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A nonlocal dispersal and time delayed HIV infection

model with general incidences

WU Peng1 ZHANG Yu-huai2,∗ WANG Ling3

Abstract. Biologically, because of the impact of reproduction period and nonlocal dispersal of

HIV-infected cells, time delay and spatial heterogeneity should be considered. In this paper, we

establish an HIV infection model with nonlocal dispersal and infection age. Moreover, applying

the theory of Fourier transformation and von Foerster rule, we transform the model to an integro-

differential equation with nonlocal time delay and dispersal. The well-posedness, positivity, and

boundedness of the solution for the model are studied.

§1 Introduction

During the HIV infection stage, the diffusion of the virus within the host plays an important

role in understanding the persistence of the infection and how it will affect the HIV infection

within the host. In other words, the diffusion of the virus in heterogeneous space should be

considered when applying mathematical models to investigate HIV infection. In view of this,

there are many reaction-diffusion models with Neumann boundary condition (this implies that

no virus can across the boundary of bounded domain) have been established to study the

dynamics of HIV infection. For the corresponding reaction-diffusion HIV models and numerical

simulation of the HIV infection model, the reader is referred to [1–6].

However, on the one hand, clinical therapy shows that HIV not only invades the lymphatic

tissues of the host, but directly and indirectly invades many tissues within the host, such

as the hematopoietic system, central nervous system and gastrointestinal system [7]. Thus,

the mentioned reaction-diffusion model with Neumann boundary conditions are not able to

capture the virus diffusive among different tissues aspect of HIV infection, and the nonlocal

dispersal model may be preferred to the reaction-diffusion model [8], where the nonlocal operator

D
∫
Ω
J(x−y)wdy−Dw is defined as the probability distribution of w jumps from position y to

position x, i.e., the convolution D
∫
Ω
J(x− y)wdy is the rate at which w is arriving at position

x from other places, and Dw is the rate at which they are leaving position x to move to other
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positions [9]. On the other hand, time delay plays a crucial role in the HIV infection, which has

been verified by many works [10–12]. Although the nonlocal dispersal HIV models have been

developed in [13–17]. To our knowledge, research addressing the joint effects of three important

factors: heterogeneous environment, nonlocal dispersal and time delay on HIV infection, is

still at the preliminary stage. Inspired by the above discussions, we present a novel nonlocal

dispersal and time delayed HIV infection model in a heterogeneous environment.

§2 Model formulation

To consider the joint effect of infection age, the nonlocal dispersal and the heterogeneous

environment on the process of HIV infection. In the present paper, we formulate the following

model

∂T (x, t)

∂t
=D1

∫
Ω

J(x− y)T (y, t)dy −D1T (x, t) + h(T (x, t))− µ1(x)T (x, t)

− f (T (x, t), V (x, t))− g

(
T (x, t),

∫ ∞

0

i(x, a, t)da

)
,

∂i(x, a, t)

∂t
+
∂i(x, a, t)

∂a
= D2

∫
Ω

J(x− y)i(y, a, t)dy −D2i(x, a, t)− µ2(a)i(x, a, t),

∂V (x, t)

∂t
=D3

∫
Ω

J(x− y)V (y, t)dy −D3V (x, t)− µ3(x)V (x, t) +

∫ ∞

0

p(a, x)i(x, a, t)da,

i(x, 0, t) =f (T (x, t), V (x, t)) + g

(
T (x, t),

∫ ∞

0

i(x, a, t)da

)
,

(1)

for (t, x) ∈ R+ × Ω̄, where Ω̄ represents the set which includes itself and the boundary of

Ω. Here, we denote the concentration of the susceptible cells at position x and at time t as

T (t, x), i(t, a, x) represents the infection age (a)-dependent concentration of HIV-infected cells

at position x and at time t, the concentration of free virus at position x and at time t denoted

by V (t, x). Variables h(T (x, t)) and µ1(x) denote the reproduction rate and the removal rate

of the susceptible cells at position x. Variables µ2(x) and µ3(x) represent the death rate of

HIV-infected cells and free viruses, respectively. The viral production rate of free viruses at

position x and with infection age a is p(a, x). Infection incidence of susceptible cells by infected

cells and viruses are expressed as g
(
T (x, t),

∫∞
0
i(x, a, t)da

)
and f (T (x, t), V (x, t)), respectively.

