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Some convergence theorems of fuzzy concave

integral on fuzzy σ-algebra

SUN Rong

Abstract. In this paper, we consider the extension of the concave integral from classical crisp

σ-algebra to fuzzy σ-algebra of fuzzy sets. Firstly, the concept of fuzzy concave integral on

a fuzzy set is introduced. Secondly, some important properties of such integral are discussed.

Finally, various kinds of convergence theorems of a sequence of fuzzy concave integrals are

proved.

§1 Introduction

The concave integral defined on classical crisp σ-algebra was first introduced by Lehrer

[1], which differs from the Choquet integral when the capacity is not convex (super modular).

The integral stemmed from the concavification of cooperative game that was first proposed by

Weber and later appeared in Azrieli and Lehrer, the most prominent feature of the integral

is concavity [2,3]. In the context of a decision under uncertainty, this property might be

interpreted as uncertainty aversion. Lehrer and Teper investigated the concave integral for

capacities defined over large spaces. A non-additive version of the Levi theorem and the Fatou

lemma and other convergence theorems for capacities with large cores were proven [4]. Teper

studied the continuity of the concave integral, and got the Dominated Convergence Theorem of

the concave integral for capacities[5]. Amarante obtained the necessary and sufficient conditions

for the existence of an additive set function sandwiched between two arbitrary set functions by

concave and convex integral [6]. From the perspective of risk assessment, integral function is an

important tool for the comprehensive weighted average of risk value. However, their discussion

was limited to a classical crisp σ-algebra, and by their theory, we can’t deal with the decision

for the uncertainty caused by fuzzy events in many economic activities. Therefore, we attempt

to establish a new fuzzy integral on fuzzy sets to tackle such a problem.

Received: 2020-03-23. Revised: 2023-03-14.
MR Subject Classification: 28B99.
Keywords: convergence theorems, fuzzy concave integral, fuzzy σ-algebra.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-024-4074-z.
Supported in part by the National Social Science Foundation of China(19BTJ020).



SUN Rong. Some convergence theorems of fuzzy concave integral on fuzzy σ-algebra 439

Zhong proposed many definitions related to fuzzy sets and fuzzy measures, and studied the

abstract integral on fuzzy sets and L-fuzzy sets[7-11]. Based on the classical Lebesgue integral

idea, Butnariu proposed a fuzzy integral on σ-additive class of fuzzy sets. He proved that

some fundamental results of Lebesgue integral theory can be carried over to the general fuzzy

case [12]. Huang and Wu studied Choquet integrals with respect to fuzzy measure on fuzzy

σ-algebra[13]. Dvorák and Holcapek explored fuzzy measures and integrals defined on algebras

of fuzzy subsets over complete residuated lattices[14]. Khalid etc proposed the definition of

fuzzy neutrosophic soft σ-algebra and fuzzy neutrosophic soft measure. Khalid and Samet

put forth the definition of picture fuzzy soft σ-algebra and picture fuzzy soft measure[15,16].

These definitions lay a theoretical foundation for the expansion of fuzzy integrals on fuzzy sets.

Different from the above research, based on the idea of the concavification of cooperative game,

we propose a fuzzy concave integral of fuzzy capacity on fuzzy σ-algebra of fuzzy sets, and

get some properties and convergence theorems in this paper. The integral and its convergence

theorems may provide one tool for making decisions under uncertainty caused by fuzzy events

in economic activities.

The remainder of this paper is organized as follows. In Section 2, we provide some basic

notions and definitions about fuzzy measure and fuzzy σ-algebra that are needed later. In

Section 3, we recall some concepts of convergence for a sequence of measurable functions, then

we introduce the concept of the fuzzy concave integral on a fuzzy set and discuss some of its

properties. In Section 4, some convergence theorems of a sequence of fuzzy concave integrals

on fuzzy σ-algebra are proved. Finally, conclusions are drawn in section 5.

§2 Preliminaries

Let X be a nonempty set and I the real number interval [0,1]. F(X) is the family of all fuzzy

sets on X. If Ã denotes a fuzzy set and x is a point in X, then Ad(x) denotes the membership

function of Ã, Ãc denotes complement set of Ã, Ac
d(x) = 1 − Ad(x) for every x. In order to

distinguish from fuzzy sets, a crisp set is denoted as A, its characteristic function is denoted as

IA(·). Let R+=[0,∞) and R̄+=[0,∞] denote the set of nonnegative real numbers and extended

nonnegative real numbers respectively.

