system of

algebraic equations is obtained that will be simplified with the aid of wolfram Mathematica-9

or maple to get the values of α, β, σ, ai and bi.

Step 4: Substitute gained values with solutions of Eq. (5) into Eq. (4), the analytical solutions

for Eq. (1) are obtained.

3.2 The Sardar Sub-Equation Method

It is supposed that the Equation (4) has a formal solution of the form given below:

p(x, y, t) =
Z∑

i=0

νiψ
i(ξ), (7)



506 Appl. Math. J. Chinese Univ. Vol. 39, No. 3

where νi, (i = 0, 1, 2..., Z.) are the coefficients to be determined later and ψ
′
(ξ) satisfies the

following ODE.

(ψ′(ξ))2 = α+ gψ2 + ψ4, (8)

where α and g are arbitrary constants. The solutions of the ODE are

Case 1:

If g > 0 and α = 0, then

ψ±
1 (ξ) = ±

√
−rsg sechrs(

√
gξ),

ψ±
2 (ξ) = ±

√
−rsg cschrs(

√
gξ),

where

sechrs(ξ) =
2

reξ + se−ξ
, cschrs(ξ) =

2

reξ − se−ξ
.

Case 2:

If g < 0 and α = 0, then

ψ±
3 (ξ) = ±

√
−rsg secrs(

√
−gξ),

ψ±
4 (ξ) = ±

√
−rsg cscrs(

√
−gξ),

where

secrs(ξ) =
2

reiξ + se−iξ
, cscrs(ξ) =

2

reiξ − se−iξ
.

Case 3:

If g < 0 and α = g2

4 , then

ψ±
5 (ξ) = ±

√
−g
2

tanhrs

(√
−g
2
ξ

)
,

ψ±
6 (ξ) = ±

√
−g
2

cothrs

(√
−g
2
ξ

)
,

ψ±
7 (ξ) = ±

√
−g
2

(
tanhrs

(√
−2gξ

)
± i

√
rs sechrs

(√
−2gξ

))
,

ψ±
8 (ξ) = ±

√
−g
2

(
cothrs

(√
−2gξ

)
±

√
rs cschrs

(√
−2gξ

))
,

ψ±
9 (ξ) = ±

√
−g
8

(
tanhrs

(√
−g
8
ξ

)
±
√
rs cothrs

(√
−g
8
ξ

))
,

where

tanhrs(ξ) =
reξ − se−ξ

reξ + se−ξ
, cothrs(ξ) =

reξ + se−ξ

reξ − se−ξ
.

Case 4:

If g > 0 and α = g2

4 , then

ψ±
10(ξ) = ±

√
g

2
tanrs

(√
−g
2
ξ

)
,

ψ±
11(ξ) = ±

√
g

2
cotrs

(√
−g
2
ξ

)
,

ψ±
12(ξ) = ±

√
g

2

(
tanrs

(√
2gξ

)
± i

√
rs secrs

(√
2gξ

))
,

ψ±
13(ξ) = ±

√
g

2

(
cotrs

(√
2gξ

)
±
√
rs cscrs

(√
2gξ

))
,
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ψ±
14(ξ) = ±

√
g

8

(
tanrs

(√
g

8
ξ

)
±

√
rs cotrs

(√
g

8
ξ

))
,

where

tanrs(ξ) = −i re
iξ − se−iξ

reiξ + se−iξ
, cotrs(ξ) = i

reiξ + se−iξ

reiξ − se−iξ
.

By balancing method value of Z will be evaluated. After finding the value of Z, the predicted

solutions as well as necessary derivatives will be substituted to Eq. (7). All the coefficients

of power of ψ(ξ) are further equated to zero and an algebraic system of equations is obtained.

The resultant algebraic system is solved on maple or wolfram mathematica for values of νi’s

and g. At the last, put (ξ = x+ y − c t
k

k ) into the obtained solutions.