Parameters D1 > 0, D3 > 0 are constants that stand for the nonlocal diffusion coefficients of

the susceptible cells and the free viruses. Similarly, D2 > 0 is defined as the diffusion rate of

the HIV-infected cells. D = (D1, D2, D3) and w = (T (x, t), i(x, a, t), V (x, t)).

For the i(x, a, t) equation in model (1), we introduce the average latency period denoted by

r, resulting in the division of the HIV-infected cells into two epidemiology categories: latently

infected cells and actively infected cells, denoted by I1(x, t) and I2(x, t), respectively. Then we

immediately have

I1(x, t) =

∫ r

0

i(x, a, t)da, I2(x, t) =

∫ ∞

r

i(x, a, t)da. (2)
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Calculating the derivative of (2) associated with t and making use of model (1), yields

∂

∂t
I1(x, t) = D2

∫
Ω

J(x− y)(I1(y, t)− I1(x, t))dy − µ2(a)I1(x, t)− i(x, r, t) + i(x, 0, t),

∂

∂t
I2(x, t) = D2

∫
Ω

J(x− y)(I2(y, t)− I2(x, t))dy − µ2(a)I2(x, t)− i(x,∞, t) + i(x, r, t),

(3)

Biologically, there is no cell can survive forever. Hence, we assume that i(x,∞, t) = 0. Note

that i(x, 0, t) = f(T (x, t), V (x, t)) + g(T (x, t), I2(x, t)). Now we derive the explicit expression

of i(x, r, t). To this goal, we set ωτ (x, t) = i(x, t − τ, t), t ∈ [τ, τ + r], it follows from i(x, a, t)

equation of model (1) and the epidemical meaning that

∂

∂a
ωτ (x, t) =

[
∂i(x, a, t)

∂t
+
∂i(x, a, t)

∂a

]
a=t−τ

= D2

∫
Ω

J(x− y)[i(y, t− τ, t)− i(x, t− τ, t)]dy − µ2(t− τ)ωτ (x, t)

= D2

∫
Ω

J(x− y)[ωτ (y, t)− ωτ (x, t)]dy − µ2(t− τ)ωτ (x, t)

Note that ωτ (x, t) = i(x, t−τ, t), one has ωτ (x, τ) = i(x, 0, τ) = f(T (x, τ), V (x, τ))+g(T (x, τ),

I2(x, τ)).

In the next, we introduce the following Fourier transform [17] F(h) and inverse Fourier

transform F−1(ĥ)

ĥ(σ) =

∫
Ω

eiσxh(x)dx, h(x) =
1

2π

∫
Ω

e−iσxĥ(σ)dσ.

Regarding τ as a parameter and letting ω̂τ (σ, t) and Ĵ(σ) express the Fourier transform of

ωτ (x, t) and J(x), we obtain that

∂

∂a
ω̂τ (σ, t) =

∫
Ω

eiσx
(
D2

∫
Ω

J(x− y)[ωτ (y, t)− ωτ (x, t)]dy − µ2(t− τ)ωτ (x, t)

)
dx

=
[
D2Ĵ(σ)−D2 − µ2(t− τ)

]
ω̂τ (σ, t).

By integral from τ to t with respect to a, we obtain that

ω̂τ (σ, t) = ω̂τ (σ, τ) exp

{∫ t

τ

[D2Ĵ(σ)−D2 − µ2(s− τ)]ds

}
.

Note that ω̂τ (σ, τ) =
∫
Ω
eiσyi(y, 0, τ)dy. Therefore, letting δ(t, τ) := exp

{
−
∫ t

τ
µ2(s− τ)da

}
,

it follows from the inverse Fourier transform that

ωτ (x, t) =
δ(t, τ)

2π

∫
Ω

e−iσx

{
exp

{∫ t

τ

D2(Ĵ(σ)− 1)ds

}∫
Ω

eiσyi(y, 0, τ)dy

}
dσ.

Let τ = t− r, Π(r) = exp
{
−
∫ r

0
µ2(a)da

}
, α =

∫ r

0
D2da, then we can rewrite ωτ (x, t) as

ωτ (x, t) =i(x, r, t) =
Π(r)

2π

∫
Ω

e−iσx

{
eα(Ĵ(σ)−1)

∫
Ω

eiσyi(y, 0, t− r)dy

}
dσ

=Π(r)

∫
Ω

Hα(x− y)[f(T (x, t− r), V (x, t− r)) + g(T (x, t− r), I2(t− r)]dy,

Hα(x) :=
1

2π

∫
Ω

eα(Ĵ(σ)−1)e−iσxdσ.