Definition 2.1. [12] Let Ã and B̃ be two fuzzy sets.

(a) The sum Ã⊕ B̃ is the fuzzy set whose membership function is given by

(A⊕B)d(x) = min(1, Ad(x) +Bd(x)) (x ∈ X)

(b) The product of Ã and B̃ is defined by

(A •B)d(x) = Ad(x) •Bd(x) (x ∈ X)

Definition 2.2. [10] Let K be a sub-family of F(X). If a set function v : K → R̄+ satisfies

the conditions:

(1) v(∅) = 0;

(2) Ã, B̃ ∈ K, Ã ⊂ B̃ ⇒ v(Ã) ≤ v(B̃).

v is called a fuzzy measure.
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If a fuzzy measure v satisfies the conditions:

(3) v(X) = 1.

v is called a fuzzy capacity.

Definition 2.3. [10] Let v be a fuzzy capacity.

(1) v is called lower semicontinuous if Ãn, Ã ∈ F(X), Ãn ↑ Ã, then lim
n→∞

v(An) = v(A).

(2) v is called upper semicontinuous if Ãn, Ã ∈ F(X), Ãn ↓ Ã, then lim
n→∞

v(An) = v(A).

(3) v is called continuous if v is lower semicontinuous and upper semicontinuous.

(4) v is called autocontinuous from below if v(B̃n) → 0 implies v(Ã∩B̃c
n) → v(Ã) whenever

Ã, B̃ ∈ F(X).

Definition 2.4. Let v be a fuzzy capacity, v is called subadditive if v(Ã⊕B̃) ≤ v(Ã)+v(B̃)

whenever Ã, B̃ ∈ F(X).

Remark 1.

The definition of subadditivity is different from the general definition of that. In generally,

v(Ã ⊕ B̃) ≤ v(Ã) + v(B̃) ⇒ v(Ã ∪ B̃) ≤ v(Ã) + v(B̃), but the reverse is not necessarily true.

If there is at least one crisp set between Ã and B̃, then two definitions are equivalent. Since if

there is at least one crisp set between Ã and B̃, we have v(Ã⊕ B̃) ≤ v(Ã)+v(B̃) ⇔ v(Ã∪ B̃) ≤
v(Ã) + v(B̃). The main reason for adopting such a definition here is to obtain ideal properties

for the fuzzy concave integral defined later.

Definition 2.5. [10] A sub-family K of F(X) is called a fuzzy σ-algebra, if it satisfies the

following conditions:

(1) ∅, X ∈ K,

(2) Ã ∈ K ⇒ Ãc ∈ K,

(3)
{
Ãn

}
∈ K ⇒

∞
∪

n=1
Ãn ∈ K.

§3 Fuzzy concave integral on fuzzy σ-algebra

Let K be a fuzzy σ-algebra over X. A mapping f : X → (−∞,∞) is called a measurable

function on fuzzy σ-algebra K if {x; f(x) ≥ α} ∈ K for every α ∈ [−∞,∞]. Denote by

B := {f ; f is a measurable function on K}, B+ := {f ; f ∈ B, f ≥ 0}. An extended functional

H : B+ → [0,∞] is concave if H(αf + (1− α)g) ≥ αH(f) + (1 − α)H(g) for every α ∈ (0, 1),

f, g ∈ B, and it is positive homogeneous iff H(αf) = αH(f) for every α ∈ (0, 1) and f, g ∈ B+.

Definition 3.1. A property D over X is a crisp subset of X. A property D holds

everywhere on Ã if Ã ⊂ D, denote it by D on Ã; A property D holds almost everywhere on

Ã, if there exists Ẽ ∈ K with v(Ẽ) = 0 and Ã∩ Ẽc ⊂ D, denote it by D on Ã v-a.e., if Ã = X,

property D holds almost everywhere, denote it by D v-a.e.; A property D holds pseudo −
almost everywhere, if there exists Ẽ ∈ K with v(Ẽ) = 0 such that Ã∩Ẽc ⊂ D and v(Ã∩Ẽc) =

v(Ã) for every Ã ∈ K, denote it by D v-p.a.e.(In order to simplify the symbols, such as v-a.e.

and v-p.a.e., when the fuzzy measure v is obvious, we often omit it).

