
Appl. Math. J. Chinese Univ.
2024, 39(3): 458-468

Analytical solutions fractional order partial differential

equations arising in fluid dynamics

Sidheswar Behera Jasvinder Singh Pal Virdi∗

Abstract. This article describes the solution procedure of the fractional Pade-II equation and

generalized Zakharov equation(GSEs) using the sine-cosine method. Pade-II is an important

nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media

and GSEs are used to model the interaction between one-dimensional high, and low-frequency

waves. Classes of trigonometric and hyperbolic function solutions in fractional calculus are

discussed. Graphical simulations of the numerical solutions are flaunted by MATLAB.

§1 Introduction

The theory related to fractional calculus are paramount importance to describe various phe-

nomenas in the fields of applied physics, applied mathematics, and along with their engineering

counter parts. Researchers around the globe are devoted to the interpretation, properties and

applications of fractional calculus. [1–8]. Some important nonlinear physical phenomena suc-

cessfully studied by fractional calculus such as: transmission of the impulses inside nerve [1,2],

population growth dynamics model in biology [3], quantum field theory [4], reaction-diffusion

equation in hydrology [5], applications of fractional calculus in physics [6, 7], fluid mechanic-

s [8]. Nonlinear fractional differential equations (NLFDEs) have been progressively concen-

trated by numerous scientists working in different fields of science [9–12]. The main target of

the manuscript is to investigate the exact travelling wave solutions for the fractional Pade-II

equation and fractional generalized Zakharov equation using sine-cosine method [13–15]. In

last few decades, there has been remarkable progress in the field of NLFDEs and a large num-

ber of well-established methods such as the RB sub-ODE method [16], new stochastic robust

solver method [17], new stochastic solutions [18], the jacobi elliptic functions method [19],

(G
′

G )-expansion method [21–24, 33], modified (G′

G2 )-expansion method [25], the Kudryashov
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method [26] , the F-expansion method [28], the direct algebraic method [29], have been used

by various researchers.

It is fascinating to find physical solutions of NLFDEs and remains a open problem for

scientist and mathematicians. Fractional calculus, hot topic for researchers but celebrated its

triumph in pure mathematics without physical applications. Riemann-Liouville derivative and

its other forms are used to find their applications. The intent of this article is implementing

He’s fractional derivative [27] as follows:

Dα
tf =

1

Γ(n− α)

dn

dtn

∫ tn

t0

(s− t)n−α−1[f0(s)− f(s)]df, (1.1)

It is notable that, f(s) stands for solution in a discontinuous medium where as f0(s) is its

counterpart for a continuous medium without violating the initial boundary conditions.

There are few studies in the literature that concentrate on the Pade-II equation. Richard

and co-authors presented the main diagonal algorithm theory [30]. John P. Boyd [31] investi-

gated pade approximation for nonlinear ordinary differential equation (NLODE) using the fact

boundary value problem. The derivation of the Pade (2,2) approximation based on the phase

velocity of the linear water waves approximated by Fetecau et al. having bounded dispersion re-

lation [32]. Yazhou et al. conducted the wave variable method by implementing (G
′

G )-expansion

method to obtain travelling wave solutions [33]. Therefore, to understand the long water wave

dynamics in dispersive media Pade-II equation is very meaningful. The mathematical form of

fractional order Pade-II equation

∂αg

∂tα
+

∂ηg

∂xη
+ g

∂ηg

∂xη
− (

9

10
)
∂3ηu

∂x3η
− (

19

10
)
∂2ηu

∂x2η

∂αu

∂tα
= 0, t > 0, 0 < α ≤ 1, (1.2)

with the initial condition u(x, o) = u0, where α is the order of fractional derivatives for both

time domain t and space domain x. When α has special values 1, then Eq.(1.2) becomes a

classical Pade-II equation

gt + gx + ggx − (
9

10
)gxxx − (

19

10
)gxxt = 0 (1.3)

It is well known that the generalized Zakharov equation is used to study plasmonic waves.