(4)

For J(x), we assume that it is a nonnegative Lebesgue measurable function, and
∫
Ω
J(x)dx

= J̃ > 0. Then similar arguments as those in Lemma 3.1 in [17], we give the following assertions
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for Hα(x).

Proposition 2.1. For Hα(x), we have

(1)
∫
Ω
Hα(x)dx = 1 if α = 0;

∫
Ω
Hα(x)dx = e−α(J̃−1) <∞ when α > 0;

(2) If α = 0, Hα(x) = δ(x), where δ(x) is the Dirac-delta function [18], and Hα(x) > 0 for

x ∈ Ω if α > 0;

(3) Hα(−x) = Hα(x) holds for J(−x) = j(x), x ∈ Ω;

(4) if
∫
Ω
J(x)eµxdx <∞ for any µ > 0, then

∫
Ω
Hα(x)e

µxdx <∞ for any µ > 0;

(5)
∫
Ω
Hα(x− y)Hγ(y − z)dy = Hα+γ(x− z) for x, y, z ∈ Ω and α, γ > 0.

Remark 2.2. [17] For local diffusion operator D∆w is applied in some reaction-diffusion epi-

demic models [19–21], the corresponding normal expression of kernel function Γα(x) is derived

as

γα(x) =
Π(r)√
4πα

e−
x2

4α =
Π(r)

2π

∫
Ω

e−ασ2

e−iσxdσ,

which is a Green function associated with the linear diffusion equation ∂Γ/∂t = D∆Γ with

Neumann boundary condition ∂Γ/∂φ = 0, x ∈ ∂Ω. For nonlocal diffusion operator D
∫
Ω
J(x−

y)(w(y, a, t)− w(x, a, t))dy, one has the kernel function

Π(r)Hα(x) =
Π(r)

2π

∫
Ω

eα(Ĵ(σ)−1)e−iσxdσ.

Let J(x) = δ−δ(2)(x), where δ(2)(x) represents the second-order derivative of δ(x) with respect to

x. Then in view of the basic property of Dirac-δ function, we have Ĵ(σ) = 1−σ2, it immediately

follows that Π(r)Hα(x) = Γα(x) holds for J(x) = δ − δ(2)(x). That is, the Laplacian operator

D∆w is a particular case of nonlocal diffusion operator D
∫
Ω
J(x − y)(w(y, ·, t) − w(x, ·, t))dy

as J(x) = δ − δ(2)(x).

Up to now, we have the following equations from (4)

∂

∂t
I1(x, t) =D2

∫
Ω

J(x− y)(I1(y, t)− I1(x, t))dy − µ2(a)I1(x, t)

+ i(x, 0, t)−Π(r)

∫
Ω

Hα(x− y)i(y, 0, t− r)dy,

∂

∂t
I2(x, t) =D2

∫
Ω

J(x− y)(I2(y, t)− I2(x, t))dy − µ2(a)I2(x, t)

+ Π(r)

∫
Ω

Hα(x− y)[f(T (y, t− r), V (y, t− r)) + g(T (y, t− r), I2(y, t− r))]dy.

For the V (x, t) equation of model (1), we assume that HIV-free viruses V (t, x) are produced

only by actively infected cells due to the budding. Hence, we set q(x, a) = q(x) for a > r and

q(x, a) = 0 for a < r. Then, we have

∂V (x, t)

∂t
= D3

∫
Ω

J(x− y)(V (y, t)− V (x, t))dy + q(x)I2(x, t)− µ3(x)V (x, t).

Note that I1(x, t) can be determined by T (x, t), I2(x, t), V (x, t), we replace (T (x, t), I2(x, t),

V (x, t)) with (w1(x, t), w2(x, t), w3(x, t)) and consider the following system with more general

kernel function form H(x− y) as follows:
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

∂w1(x, t)

∂t
= D1

∫
Ω

J(x− y)(w1(y, t)− w1(x, t))dy − f (w1(x, t), w3(x, t))

− µ1(x)w1(x, t)− g(w1(x, t), w2(x, t)) + h(w1(x, t)),

∂

∂t
w2(x, t) = D2

∫
Ω

J(x− y)(w2(y, t)− w2(x, t))dy − µ2(a)w2(x, t)

+ Π(r)

∫
Ω

H(x− y)[f(w1(y, t− r), w3(y, t− r)) + g(w1(y, t− r), w2(y, t− r))]dy,

∂w3(x, t)