Remark 2.

From Definition 3.1, We can draw the following conclusions.
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(1) If D v-p.a.e., then D v-a.e. holds;

(2) if D v-a.e., then v(Dc) = 0;

(3) If D v-p.a.e., then Dc ⊂ Ẽ and v(Ã
∩

D) = v(Ã) for every Ã ∈ F ;

By Definition 3.1, the following definitions are easy to be understand.

Definition 3.2. Let {f, fn} ⊂ B, Ã ∈ K, and L = {x : fn → f}.
(1) If Ã ⊂ L, then we say {fn} converges to f everywhere on Ã, and denote it by fn → f

on Ã.

(2) If there exists Ẽ ∈ K with v(Ẽ) = 0, such that fn → f on Ã ∩ Ẽ. then we say {fn}
converges to f almost everywhere on Ã, and denote it by fn → f on Ã a.e. If Ã = X, we say

{fn} converges to f almost everywhere, and denote it by fn → f a.e..

(3) If there exists Ẽ ∈ K with v(Ã ∩ Ẽc) = v(Ã), such that fn → f on Ã ∩ Ẽ. then we

say {fn} converges to f pseudo − almost everywhere on Ã, and denote it by fn → f on

Ã p.a.e.; If Ã = X, we say {fn} converges to f pseudo− almost everywhere, and denote it by

fn → f p.a.e..

Definition 3.3.[14]. Let {f, fn} ⊂ B. If for any given ε > 0, when n → ∞, we have

v(|fn − f | ≥ ε) → 0, then we say {fn} converges in fuzzy measure v to f , and denote it by

fn
v−→ f .

Theorem 3.4.(Riesz’s Theorem)[14]. Let {f, fn} ⊂ B+, if v is autocontinuous from

below and fn
v−→ f on X, then there exists a subsequence {fnk

} of {fn}, such that fn → f

on Ã p.a.e., whenever Ã ∈ K.

Fix a fuzzy capacity v defined on K and f ∈ B+.

Definition 3.5. The fuzzy convex integral of f over Ã w.r.t. v is defined by∫ cav

Ã
fdv := inf {H(f ·Ad)}

where the infimum is taken over all convex and positive homogeneous extended functionals

H : B+ → [0,∞] that satisfy H(Ed) ≥ v(Ẽ) for all (Ẽ) ∈ K.

Remark 3.

Similar to the proof Proposition 1of [4], we have∫ Cav

Ã
fdv = sup

{
N∑
i=1

λiv(Ãi);λiAid(x) ≤ f(x) ·Ad(x), Ã1, · · · , ÃN ∈ K, λi > 0, i ∈ N, ∀x ∈ X

}
.

We say that f is integrable over Ã ∈ K if
∫ Cav

Ã
fdv < ∞. If f is integrable over X we

say that it is integrable. In order to express the Vitali theorem of the version of fuzzy concave

integral conveniently, let 1 ≤ p < ∞, denote by Lp(v) :=
{
f : f ∈ B,

∫
|f |pdv < ∞

}
. Unless

stated otherwise, for expressional convenience, next we will denote
∫
dv as the fuzzy concave

integral.

Proposition 3.6. The fuzzy integrals on fuzzy sets satisfy the following properties :

(1)
∫
Ã
0dv = 0 for every Ã ∈ K;

(2)
∫
Ã
dv is a positive functional on B+ for every Ã ∈ K;

(3) If µ, v : K → [0,∞) and µ ≤ v, then
∫
Ã
fdµ ≤

∫
Ã
fdv for f ∈ B+ and Ã ∈ K;

(4)
∫
Ã
fdv+

∫
Ã
gdv ≤

∫
Ã
(f + g)dv for every f, g ∈ B+ and Ã ∈ K ;

(5) If f ≤ g, then
∫
Ã
fdv ≤

∫
Ã
gdv for every f, g ∈ B+ and Ã ∈ K;