§4 Application to The Nonlinear Bogoyavlenskii Equations Model

In the nonlinear wave theory, the most important aspect is the investigation of a kind of

analytical solution, that is, the traveling wave solutions which are the solutions of some constant

forms moving by a constant velocity. Here, consider the traveling wave solutions for Eq. (1)

having the following form

p(x, y, t) = P (ξ), q(x, y, t) = Q(ξ), where, ξ = x+ y − c
tk

k
. (9)

By substituting Eq. (9) into Eq. (1) and then integrating it, and for simplicity letting the

constant of integration equal to zero, the following system obtains,

−4cPξ + Pξξξ − 4P 2Pξ − 4PξQ = 0,

Qξ = PPξ.
(10)

Integrate Eq. (10) w.r.t. ξ, the second equation of the above system becomes

Q =
1

2
P 2. (11)

Substitute obtained value of Q in the first integrated equation of the above system, following

ODE is obtained

Pξξ − 2P 3 − 4cP = 0. (12)

4.1 Analysis of Solutions via Modified Auxiliary Equation Method

The modified auxiliary equation method is being implemented on the nonlinear Bogoyavlen-

skii equations to construct various different and novel solitary wave solutions in this section.

Firstly, by applying the homogenous balancing principle between Pξξ and P 3, the value of Z is

obtained as Z = 1. According to the proposed method, Eq.(6) becomes

P (ξ) = a0 + a1K
g(ξ) + b1K

−g(ξ), (13)

where

g′(ξ) =
1

lnK
(α+ βK−g(ξ) + γKg(ξ)). (14)

Substitute Eq.(13) and its derivative in Eq.(12) and collect all coefficients of the same terms

for Kig(ξ), where i = −Z, ..., Z. Further, by equating these terms to zero, we get the following
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system of algebraic equations:

Kg : α2a1 + 2a1βγ − 6a20a1 − 6a21b1 − 4ca1 = 0

K2g : 3a1αγ − 6a0a
2
1 = 0

K3g : 2a1γ
2 − 2a31 = 0

K−g : α2b1 + 2b1βγ − 6b20a1 − 6a20b1 − 4cb1 = 0

K−2g : 3b1αβ − 6a0b
2
1 = 0

K−3g : 2b1β
2 − 2b31 = 0

Cont. : a1αβ + b1αγ − 2a30 − 4a0c = 0

(15)

The following families are obtained by solving above system using computer software wolfram

mathematica 9 or maple.

Family 1:

a1 → −a20 − 2c

β
, b1 → 0, α→ −2a0, β → β, γ → a20 + 2c

β
. (16)

As a consequence, the solutions will have the following forms:

Whenever β2 − 4αγ < 0 and γ ̸= 0,

P (ξ) = a0 +
−a20 − 2c

β

(
−α+

√
−α2 + 4βγ tan(0.5

√
−α2 + 4βγξ)

2γ

)
, (17)

or

P (ξ) = a0 +
−a20 − 2c

β

(
−α+

√
−α2 + 4βγ cot(0.5

√
−α2 + 4βγξ)

2γ

)
, (18)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ > 0 and γ ̸= 0,

P (ξ) = a0 +
−a20 − 2c

β

(
−α+

√
−α2 + 4βγ tanh(0.5

√
−α2 + 4βγξ)

2γ

)
, (19)

or

P (ξ) = a0 +
−a20 − 2c

β

(
−α+

√
−α2 + 4βγ coth(0.5

√
−α2 + 4βγξ)

2γ

)
, (20)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ = 0 and γ ̸= 0,

P (ξ) = a0 +
−a20 − 2c

β

(
2− αξ

2γξ

)
, (21)

where ξ = x+ y − c t
k

k .

Family 2:

a0 → −i
√
2
√
c, a1 → 0, b1 → β, α→ −i2

√
2
√
c γ → 2c

β
, β = β. (22)

As a consequence, the soliton solutions have the following forms:

Whenever, β2 − 4αγ < 0 and γ ̸= 0,

P (ξ) = −i
√
2
√
c+ β

(
2γ

−α+
√
−α2 + 4βγ tan(0.5

√
−α2 + 4βγξ)

)
, (23)

or

P (ξ) = −i
√
2
√
c+ β

(
2γ

−α+
√
−α2 + 4βγ cot(0.5

√
−α2 + 4βγξ)

)
, (24)
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where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ > 0 and γ ̸= 0,

P (ξ) = −i
√
2
√
c+ β

(
2γ

−α+
√
−α2 + 4βγ tanh(0.5

√
−α2 + 4βγξ)

)
, (25)

or

P (ξ) = −i
√
2
√
c+ β

(
2γ

−α+
√

−α2 + 4βγ coth(0.5
√
−α2 + 4βγξ)

)
, (26)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ = 0 and γ ̸= 0,

P (ξ) = −i
√
2
√
c+ β

(
2γξ

2− αξ

)
, (27)

where ξ = x+ y − c t
k

k .