There is significant research work on a GZEs, Bao et al. [34] studied the GZEs using numer-

ical methods. Zhang et al. [35] obtained solitary wave solutions using a variational iteration

approach. Yasir Khana and others [36], investigated GZEs using he’s variational approach

and reported few new soliton solutions. Time-space fractional GZEs are studied by Zakia and

Toufik [37] for some travelling wave solutions. Lu et al. [38] considered fractional order GZEs in

their research work and recently Veeresha and Prakash [39] also considered fractional GZEs with

importance to Mittag-Leffler functions. Some more authors have also studied this important

model [40–42]. The mathematical form of fractional order generalized Zakharov equation

i
∂αg

∂tα
+

∂2ηg

∂x2η
+ 2γ|g|2g + 2gh = 0,

∂2αh

∂t2α
− ∂2ηh

∂x2η
+

∂2η|g|2

∂x2η
= 0, t > 0, 0 < α ≤ 1.

(1.4)

with the initial condition u(x, o) = u0, where α is the order of fractional derivatives for both

time domain t and space domain x. When α have special values 1, then Eq.(1.4) becomes
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generalized Zakharov equations (GZEs). The generalized Zakharov equations (GZEs) for the

complex envelope g(x, t) of the high-frequency wave and the real low-frequency field h(x, t) in

the form

igt + gxx + 2γ|g|2g + 2gh = 0,

htt − hxx + (|g|2)xx = 0.
(1.5)

The structure of the manuscript is as follows. In Section 2, we introduce the concepts of the

sine cosine method. In Section 3, the travelling wave transformation is presented. In Section

4, and 5, the travelling wave solutions of fractional Pade-II equation and fractional generalized

Zakharov equations are discussed in detail. Finally, the conclusion is outlined in Section 6.

§2 Properties of fractional derivatives and mathematical

formulation of the sine-cosine method

Some notable properties of space-time fractional derivatives are presented in the form of the

following definitions: Definition [4]: Let α ∈ (0, 1), where g(t) and f(t) are α-differentiable at

t<0.

1. Dα(cf + dg) = cDα(f) + dDα(f).

2. Dα(tp) = ptp−α, for all p ϵR.

3. Dα(λ) = 0, for all constant functionsf(t) = λ.

4. Dα(fg) = fDα(g) + gDα(f).

5. Dα(fg)(t) = gDα(f)−fDα(g)
g2 .

6. Dαf(t) = t1−α ∂f(t)
∂t , if f is differentiable.

A NLFDE is presented as a combination of some dependent and independent terms and some

of their fractional order partial derivatives.

S(g,Dα
tg,D

α
xg,D

2α
ttg,D

2α
xxg,D

2α
xtg...) = 0, 0 < α ≤ 1 (2.1)

Left-hand side of Eq. (2.1) is the polynomial of g(x, t). The travelling wave solution to Eq.

(2.1) by the use of sine-cosine method is presented as the following 3 steps:

Step 1:Analytical traveling wave solutions of Eq.(2.1) can be obtained considering the complex

wave variable [37] as below;

g(x, t) = G(ϕ), ϕ =
kxα

Γ(α+ 1)
− ctα

Γ(α+ 1)
(2.2)
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The following change for higher orders can be realized as:

∂
∂t = −c ∂

∂ϕ ,

∂2

∂t2 = c2 ∂2

∂ϕ2 ,

∂
∂x = ∂

∂ϕ ,

∂2

∂x2 = ∂2

∂ϕ2 ,

.............,

(2.3)

Now, Eq.(2.1) reduced to an ordinary differential equation(ODE) by the use of Eq. (2.2),

S(G,Gϕ, Gϕϕ, Gϕϕϕ, ...) = 0. (2.4)

Integrating the reduced ODE (2.4) to a comparatively simpler form in such a way that it

contains all G and its derivatives where Gϕ stands for dG
dϕ , for simplicity, assume the constant

of integration as zero.

Step 2: The general solutions of the NLFDE (2.4) by sine-cosine method in the (cos) form

expressed as

G(x, t) = λ cosβ(µϕ), [ϕ]<
π

2µ
, (2.5)

similarly in the (sin) form expressed as

G(x, t) = λ sinβ(µϕ), [ϕ]<
π

2µ
, (2.6)

Where λ, β and µ are mere constants, µ is the wave number and c is the wave speed. Eq. (2.5)

can be generalized
G(ϕ) = λ cosβ(µϕ),

Gn(ϕ) = λn cosnβ(µϕ),

(Gn)ϕ = nµβλn cos(µϕ) sinnβ−1(µϕ)

(Gn)ϕϕ = −n2µ2β2λn cosn β(µϕ) + nµ2λnβ(nβ − 1) cosnβ−2(µϕ).