(6) If a property D p.a.e., then
∫
Ã
fdv=

∫
Ã∩D

fdv for every f ∈ B+ and Ã ∈ K;
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(7) If f ≤ g p.a.e., then
∫
Ã
fdv ≤

∫
Ã
gdv for every f, g ∈ B+ and Ã ∈ K;

(8)
∫
Ã∩B

fdv = 0 for every f ∈ B+ and Ã,B ∈ K with v(B) = 0;

(9) If v is subadditive, then
∫
Ã
fdv =

∫
Ã·B̃ fdv+

∫
Ã·B̃c fdv for every f ∈ B+ and Ã, B̃ ∈

K;

(10) If v is subadditive, then
∫
Ã·B̃ fdv = 0 and

∫
Ã
fdv =

∫
Ã·B̃c fdv for every f ∈ B+ and

Ã, B̃ ∈ K, v(B̃) = 0;

(11) If v is subadditive, f ≤ g a.e., then
∫
Ã
fdv ≤

∫
Ã
gdv for every f, g ∈ B+ and

Ã, B̃ ∈ K.

Proof. By Remark 3, (1) to (7) are obvious, we only prove (8) to (11).

(8) For every f ∈ B+ and
k∑

i=1

λiAid ≤ f · Ã · IB , it follows that Aid(x) = 0 for every

i ∈ N, x ∈ X ∩ B. Thus Aid · IB(x) = Aid(x) for every i ∈ N,x ∈ X. Since (Ãi ∩ B) ⊂ B and

v(B) = 0, we have v(Ãi) = 0. Thus
∫
Ã∩B

fdv = 0 by Remark 3. It ensures the conclusion

holds.

(9) First, it is obvious that
∫
Ã
fdv ≥

∫
Ã·B̃ fdv +

∫
Ã·B̃c fdv by Remark 3. Next, we will

show that
∫
Ã
fdv ≤

∫
Ã·B̃ fdv+

∫
Ã·B̃c fdv. For any

k∑
i=1

λiAid ≤ f ·Ad, we have
k∑

i=1

λiAid ·Bd ≤

f ·Ad ·Bd and
k∑

i=1

λiAid ·Bc
d ≤ f ·Ad ·Bc

d. Since Aid = Aid ·Bd +Aid ·Bc
d and v is subadditive,

then v(Ãi) ≤ v(Ãi · B̃) + v(Ãi · B̃c). Thus,
∫
Ã
fdv ≤

∫
Ã·B̃ fdv +

∫
Ã·B̃c fdv, which implies∫

Ã
fdv =

∫
Ã·B̃ fdv +

∫
Ã·B̃c fdv.

(10) For any
k∑

i=1

λiAid ≤ f ·Ad, we have
k∑

i=1

λiAid ·Bc
d ≤ f ·Ad ·Bc

d. Since v is subadditive,

then

v(Ãi) ≤ v(Ãi · B̃) + (Ãi · B̃c).

Since v(B̃) = 0, Ãi · B̃ ⊂ B̃, then v(Ãi) ≤ v(Ãi · B̃c). This means that
k∑

i=1

λiv(Ãi) ≤
k∑

i=1

λiv(Ãi · B̃c) ≤
∫
Ã·B̃c fdv.

Therefore
∫
Ã
fdv ≤

∫
Ã·B̃c fdv.

However
∫
Ã
fdv ≥

∫
Ã·B̃c fdv, which means that

∫
fdv=

∫
Ãc fdv.

From (9) it also follows that
∫
Ã·B̃ fdv = 0.

(11) Denote J := {x : f(x) ≤ g(x)}. If D a.e., it follows that
∫
fdv=

∫
J
fdv and

∫
gdv=

∫
J
g

dv from Remark 2 and (10). Since fIJ ≤ gIJ for every x ∈ X, by(4) we have∫
Ã
fIJdv ≤

∫
Ã
gIJdv.

This implies
∫
Ã
fdv ≤

∫
Ã
gdv.

Remark 4.