Family 3:

a0 → 0, a1 → c

2β
, b1 → −β, α→ 0, γ → c

2β
, β = β. (28)

As a consequence, the soliton solutions have the following forms:

Whenever β2 − 4αγ < 0 and γ ̸= 0,

P (ξ) =
c

2β

(√
4βγ tan(0.5

√
4βγξ)

2γ

)
− β

(
2γ√

4βγ tan(0.5
√
4βγξ)

)
, (29)

or

P (ξ) =
c

2β

(√
4βγ cot(0.5

√
4βγξ)

2γ

)
− β

(
2γ√

4βγ cot(0.5
√
4βγξ)

)
, (30)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ > 0 and γ ̸= 0,

P (ξ) =
c

2β

(√
4βγ tanh(0.5

√
4βγξ)

2γ

)
− β

(
2γ√

4βγ tanh(0.5
√
4βγξ)

)
, (31)

or

P (ξ) =
c

2β

(√
4βγ coth(0.5

√
4βγξ)

2γ

)
− β

(
2γ√

4βγ coth(0.5
√
4βγξ)

)
, (32)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ = 0 and γ ̸= 0,

P (ξ) =

(
c

2β

)(
2− αξ

2γξ

)
− β

(
2γξ

2− αξ

)
. (33)

where ξ = x+ y − c t
k

k .

Family 4:

a0 → 0, a1 → c

β
, b1 → β, α→ 0, γ → −c

β
, β = β. (34)

As a consequence, the soliton solutions have the following forms:

Whenever β2 − 4αγ < 0 and γ ̸= 0,

P (ξ) =
c

β

(√
4βγ tan(0.5

√
4βγξ)

2γ

)
+ β

(
2γ√

4βγ tan(0.5
√
4βγξ)

)
, (35)
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or

P (ξ) =
c

β

(√
4βγ cot(0.5

√
4βγξ)

2γ

)
+ β

(
2γ√

4βγ cot(0.5
√
4βγξ)

)
, (36)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ > 0 and γ ̸= 0,

P (ξ) =
c

β

(√
4βγ tanh(0.5

√
4βγξ)

2γ

)
+ β

(
2γ√

4βγ tanh(0.5
√
4βγξ)

)
, (37)

or

P (ξ) =
c

β

(√
4βγ coth(0.5

√
4βγξ)

2γ

)
+ β

(
2γ√

4βγ coth(0.5
√
4βγξ)

)
, (38)

where ξ = x+ y − c t
k

k .

Whenever, β2 − 4αγ = 0 and γ ̸= 0,

P (ξ) =

(
c

β

)(
2− αξ

2γξ

)
− β

(
2γξ

2− αξ

)
, (39)

where ξ = x+ y − c t
k

k .

4.2 Analysis Of Solution Via The Sardar Sub-Equation Method

In this subsection, the Sardar sub-equation method is applied on to the nonlinear Bogoy-

avlenskii equations to develop various novel and distinct travelling wave solutions. By homoge-

nous balancing principle, the value of Z is obtained as Z = 1. According to the mentioned

method, Eq.(6) becomes

P (ξ) = ν0 + ν1ψ
1(ξ), (40)

by substituting Eq. (40) into Eq. (12) and then equating all coefficients of ψ(ξ) to zero, an

algebraic system of equations is gained as given below,

ψ3 : 2ν1 − 2ν31 = 0,

ψ2 : − 6ν0ν
2
1 = 0,

ψ1 : ν1g − 6ν20ν1 − 4cν1 = 0,

Cnst. : − 2ν30 − 4cν0.
(41)

Solve the above system with the aid of computer software maple or mathematica to get the

following results

ν0 → i
√
2
√
c, ν1 → 1, g → 4c. (42)

The formal solutions of Eq. (12) corresponding to the Eq. (40), along with solution Eq. (10)

are

Case 1:

If g = 4c > 0 and α = 0, then

P±
1 = i

√
2
√
c±

√
−4crs(sechrs(

√
4c(x+ y − c

tk

k
))), (43)

P±
2 = i

√
2
√
c±

√
−4crs(cschrs(

√
4c(x+ y − c

tk

k
))), (44)
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Case 2:

If g = 4c < 0 and α = 0, then

P±
3 = i

√
2
√
c±

√
−4crs(secrs(

√
4c(x+ y − c

tk

k
))), (45)

P±
4 = i

√
2
√
c±

√
−4crs(cscrs(

√
4c(x+ y − c

tk

k
))), (46)