∂t
= D3

∫
Ω

J(x− y)(w3(y, t)− w3(x, t))dy + q(x)w2(x, t)− µ3(x)w3(x, t),

(5)

for(x, t) ∈ (Ω̄× R+) and subject to the following initial value

w10(x) = ψ1(x, s) > 0, w20(x) = ψ2(x, s) > 0, w30(x) = ψ3(x, s) > 0, x ∈ Ω̄, s ∈ [−r, 0]. (6)

where ψj(x, s) ∈ C := C(Ω̄ × [−r, 0],R) (j = 1, 2, 3) with ψ = (ψ1, ψ2, ψ3)
T . Here ψ(·, 0) > 0

implies ψ(x, 0) > 0, ψ(x, 0) ̸≡ 0. We define wt ∈ C by wt(θ) = w(t+ θ), θ ∈ [−r, 0].
Throughout the paper, we always make the following basic assumptions:

Assumption 2.3. For J(x), kernel function H and infection incidences f(w1, w3), g(w1, w2),

we always make the following basic assumptions:

(1) J(x) is Lebesgue measurable function,
∫
Ω
J(x)dx = J̃ = 1, and J(x) = J(−x) for x ∈ Ω;

(2) H(x) > 0,H(x) = H(−x) and Lebesgue measurable for x ∈ Ω,
∫
Ω
H(x)dx = 1;

(3) For f(w1, w3), we assume that: (i) f(w1, w3) = 0, x ∈ Ω̄ if and only if w1(x, t) = 0(or

w3(x, t) = 0); (ii) There exists a positive constant β̄ > 0 such that f(w1, w3) 6 β̄w1(x, t)w3(x, t)/

(1 + w1(x, t) + w3(x, t)), w1(x, t), w3(x, t) ∈ R+, x ∈ Ω̄. Moreover, g(w1, w3) also satisfies the

above conditions;

(4) h(w1(x, t)) is nondecreasing on [0,+∞). There exists a positive constant h̃ > 0 and Λ(x)

such that h(w1(x, t)) 6 h̃w1(x, t) and h(w1(x, t)) 6 Λ(x) for all x ∈ Ω.

§3 Well-posedness, positivity, and boundedness of the solution for

system (5)

For convenience, we define the following function spaces and positive cones

X := {ψ : R → R|ψ = {ψ(x)}x∈Ω is bounded and uniformly continuous},
X+ = {ψ ∈ X|ψ(x) > 0 for x ∈ Ω},
X := C(Ω× [−r, 0],R), Y := X3 with the norm ||ψ||X = sup

x∈Ω
|ψ(x)|, ψ ∈ X,

X+ := C(Ω× [−r, 0],R+), Y+ = X3
+, ψ

+ = sup
x∈Ω

ψ(x), ψ− = inf
x∈Ω

ψ(x), ψ ∈ X.

Define a linear operator Aw = (A1w1,A2w2,A3w3)
T , where Ajwj = Dj

∫
Ω
J(x−y)(wj(y, t)

−wj(·, t))dy − µjwj(·, t), j = 1, 2, 3, and a nonlinear operator F = (F1,F2,F3) as follows:

F1w = h(w1(·, t))− f(w1(·, t), w3(·, t))− g(w1(·, t), w2(·, t)),
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F2w = Π(r)

∫
Ω

H(x− y)(f(w1(·, t− r), w3(·, t− r)) + g(w1(·, t− r), w2(·, t− r)))dy,

F3w = q(·)w2(·, t).
Under the Assumption 2.3, Aj , j = 1, 2, 3 are bounded linear operators and the generators of

uniformly continuous positive C0-semigroups {Tj(t)}t>0 on X. Let T (t) = (T1, T2, T3), then
system (5) can be rewritten asw(·, t) = T (t)ϕ(·, 0) +

∫ t

o

T (t− s)F(ws)(·)ds, t > 0,

w(·, θ) = ϕ(·, θ), θ ∈ [−r, 0].
(7)

On the existence and uniqueness of the positive solution of system (7), we have the following

theorem:

Theorem 3.1. If assumption 2.3 holds and m ∈ (0, 1), which will be determined later, then for

any ϕ ∈ Y+, system (7) admits a unique nonnegative solution w(x, t, ϕ) for t > 0. Moreover,

if ϕ(0) ∈ Int X+ for any t > 0, then w(t) ∈ Int X+ for all t > 0, and wt ∈ Int Y+ for t > r.