If give a fuzzy measure v over K, define that v̂(Ã) :=
∫
Ã
1dv. Similar to the proof of Lemma

1 of [7] we have that

(1) v̂ ≥ v;

(2)
∫
Ã
fdv=

∫
Ã
fdv̂ for every f ∈ B+ and Ã, B̃ ∈ K.
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§4 Convergence theorems of fuzzy concave integral on fuzzy

σ-algebra

In this section, various integral convergence theorems will be discussed.

Lemma 4.1. Let {f, fn} ⊂ B+, if fn ↑ and limn→∞fn ≥ f a.e. (respect p.a.e.), v

is lower semicontinuous and subadditive(respect lower semicontinuous), then for every

Ã ∈ K
lim
n→∞

∫
Ã
fndv ≥

∫
Ã
fdv.

Proof. Denote by D :=
{
x : fn(x) ↑, lim

n→∞
fn(x) ≥ f(x)

}
. If D a.e., there exists Ẽ ∈ K

with v(Ẽc) = 0 and Dc ⊂ Ẽc. Denote by gn(x) := fnID(x) and g(x) := fID(x). By Definition

3.1., we have gn(x) = fn(x), g(x) = f(x) a.e., and also we have gn ↑ and lim
n→∞

gn ≥ g for each

x. Since v is subadditive, without loss generality, we can assume that fn ↑ and lim
n→∞

fn ≥ f for

every x by (2) of Remark 2 and (10) of Proposition 3.6. For every α ∈ (0, 1), denote by

Bn(α) := {fn ≥ αf}. Since fn ·IBn(α) ≥ αf ·IBn(α), by Remark 3, for every
k∑

i=1

λiAid ≤ f ·Ad,

we have α
k∑

i=1

λiAid ≤ αf · Ad and α
k∑

i=1

λiAid · IBn(α) ≤ fn · Ad · IBn(α). Thus by Remark 3,∫
Ã
fndv ≥

∫
Ã
fnIBn(α)dv ≥ α

k∑
i=1

λiv(Ãi ∩Bn(α)). Furthermore, from fn ↑ and limn→∞fn ≥ f

it follows that Bn(α) ↑ X. Since v is lower semicontinuous, v(Ãi ∩Bn(α)) ↑ v(Ãi), we have

lim
n→∞

∫
Ã
fndv ≥ α

k∑
i=1

lim
n→∞

λiv(Ãi ∩Bn(α)) = α
k∑

i=1

λiv(Ãi).

Thus

lim
n→∞

∫
Ã
fndv ≥ α

∫
fdv.

Let α → 1, the result follows.

Since fn · Ad · ID∩Bn(α) ≥ αf · Ad · ID∩Bn(α) and
∫
Ã
fndv ≥

∫
Ã
fnID∩Bn(α)dv, If D p.a.e.,

we have D ⊂
∞
∪

n=1
Bn(α) and v(Ã ∩D ∩

∞
∪

n=1
Bn(α)) = v(Ã) for every Ã ∈ F by (3) of Remark

2. Therefore, the proof of the rest is similar to the one above.

Theorem 4.2. (Pseudo-Almost Everywhere Monotone Convergence Theorem) Let {f, fn}
⊂ B+, lim

n→∞

∫
Ã
fndv =

∫
Ã
fdv for every increasing sequence of nonnegative measurable fu-

nctions {fn} ⊂ B+ converging to a function f p.a.e. and Ã ∈ K iff v̂ is lower semicontinuo-

us.

Proof. Sufficiency: Denote by D : =
{
x : fn(x) ↑ lim

n→∞
fn(x) = f(x)

}
. If D p.a.e. by Lem-

ma 4.1, we have lim
n→∞

∫
Ã
fndv̂ ≥

∫
Ã
fdv̂. On the other hand, let gn = fnID and g = fID.

we have gn ≤ g(∀n ∈ N). It ensures that lim
n→∞

∫
Ã
gndv̂ ≤

∫
Ã
gdv̂. Then it follows that

lim
n→∞

∫
Ã
fndv̂ =

∫
Ã
fdv̂ from (6) of Proposition 3.6. This means that lim

n→∞

∫
Ã
fndv =

∫
Ã
fdv.

Necessity: It follows by analogy to the proof of the necessity of Proposition 1of [4].