Case 3:

If g = 4c < 0 and α = ( g2 )
2, then

P±
5 = i

√
2
√
c±

√
−4c

2
tanhrs

(√
−4c

2
(x+ y − c

tk

k
)

)
, (47)

P±
6 = i

√
2
√
c±

√
−4c

2
cothrs

(√
−4c

2
(x+ y − c

tk

k
)

)
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(51)

Case 4:
If g = 4c > 0 and α = ( g2 )

2, then

P±
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. (56)

§5 Results and Discussions

In this section, the graphical descriptions of some retrieved wave solutions have been inves-

tigated. The graphical illustration is an important tool used for understanding the properties

and mechanism of solutions physically. The numerical simulations of the extracted solutions

have been presented using 3D-surface graphs and contour graphs. Moreover, the effects for

different values of conformable order are graphical illustrated by 2D graphs for some of the

obtained solutions. In each figure, (a) shows a 3D-surface graph, (b) shows contour graphs and

(c) shows 2D-parametric graphs.
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By using the computer software wolfram mathematica, the modified auxiliary equation

method and the Sardar sub-equation method are implemented to establish the analytical trav-

elling wave solutions of the nonlinear conformable Bogoyavlenskii equations model. A few of

new kind of solutions, that aren’t been added to literature previously, are successfully developed

in this article.

Figure 1. (a), (b), (c): 3D Plot, contour and 2D-parametric (for different values of k) represen-
tation of the singular periodic shape solution of Eq. (18) for the values of arbitrary constants
taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1.

Figure 2. (a), (b), (c): 3D Plot, contour and 2D-parametric (for different values of k) represen-
tation of the anti-bell shaped bright-dark soliton solution of Eq. (19) for the values of arbitrary
constants taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1.

In Fig. 1, 3-dimensional surface plot, contour and 2D-parametric (for different values of k)

representation of the singular periodic shape solution of Eq. (18) for the values of arbitrary

constants taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1. In Fig. 2,

3-dimensional surface plot, contour and 2D-parametric (for different values of k) representation

of the anti-bell shaped soliton solution of Eq. (19) for the values of arbitrary constants taken as

a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1. In Fig. 3, 3-dimensional surface

plot, contour and 2D-parametric (for different values of k) representation of the kink wave shape

solution soliton of Eq. (33) for the values of arbitrary constants taken as a0 = 1, α = 0.03, β =

0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1. In Fig. 4, 3-dimensional surface plot, contour and

2D-parametric (for different values of k) representation of the peakon-shaped bright soliton of

Eq. (43) for the values of arbitrary constants taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c =

0.02, k = 0.7 and y = 1. In Fig. 5, 3-dimensional surface plot, contour and 2D-parametric (for

different values of k) representation of the cubic-quadratic soliton of Eq. (54) for the values of

arbitrary constants taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1.
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Figure 3. (a), (b), (c): 3D Plot, contour and 2D-parametric (for different values of k) represen-
tation of the kink wave-shaped solution soliton of Eq. (33) for the values of arbitrary constants
taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1.

Figure 4. (a), (b), (c): 3D Plot, contour and 2D-parametric (for different values of k) repre-
sentation of the peakon-shaped bright soliton of Eq. (43) for the values of arbitrary constants
taken as a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1.

Figure 5. (a), (b), (c): 3D Plot, contour and 2D-parametric (for different values of k) represen-
tation of the cubic-quadratic soliton of Eq. (54) for the values of arbitrary constants taken as
a0 = 1, α = 0.03, β = 0.06, γ = 0.1, c = 0.02, k = 0.7 and y = 1.
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The variation in the extracted solutions for change in the value of k is also observed in all Fig.

1-5 (c).

These results offer a sufficient foundation for physicists to redesign new experiments with

appropriate initial conditions as recommended by the extracted solution expressions. The ob-

tained wave solutions for the nonlinear conformable Bogoyavlenskii equations will be supportive

to conducting laboratory experiments for a deeper insight into the possible physical changes.