(2.7)

Similarly Eq. (2.6) can be generalized
G(ϕ) = λ sinβ(µϕ),

Gn(ϕ) = λn sinnβ(µϕ),

(Gn)ϕ = nµβλn sin(µϕ) cosnβ−1(µϕ)

(Gn)ϕϕ = −n2µ2β2λn sinn β(µϕ) + nµ2λnβ(nβ − 1) sinnβ−2(µϕ).

(2.8)

Step 3: By proper substation of Eq. (2.7) or Eq. (2.8) into Eq. (2.2) gives trigonometric equa-

tions in terms of cosβ(µϕ) or sinβ(µϕ). After algebraic simplification of obtained trigonometric

equation α, β and µ can be found out.

§3 Application of The sine-cosine method

In this section, sine-cosine method is considered to simplify two NLFDEs: fractional order

Pade-II equation and fractional order generalised Zakharov equation.
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3.1 The fractional order Pade-II equation

By the use of complex wave transformation g(x, t) = G(ϕ) where the wave variable ϕ =
kxα

Γ(α+1) −
V tα

Γ(α+1) , and V is the velocity of the wave, Eq.(1.2) is reduced to an ODE.

(1− V )G+
1

2
G2 + (

19

10
V − 9

10
)Gϕϕ = 0. (3.1)

By considering the trigonometric solution in (cos) form the following changes can be realized

G(ϕ) = λ cosβ(µϕ), (3.2)

(G)ϕ = −µβλ sinβ(µϕ) cosβ−1(µϕ), (3.3)

(G)ϕϕ = −µ2β2λ cosβ(µϕ) + µ2λβ(β − 1) cosβ−2(µϕ). (3.4)

After suitable substitution, Eq. (3.2) and Eq. (3.4) in Eq. (3.1), we have

(1− V )λ cosβ µϕ− 1

2
λ2 cos2β µϕ+ (

19

10
V − 9

10
)
(
λµ2β(β − 1) cosβ−2(µϕ)− λµ2β2 cosβ(µϕ)

)
= 0. (3.5)

Now collecting the coefficients by homogeneous balance rule and equating them to zero sepa-

rately, the following algebraic systems come into picture:

(β − 1) ̸= 0, (3.6)

(β − 2) = 2β, (3.7)

(
19

10
V − 9

10
)µ2β(β − 1) =

1

2
λ, (3.8)

−(
19

10
V − 9

10
)µ2β2 = (1− V ), (3.9)

Solving these systems, we can easily obtain the following values:

β = −2, µ =

√
1− V

−4( 1910V − 9
10 )

, λ = 3(V − 1). (3.10)

The traveling wave solutions can be successfully written as,

for V < 0

G1(x, t) = 3(V − 1) sec2

[√
1− V

−4( 1910V − 9
10 )

(x− V t)

]
, V < 0, (3.11)

G2(x, t) = 3(V − 1) csc2

[√
1− V

−4( 1910c−
9
10 )

(x− V t)

]
, V < 0, (3.12)

Similarly for V > 0

G3(x, t) = 3(V − 1) sech2

[√
1− V

−4( 1910V − 9
10 )

(x− V t)

]
, V > 0, (3.13)

G4(x, t) = 3(V − 1) csch2

[√
1− V

−4( 1910V − 9
10 )

(x− V t)

]
, V > 0. (3.14)
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Figure 1. Traveling wave solution of fractional Pade-II equation.