Theorem 4.3. (Almost Everywhere Monotone Convergence Theorem) Let {f, fn}
⊂ B+, if v is lower semicontinuous and subadditive, then lim

n→∞

∫
Ã
fndv =

∫
Ã
fdv for every

increasing sequence of nonnegative measurable functions {fn} ⊂ B+ converging to a
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function f a.e. and Ã ∈ K.

Proof. It is easily proved according to Lemma 4.1 and (10) of Proposition 3.6.

Definition 4.4. Let F be a nonempty subset of B.

(1) F is called uniformly v-integrable if lim
c→∞

supf∈F

∫
|f |I{|f |>c}dv = 0.

(2) F is called uniformly v-integral bounded if supf∈F

∫
|f |dv < ∞.

(3) F is called uniformly v-absolutely continuous if for any ε > 0, there is a δ > 0 such

that supf∈F

∫
Ã
|f |dv < ε for every Ã ∈ K with v̂(Ã) < δ.

Theorem 4.5. Let F be a nonempty subset of B+. If v is subadditive and v̂(X) < ∞,

then F is uniformly v-integral bounded and uniformly v-absolutely continuous if F

is uniformly v-integrable.

Proof. Sufficiency: Since v is subadditive, by (9) of Proposition 3.6, for every Ã ∈ K
and any c > 0 we have

supf∈F

∫
Ã
fdv ≤ supf∈F

∫
Ã
fI{f≤c}dv+supf∈F

∫
Ã
fI{f>c}dv ≤ cv̂(Ã)+ supf∈F

∫
fI{f>c}dv.

Fix ε > 0. Since F is uniformly v-integrable, there is a c0 > 0 such that supf∈F

∫
fI{f>c0}dv <

ε
2 . Moreover, there is a δ > 0 such that c0v̂(Ã) <

ε
2 for every v̂(Ã) < δ. Thus take any Ã ∈ K

with v(Ã) < δ, supf∈F

∫
Ã
fdv < ε.

Then, let Ã = X, c = c0. Since v̂(X) < ∞, from the proof above it follows that

supf∈F

∫
fdv ≤ cv̂(X) + ε

2 < ∞.

Necessity: Since F is uniformly v-integral bounded, for any c > 0 we have

supf∈F

∫
cI{f>c}dv ≤ supf∈F

∫
fI{f>c}dv ≤ supf∈F

∫
fdv < ∞.

Thus from supf∈F cv̂(f > c) < ∞, it follows that lim
c→∞

supf∈F v̂(f > c) = 0, this is, for

any ε > 0, there is c0 > 0 such that supf∈F v̂(f > c) < δ for any c ≥ c0. Moreover, F

is uniformly v-absolutely continuous, this implies that supf∈F

∫
fI{f>c}dv < ε. Thus F is

uniformly uniformly v-integrable.

Unless stated otherwise, for a fuzzy capacity v, we always assume v̂(X) < ∞ in the following.

Lemma 4.6. Let {f, fn} ⊂ B+, if fn ↓ and lim
n→∞

fn ≤ f a.e. (or p.a.e.), lim
c→∞

∫
f1I{f1>c}dv

= 0, v is lower semicontinuous and subadditive, v̂ is upper semicontinuous, denote by

Q := {x : fn(x) > 0(∀n ∈ N), f(x) = 0} with v̂(Q) = 0, then for every Ã ∈ K
lim
n→∞

∫
Ã
fndv ≤

∫
Ã
fdv.

Proof. Denote by D1 : =
{
x : fn(x) ↓, lim

n→∞
fn(x) ≤ f(x)

}
.If D1 a.e., Since v is subadditive,

without loss generality, we can assume that fn ↓ and lim
n→∞

fn ≤ f for every x. For every

α ∈ (0, 1), denote by Cn(α) := {αfn ≤ f}, then α
∫
Ã
fnICn(α)dv ≤

∫
Ã
fICn(α)dv. From (9) of

Proposition 3.6, it follows that

α
∫
Ã
fndv = α

∫
Ã
fnICn(α)dv+α

∫
Ã
fnICc

n(α)
dv.