§6 Modulation stability of the nonlinear conformable Bogoyavlenskii

equations model

Various nonlinear phenomena exhibit an instability that results the modulation of the steady

state owing to the connection among nonlinear as well as the dispersive effects. Here, we

investigate the modulation instability of the nonlinear conformable Bogoyavlenskii equations

by using the concept of linear stability [54]. Consider the steady-state solutions of the nonlinear

conformable Bogoyavlenskii equations is of the following form

p(x, y, t) =
√
H + ψ1(x, y, t) expϕ(t),

q(x, y, t) =
√
H + ψ2(x, y, t) expϕ(t),

where, ϕ(t) = H(α1 +Hα2ϵ)t,

(57)

and H represents the normalized optical power. Substituting Eq. (57) into Eq. (1) and

linearizing, the following form is obtained:

4ψ1Hα+ 4ψ2H
2α2ϵ+ 4Dα

t ψ1 +
∂3ψ1

∂y∂x2
− 4H

∂ψ1

∂y
− 4

√
H
∂ψ1

∂x
= 0,

∂ψ2

∂x
=

√
H
∂ψ1

∂y
.

(58)

Suppose the solution of Eq. (58) in the form

ψ1(x, y, t) = β1 exp i(ν(x+ y) +
ωctk

k
),

ψ2(x, y, t) = β2 exp i(ν(x+ y) +
ωctk

k
),

(59)

where ω and ν are the frequency of perturbation and normalized wave number. Putting Eq.

(59) into Eq. (58), the following dispersion relation is obtained as

β2 = β1
√
H,

ω =
−ν3 − 4ν(

√
H +H) + 4H(α+ α2H

3/2ϵ)

4c
.

(60)

The above dispersion relations signifies that steady state stability depends upon the normalized

wave number and on the normalized optical power. The velocity dispersion ω is real for all of

the wave numbers ν and if c ̸= 0,
√
H > 0. So the steady state is stable against perturbations.

§7 Conclusions

In this study, the nonlinear Bogoyavlenskii equations with the conformable derivative are

studied using the modified auxiliary equation method and Sardar sub-equation method for
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the first time. Some obtained solutions that are calculated for the first time shown that the

proposed methods are most efficient, simple and more capable to implement. 3D-surface graphs,

contour graphs as well as parametric plots of some obtained results are drawn to understand the

physical behavior of the obtained solutions to some specific values for the arbitrary parameters.

It can be observed that extracted new wave solutions includes some remarkable kind of solutions

such as the singular periodic shape solution, anti-bell shaped soliton solution, kink wave shape

soliton solution, the peakon shaped bright soliton and the cubic-quadratic soliton. They also

agree with earlier observations reported in the literature, demonstrating the validity of the

suggested method. The results will help in understanding the possible dynamical behaviors of

the suggested problem, which is one of the cardinal focuses. The extracted soliton solutions

will be valuable additions to the literature for understanding related physical systems. In the

future, the space-time fractional nonlinear Bogoyavlenskii equations can also be examined by

other nonlinearity laws and analytical methods.

Declarations
Conflict of interest The authors declare no conflict of interest.

References

[1] B Kilic. The first integral method for the perturbed Wadati-Segur-Ablowitz equation with time

dependent coefficient, Kuwait J Sci, 2016, 43(1): 84-94.

[2] M Abdelrahman, S Ammar, K Abualnaja, M Inc. New solutions for the unstable nonlinear

Schrodinger equation arising in natural science, AIMS Math, 2020, 5(3): 1893-1912.

[3] M Inc. New compacton and solitary pattern solutions of the nonlinear modified dispersive Klein-

Gordon equations, Chaos Soliton Fract, 2007, 33(4): 1275-1284.

[4] M Inc, E Ates. Optical soliton solutions for generalized NLSE by using Jacobi elliptic functions,

Optoelectron Adv Metar Rapid Commun, 2015, 9(9): 1081-1087.

[5] F Bouchaala, M Y Ali, J Matsushima, Y Bouzidi, M S Jouini, E M Takougang, A A Mo-

hamed. Estimation of Seismic Wave Attenuation from 3D Seismic Data: A Case Study of OBC

Data Acquired in an Offshore Oilfield, Energies, 2022, 15(2), https://doi.org/10.3390/en15020534.

[6] J Matsushima, M Y Ali, F Bouchaala. Propagation of waves with a wide range of frequencies

in digital core samples and dynamic strain anomaly detection: carbonate rock as a case study,

Geophys J Int, 2021, 224(1): 340-354.

[7] F Bouchaala, M Y Ali, J Matsushima. Compressional and shear wave attenuations from walk-

way VSP and sonic data in an offshore Abu Dhabi oilfield, C R Geosci, 2021, 353(1): 337-354.

[8] F Aslanova. A comparative study of the hardness and force analysis methods used in truss

optimization with metaheuristic algorithms and under dynamic loading, J Res Sci Eng Technol,

2020, 8(1): 25-33.