Proof. Let σj(x) = µj(x) +Dj > 0, j = 1, 2, 3 and

Q1[w](x, t)

= D1

∫
Ω

J(x− y)w1(y, t)dy + h(w1(x, t))− f(w1(x, t), w3(x, t))− g(w1(x, t), w2(x, t)),

Q2[w](x, t) =D2

∫
Ω

J(x− y)w2(y, t)dy +Π(r)

∫
Ω

H(x− y)[f(w1(x, t− r), w3(x, t− r))

+ g(w1(x, t− r), w2(x, t− r))]dy,

Q3[w](x, t) =D3

∫
Ω

J(x− y)w3(y, t)dy + q(x)w2(x, t).

Then the solution of system (7) can be expressed as

Hi[w](x, t) =

wi(x, t) = e−σi(x)twi0(x, t) +

∫ t

0

e−σi(x)(t−s)Qi[w](x, s)ds, t > 0,

wi(x, t) = ϕi(x, t), t ∈ [−r, 0].
(8)

Define D+ := C([−r,∞) × Ω, [0,∞)), and H = (H1,H2,H3)
T : D+ → D+. For any

η > 0, define Γη := {w(x, t) : w ∈ [C([−r,∞) × Ω,R)]3, sup(x,t)∈Ω×[−r,∞) |w(x, t)|e−ηt < ∞}
with a norm ||w||η =

∑3
j=1 sup(x,t)∈Ω×[−r,∞) |wi(x, t)|e−ηt, then (Γη, || · ||η) is a Banach space.

Choosing a subset S in Γη as follows

S := {w ∈ Γη : w(x, θ) = ϕ(x, θ) for (x, θ) ∈ Ω× [−r, 0]}.
We will show that there exists a fixed point of H in S. It is obvious that H (S) ⊂ S. It is

sufficient to show that for any w, v ∈ S, ||H [w] − H [v]||η 6 m||w − v||η, 0 < m < 1. In fact,

for any w, v ∈ S, it follows from Eq. (8)that

∣∣∣H [w]− H [v]
∣∣∣ = 3∑

j=1

∣∣∣ ∫ t

0

e−σj(x)(t−s)(Hj(w)(x, s)− Hj(v)(x, s))ds
∣∣∣

=
∣∣∣ ∫ t

0

e−σj(x)(t−s)Dj

∫
Ω

J(x− y)[wj(y, s)− vj(y, s)]dyds
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+

∫ t

0

e−σ1(x)(t−s)(h(w1)− h(v1) + f(w1, w3)− f(v1, v3) + g(w1, w2)− g(v1, v2))(x, s)ds

+

∫ t

0

e−σ2(x)(t−s)

∫
Ω

H(x− y)[f(w1, w3)− f(v1, v3) + g(w1, w2)− g(v1, v2)](y, s− r)dyds

+

∫ t

0

e−σ3(x)(t−s)q(x)(w2(x, s)− v2(x, s))ds
∣∣∣.

Therefore, if η > 0 is large enough, then we can obtain from Assumptions 2.3 (3)− (4) that∣∣∣H [w]− H [v]
∣∣∣e−ηt 6

3∑
j=1

∫ t

0

e−(σ−
j +η)(t−s)dsDi||wj(y, s)− vi(y, s)||η

+

∫ t

0

e−(σ−
1 +η)(t−s)ds

(
(4β̄ + h̃)||w1 − v1||η + 2β̄||w2 − v2||η + 2β̄||w3 − v3||η

)
+ e−ηs

∫ t

0

e−(σ−
2 +η)(t−s)ds

(
4β̄||w1 − v1||η + 2β̄||w2 − v2||η + 2β̄||w3 − v3||η

)
+ q+

∫ t

0

e−(σ−
3 +η)(t−s)ds||w2 − v2||η

6
[
(D1 + 4β̄ + h̃)

∫ t

0

e−(σ−
1 +η)(t−s)ds+ 4β̄e−ηs

∫ t

0

e−(σ−
2 +η)(t−s)ds

]
||w1 − v1||η

+

[
(D2 + 2β̄e−ηs)