Since fn ↓, lim
n→∞

fn ≤ f , Cn(α) ↑ Qc and Cc
n(α) ↓ Q, we have fICn(α) ↑ fIF c . Thus

lim
n→∞

∫
Ã
fICn(α)dv =

∫
Ã
fIQcdv =

∫
Ã
fdv, where the first equation holds due to Theorem4.3,

the second equation holds due to (10) of Proposition 3.6. Moreover, lim
c→∞

∫
f1I{f1>c}dv =

0, we have that {fn} is uniformly v-integrable. It follows that α lim
n→∞

∫
Ã
fnICc

n(α)
dv = 0 by

Theorem 4.5, as v̂ is upper semicontinuous and v̂(Q) = 0. Thus lim
n→∞

α
∫
Ã
fndv ≤

∫
Ã
fdv.
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Let α → 1, the result follows.

If D1 p.a.e., we have that
∫
Ã
fndv =

∫
Ã
fnID1dv =

∫
Ã
fnID1∩Cn(α)dv+

∫
Ã
fnID1∩Cc

n(α)
dv

and
∫
Ã
fdv =

∫
Ã
fID1dv =

∫
Ã
fID1∩F cdv by (7) and (10) of Proposition 3.7, also we have

D1 ∩ Cn(α) ↑ D1 ∩ F c and D1 ∩ Cc
n(α) ↓ D1 ∩ F . Therefore, the proof of the rest is similar to

the one above.

Theorem 4.7. (Absolute continuity theorem of integral) If f ∈ B+ is integrable,

then for any ε > 0, there exists δ > 0 for every Ã ∈ K with v̂(Ã) < δ such that
∫
Ã
fdv < ε.

Proof. Since f ∈ B+, there exists nonnegative increasing simple measurable function series

{fn} which converge to f . By Theorem 4.2, it follows that
∫
Ã
fndv ↑

∫
Ã
fdv for every Ã ∈ F .

Thus for any ε > 0, there exists positive integer nε, such that
∫
fdv −

∫
fnεdv < ε

2 . Denote

by M := maxx∈Xfnε(x), then
∫
Ã
fdv < ε

2 +
∫
Ã
fnεdv ≤ ε

2 + Mv̂(Ã). Therefore, when take

δ = ε
(2M) , the conclusion holds.

Lemma 4.8. Let {f, fn} ⊂ B+, if fn ↓ and lim
n→∞

fn ≤ f a.e. (or p.a.e.), there exists a

integrable function g ∈ B+, such that fn ≤ g (∀n ∈ N) a.e. (or p.a.e.), v is lower semicont-

inuous and subadditive, v̂ is upper semicontinuous, denote by

F := {x : fn(x) > 0(∀n ∈ N), f(x) = 0} with v̂(F ) = 0,

then for every Ã ∈ K, lim
n→∞

∫
Ã
fndv ≤

∫
Ã
fdv.

Proof. By (7), (10) of Proposition 3.6, Remark 4 and Theorem 4.7, it follows from

similar proof of Lemma 4.6.

Lemma 4.9. (Fatou Lemma) If {fn} ⊂ B+ is a nonnegative measurable function ser-

ies, v is lower semicontinuous , then for every Ã ∈ K∫
Ã
(lim inf

n→∞
fn)dv ≤ lim inf

n→∞

∫
Ã
fdv.

Proof. It is easily proved by Theorem 4.2.

Theorem 4.10. (Almost Everywhere Convergence Theorem) Let {f, fn} ⊂ B+, if

lim
n→∞

fn = f a.e. , there exists a integrable function g ∈ B+, such that fn ≤ g (∀n ∈ N) a.e.

(or p.a.e.), v is lower semicontinuous and subadditive, v̂ is upper semicontinuous, denoted

by Fb := {x : supk≥n fk(x) > 0(∀n ∈ N), f(x) = 0} with v̂(Fb) = 0, then for every Ã ∈ K
lim
n→∞

∫
Ã
fndv =

∫
Ã
fdv.