3.2 The fractional order Generalized Zakharov equation

By the use of complex wave transformation g(x, t) = eiθG(ϕ), h(x, t) = H(ϕ) where the

wave variable θ = px+ rt, ϕ = kxα

Γ(α+1) −
2kctα

Γ(α+1) , and V is the velocity wave, Eq.(1.4) reduced

to an ODE.

k2G′′ + 2GH − (p2 + r)G− 2γG3 = 0,

k2(4p2 − 1)H ′′ + k2(G2)′′.
(3.15)

Integrating the second equation of the system (3.15) twice with respect to ϕ, we can find out

the value of ′H ′,

H(ϕ) =
G2

1− 4p2
+ C, if p2 ̸= 1

4
(3.16)

Where the integration constant, C is a mere constant, now after the substitution of Eq.(3.16)

into the system (3.15), we obtain

k2G′′ + (2C − p2 − r)G+ 2(
1

1− 4p2
− γ)G3 = 0. (3.17)

By considering the trigonometric solution in (cos) form the following changes can be realized

G(ϕ) = λ cosβ(µϕ), (3.18)

(G)ϕ = −µβλ sinβ(µϕ) cosβ−1(µϕ), (3.19)

(G)ϕϕ = −µ2β2λ cosβ(µϕ) + µ2λβ(β − 1) cosβ−2(µϕ). (3.20)

After suitable substitution, Eq. (3.18) and Eq. (3.20) in Eq. (3.17), we have

k2µ2β2λ cosβ µϕ+ 2(
1

1− 4p2
− γ)λ3 cos3β µϕ− k2λµ2β(β − 1) cosβ−2(µϕ)

+(2C − p2 − r)λ cosβ(µϕ) = 0. (3.21)

Now collecting the coefficients by homogeneous balance rule and equating them to zero sepa-

rately, the following algebraic systems come into picture:

(β − 1) ̸= 0, (3.22)
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(β − 2) = 3β, (3.23)

(2C − p2 − r) = k2µ2β2, (3.24)

2(
1

1− 4p2
− γ)λ2 = −k2β(β − 1), (3.25)

Solving these systems, we can easily obtain the following values:

β = −1, µ =

√
(2C − p2 − r)

k2
, λ =

√
−(2C − p2 − r)

( 1
1−4p2 − γ)

, (3.26)

The following traveling wave solutions can be constructed,

for C2 > 0

g5(x, t) = ei(px+rt)

[√
−(2C − p2 − r)

( 1
1−4p2 − γ)

sec

[√
(2C − p2 − r)

k2
k(x− 2pt)

]]
, C2 > 0 (3.27)

g6(x, t) = ei(px+rt)

[√
−(2C − p2 − r)

( 1
1−4p2 − γ)

csc

[√
(2C − p2 − r)

k2
k(x− 2pt)

]]
, C2 > 0, (3.28)

Similarly for C2 < 0

g7(x, t) = ei(px+rt)

[√
−(2C − p2 − r)

( 1
1−4p2 − γ)

sech

[√
(2C − p2 − r)

k2
k(x− 2pt)

]]
, C2 < 0, (3.29)

g8(x, t) = ei(px+rt)

[√
−(2C − p2 − r)

( 1
1−4p2 − γ)

csch

[√
(2C − p2 − r)

k2
k(x− 2pt)

]]
, C2 < 0, (3.30)

Figure 2. Traveling wave solution of fractional Generalized Zakharov equation.

§4 Results and discussion

The Pade-II equation and the generalized Zakharov equation have been focused by many

researchers in the last few decades. In this work, the authors have explored, for the first

time, the Pade-II with fractional form along with the fractional generalized Zakharov equation.

The implementation of the sine-cosine method gives some novel solutions which includ bell
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type bright, peakon, periodic solitons, symmetric solitons and kink solutions. There are ample

examples of such solitary waves having finite (compact) support, and peakons having peaks of

discontinuous for the first derivative, in terms of hyperbolic secant solutions the dynamics of

laminar jet problem can be studied, hyperbolic tangent solutions are sometimes used to study

the rapidity in special relativity, and the hyperbolic cotangent solutions are needed to study

Langevin function for magnetic polarization [43].

§5 Conclusion

In this study, the sine-cosine method is successfully implemented on fractional order Pade-

II equation and generalized Zakharov equation. New solitary wave profiles of aforementioned

equations are obtained with the help of MATLAB, in the form of trigonometric functions

and hyperbolic functions. These new solutions of the two families indicate the effectiveness,

simplicity, power, capability and realizabilities in terms of less computation, and fruitfulness of

the method. The obtained solutions have many potential applications in the field of science and

engineering. This simple yet effective method can also be used to solve a wide class of NLFDEs

that appeared in various branches of science.
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