[9] R A Moghadam, S Ebrahimi. Design and analysis of a torsional mode MEMS disk resonator

for RF applications, J Multidiscip Eng Sci Technol, 2021, 8(7): 14300-14303.



516 Appl. Math. J. Chinese Univ. Vol. 39, No. 3

[10] B A Kumar, P M Rao, M Satyanarayana. Performance analysis of 1×4 RMPA array using

step cut and DGS techniques with different feed techniques for LTE, Wi-Fi, WLAN and military

communications, Rev Comput Eng Res, 2022, 9(3): 181-199.

[11] C Cattani, T A Sulaiman, H M Baskonus, H Bulut. Solitons in an inhomogeneous Murnaghan’s

rod, Eur Phys J Plus, 2018, 133, https://doi.org/110.1140/epjp/i2018-12085-y.

[12] G Akram, M Sadaf, I Zainab, M Abbas, A Akgül. A Comparative Study of Time Fraction-

al Nonlinear Drinfeld-Sokolov-Wilson System via Modified Auxiliary Equation Method, Fractal

Fract, 2023, 7(9), https://doi.org/10.3390/fractalfract7090665.

[13] Y Tang, H Rezazadeh. On logarithmic transformation-based approaches for retrieving traveling

wave solutions in nonlinear optics, Results Phys, 2023, 51, https://doi.org/10.1016/j.rinp.2023.10-

6672.

[14] B Kilic, M Inc. On optical solitons of the resonant Schrödinger’s equation in optical fibers

with dual-power law nonlinearity and time dependent coefficients, Wave Random Complex, 2015,

25(3): 334-341.

[15] Y Asghari, M Eslami, H Rezazadeh. Novel optical solitons for the Ablowitz-Ladik lattice equation

with conformable derivatives in the optical fibers, Opt Quant Electron, 2023, 55, https://doi.org/1-

0.1007/s11082-023-04953-z.

[16] M Inc, E Ates, F Tchier. Optical solitons of the coupled nonlinear Schrödinger’s equation with

spatiotemporal dispersion, Nonlinear Dyn, 2016, 85: 1319-1329.

[17] E Fan. Extended tanh-function method and its applications to nonlinear equations, Physics

Letters A, 2000, 277(4-5): 212-218.

[18] K Hosseini, M Mirzazadeh, D Baleanu, S Salahshour, L Akinyemi. Optical solitons of a high-

order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect, Opt Quan-

tum Electron, 2022, 54, https://doi.org/10.1007/s11082-022-03522-0.

[19] L Akinyemi. Shallow ocean soliton and localized waves in extended (2+1)-dimensional nonlinear

evolution equations, J Phys A, 2023, 463, https://doi.org/10.1016/j.physleta.2023.128668.

[20] L Akinyemi, M Senol, O S Iyiola. Exact solutions of the generalized multidimensional mathe-

matical physics models via sub-equation method, Math Comput Simul, 2021, 182: 211-233.

[21] B Lu. The first integral method for some time fractional differential equations, J Math Anal

Appl, 2012, 395(2): 684-693.

[22] J Y Chung, D A Blaser. Transfer function method of measuring in-duct acoustic properties. I.

Theory, J Acoust Soc Am, 1980, 68: 907-913.

[23] Y Pandir, A Ekin. New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new

version of the trial equation method, Electron J Appl Math, 2023, 1: 101-113.

[24] N A Kudryashov. Simplest equation method to look for exact solutions of nonlinear differential

equations, Chaos Soliton Fract, 2005, 24(5): 1217-1231.

[25] E Fan, J Zhang. Applications of the Jacobi elliptic function method to special-type nonlinear

equations, J Phys A, 2002, 305(6): 383-392.

26] A M Wazwaz. A sine-cosine method for handlingnonlinear wave equations, Math Comput Model

Dyn Syst, 2004, 40(5-6): 499-508.

[27] J Hietarinta. Introduction to the Hirota bilinear method, Lect Notes Phys, 1997, 495: 95-103.



Hira Tariq, et al. Travelling wave solutions of nonlinear conformable Bogoyavlenskii... 517

[28] J Zhang, X Wei, Y Lu. A generalized (G’ G)-expansion method and its applications, J Phys A,

2008, 372(20): 3653-3658.

[29] D Kumar, K Hosseini, F Samadani. The sine-Gordon expansion method to look for the traveling
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