Proof. Denote by D2 :=
{
x : lim

n→∞
fn = f

}
, en := infk≥n fk and gn := supk≥n fk (∀k, n ∈

N). Since en ≤ fn ≤ gn(∀n ∈ N).we have
∫
Ã
endv̂ ≤

∫
Ã
fndv̂ ≤

∫
Ã
gndv̂ (∀n ∈ N). If

D2 a.e., we have gn ↑ f , en ↓ f a.e. and gn ≤ g (∀n ∈ N) a.e.. Thus lim
n→∞

∫
Ã
endv =

lim
n→∞

∫
Ã
gndv =

∫
Ã
fdv by Remark 4, Theorem 4.3 and Lemma 4.8, which implies that

lim
n→∞

∫
Ã
fndv =

∫
Ã
fdv.

Remark 5. From the proof of Theorem 4.10, we know that if replace lim
n→∞

fn = f a.e.

with lim
n→∞

fn = f p.a.e. in Theorem 4.10, the conclusion is still valid.

Theorem 4.11. (Convergence in fuzzy measure theorem)

Let {f, fn} ⊂ B+, fn
v−→ f , if limc→∞

∫
supn≥1fnI{supn≥1fn>c}dv = 0, v is autocontinuo-

us from below, lower semicontinuous and subadditive, v̂ is upper semicontinuous, denote

by Fb := {x : supk≥n fk(x) > 0(∀n ∈ N), f(x) = 0} with v̂(Fb) = 0, then for every Ã ∈ K
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lim
n→∞

∫
Ã
fndv =

∫
Ã
fdv.

Proof. If fn
v−→ f , since v is autocontinuous from below, by Theorem 3.4, for any

subsequence {fnk
} of {fn} there exists subsequence {fnkj

} of {fnk
} such that fnkj

→ f p.a.e..

By Theorem 4.2 and Lemma 4.6, it follows that limj→∞
∫
Ã
fnkj

dv =
∫
Ã
fdv. By Remark

4, this means that lim
n→∞

∫
Ã
fndv =

∫
Ã
fdv.

To the abstract Lebesgue integral, the Vitali convergence in measure theorem is very im-

portant, which ensures the convergence of a sequence of Lebesgue integrals without a dominant

function. We will give the Vitali theorem of the version of fuzzy concave integral in the following.

Theorem 4.12. (The Vitali convergence theorem) Let {f, fn} ⊂ B+, fn
v̂−→ f ,

{fn} ∈ Lp(v)(1 ≤ p < ∞), {fp
n} is uniformly v-integrable, v is autocontinuous from below,

lower semicontinuous and subadditive, then

f ∈ Lp(v)

and ∫
|fn − f |pdv → 0

Proof. Since fn
v̂−→ f , it follows that fn

v−→ f by Lemma 3.8. Moreover, v is autocontin-

uous from below, by Theorem 3.4, for any subsequence {fnk
} of {fn} there exists subsequence{

fnkj

}
of {fnk

} such that fnkj
→ f p.a.e. by Theorem 4.2 and Lemma 4.6. Since {fn} is

uniformly v-integrable and v is lower semicontinuous, we have∫
fpdv=

∫
lim
j→∞

fp
nkj

dv ≤ lim inf
j→∞

∫
fp
nkj

dv ≤ sup
n≥1

∫
fp
ndv < ∞

by Lemma 4.9. This implies that f ∈ Lp(v). Furthermore, v is subadditive∫
|fn − f |pdv =

∫
{|fn−f |p≤ε}

|fn − f |p +
∫
{|fn−f |p>ε}

|fn − f |p

=

∫
{|fn−f |≤ε}

|fn − f |pdv +
∫
{fn>f+ε}

|fn − f |p+
∫
{fn<f−ε}

|fn − f |p

≤ εv̂ {|fn − f | ≤ ε}+
∫
{fn>f+ε}

fp
ndv+

∫
{fn<f−ε}

fpdv.

Since ε is arbitrary,if fn
v̂−→ f and {fp

n} is uniformly v-integrable, it follows that
∫
|fn − f |p

dv → 0 from Theorem 4.5 and Theorem 4.7.

§5 Conclusion

Inspired by the idea of the concavification of cooperative game, we have proposed the new

concept of fuzzy concave integral on fuzzy set, and have obtained some desirable properties.

Based on these, we proved some convergence theorems of a sequence of fuzzy concave integrals

on fuzzy σ-algebra. Relevant results can provide new theoretical basis for risk evaluation under

uncertainty caused by fuzzy events in economic activities.
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