∫ t

0

e−(σ−
2 +η)(t−s)ds+ 2β̄

∫ t

0

e−(σ−
1 +η)(t−s)ds

+q+
∫ t

0

e−(σ−
3 +η)(t−s)ds

]
||w2 − v2||η +

[
2β̄e−ηs

∫ t

0

e−(σ−
2 +η)(t−s)ds

+D3

∫ t

0

e−(σ−
3 +η)(t−s)ds+ 2β̄

∫ t

0

e−(σ−
1 +η)(t−s)ds

]
||w3 − v3||η

6
(
D1 + 4β̄ + h̃

σ−
1 + η

+
4β̄e−ηs

σ−
2 + η

)
||w1 − v1||η +

(
2β̄e−ηs

σ−
2 + η

+
D3

σ−
3 + η

+
2β̄

σ−
1 + η

)
||w3 − v3||η

+

(
D2 + 2β̄e−ηs

σ−
2 + η

+
2β̄

σ−
1 + η

+
q+

σ−
3 + η

)
||w2 − v2||η 6 m||w − v||η,

where

m = max
{

D1+4β̄+h̃

σ−
1 +η

+ 4β̄e−ηs

σ−
2 +η

, 2β̄e
−ηs

σ−
2 +η

+ D3

σ−
3 +η

+ 2β̄

σ−
1 +η

, D2+2β̄e−ηs

σ−
2 +η

+ 2β̄

σ−
1 +η

+ q+

σ−
3 +η

}
∈ (0, 1).

Applying Banach contracting theorem, one admits a unique fixed point of H in S. If ϕ(0) ∈
IntX+, then we have from (8) and the property of T that w(t) ∈ IntX+ for all t > 0; if ϕ(0) > 0,

then w(t) ∈ IntX+ for t > 0, and wt ∈ IntY+ for t > r. This completes the proof.

Theorem 3.2. Suppose that Assumption 2.3 holds and let w(x, t;ψ) be the solution of system

(7) with a nonnegative initial condition. Then w(x, t;ϕ) is positive and bounded.

Proof. For any x ∈ Ω, t > 0, it follows from Eq. (8) that

w1(x, t;ϕ1) =T1(t)ϕ1(0)(x) +
∫ t

0

T1(t− s)Q1(ws)(x)ds 6 T1(t)ϕ1(0)(x) +
∫ t

0

T1(t− s)Λ(x)ds

6φ1e
−D1t +

λ+

D1
(1− e−D1t) 6 max

{
φ1,

Λ+

D1

}
,

where φj = max(x,θ)∈Ω×[−r,0]

∑
ϕj(x, θ), j = 1, 2, 3. Define
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W (t) =
∫
Ω

∫
Ω
H(x− y)Π(r)w1(x, t)dydx+

∫
Ω
w2(x, t+ r)dx,

then we can obtain from system (5) that

dW (t)

dt
= D1

∫
Ω

Π(r)H(x− y)dy

∫
Ω

∫
Ω

J(x− z)w1(z, t)dzdx

−D1

∫
Ω

Π(r)H(x− y)dy

∫
Ω

w1(x, t)dx−Π(r)

∫
Ω

H(x− y)dy

∫
Ω

[f(w1, w3)

+ g(w1, w2)](x, t)dx+Π(r)

∫
Ω

H(x− y)dy

∫
Ω

h(w1(x, t))dx

−Π(r)

∫
Ω

H(x− y)dy

∫
Ω

µ1(x)w1(x, t)dx

+D2

∫
Ω

∫
Ω

J(x− y)w2(y, t+ r)dydx−D2

∫
Ω

w2(x, t+ r)dx

+Π(r)

∫
Ω

H(x− y)dy

∫
Ω

[f(w1, w3) + g(w1, w2)](x, t)dx−
∫
Ω

µ2(x)w2(x, t+ r)dx

6 Π(r)Λ+|Ω| − µminW (t),

where µmin = min{µ−
1 , µ

−
2 }, it implies that W (t) 6 Π(r)Λ+|Ω|

µmin
:= B, is bounded. Consequently,

the bounded of w2(x, t;ϕ) is obtained. Finally, we can obtain from Eq. (8) that

w3(x, t;ϕ3)

=T3(t)ϕ3(0)(x) +
∫ t

0

T3(t− s)Q3(ws)(x)ds 6 T3(t)ϕ3(0)(x) +
∫ t

0

T3(t− s)q(x)Bds

6φ3e
−D3t +

q+B
D3

(1− e−D3t) 6 max

{
φ3,

q+B
D3

}
.

Thus, the boundedness of w3(x, t;ϕ3) follows. This completes the proof.

§4 Conclusion

In this paper, we present a novel HIV infection model with nonlocal time delay and dispersal.

To the best of our knowledge, few HIV infection models are formulated to study the basic

properties of the solution for the model. As a novel HIV infection model, its threshold dynamics

is worth to be investigated in the follow-up work. In the current model, we have not performed

the dynamical analysis, this would be done in the future work.
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