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A new model of flow over stretching (shrinking) and
porous sheet with its numerical solutions
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Abstract. The viscous fluid flow and heat transfer over a stretching (shrinking) and porous

sheets of nonuniform thickness are investigated in this paper. The modeled problem is presented

by utilizing the stretching (shrinking) and porous velocities and variable thickness of the sheet

and they are combined in a relation. Consequently, the new problem reproduces the different

available forms of flow motion and heat transfer maintained over a stretching (shrinking) and

porous sheet of variable thickness in one go. As a result, the governing equations are embedded in

several parameters which can be transformed into classical cases of stretched (shrunk) flows over

porous sheets. A set of general, unusual and new variables is formed to simplify the governing

partial differential equations and boundary conditions. The final equations are compared with

the classical models to get the validity of the current simulations and they are exactly matched

with each other for different choices of parameters of the current problem when their values

are properly adjusted and manipulated. Moreover, we have recovered the classical results for

special and appropriate values of the parameters (δ1, δ2, δ3, c, and B ). The individual and

combined effects of all inputs from the boundary are seen on flow and heat transfer properties

with the help of a numerical method and the results are compared with classical solutions in

special cases. It is noteworthy that the problem describes and enhances the behavior of all

field quantities in view of the governing parameters. Numerical result shows that the dual

solutions can be found for different possible values of the shrinking parameter. A stability

analysis is accomplished and apprehended in order to establish a criterion for the determinations

of linearly stable and physically compatible solutions. The significant features and diversity of

the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat

transfer from a uniformly heated sheet of variable (uniform) thickness with variable (uniform)

stretching/shrinking and injection/suction velocities.
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§1 Introduction

Fluid flows and heat transfer over-stretching surfaces have applications in engineering,
physics and other fields of science. The experimental investigations which exactly satisfy the
theoretical studies of the physical phenomena can be found in [1]. The first paper appeared
regarding fluid flows due to stretching surfaces was presented by Sakiadis [2]. Later on, this
work was further verified and extended by Tsou et al. [3] and the theoretical results are closely
matched with the experimental data. An exact solution of flows due to linear stretching is guar-
anteed by Crane [4] and further this model is equipped with mass suction (injection) at sheet
surface see Gupta [5]. The stretching problem is presented with certain generalizing factors and
the modified approach can be found in Kuiken [6]. A 3-D flow induced by horizontally stretched
surfaces was examined by Wang [7]. He produced the numerical solution of the transformed
boundary values ODE’s. The study of stretching (shrinking) flows is further extended and heat
transfer effects are included in the previous models. The closed form exact solutions of viscous
fluid flows over a permeable and stretching surface (sheets) are discussed in Magyari, and Keller
[8]. Later on, an exponential stretching of a rapid decay type was introduced and the results
may be seen in Magyari [9]. Further, the models of flows due to stretching were modified by
Liao [10], Miklavcic and Wang [11] and different physical cases have been derived when fluid
is stretched toward a slit. In Liao [12] multiple solutions were discussed for boundary-layer
flows on a stretching flat plate. The flow models of stretching surfaces are modified and gen-
eralized by considering different geometries of the surfaces and imposing different physical and
mathematically liable conditions and all these models have been discussed through numerical
solutions[13-14]. More recently, a paper was published by Zaimi [15] concerning the numeri-
cal solution of viscous flow and convective heat transfer on permeable stretching (shrinking)
flat plate. Buoyancy effects in boundary layer adjacent to a continuous, moving horizontal
flat plate were analyzed by Chen [17]. In his work, he studied the buoyancy-induced stream
wise pressure gradient on the momentum and heat transfer characteristics in laminar boundary
layer flow adjacent to a continuous, moving horizontal flat plate. It is necessary to study the
thermal boundary layer on a continuously semi-infinite moving flat plate. Such a phenomenon
has been studied without considering the viscous dissipation effect on taking into account the
variable temperature, by Soundalgekar [18]. A scale analysis approach to the correlation of
continuous moving sheet (backward boundary layer) forced convective heat transfer, proposed
by Jacobi [19]. A problem of boundary layer flow and heat transfer in a quiescent fluid drawing
by a power law stretched surface subject to suction or injection was analyzed with its similar
solutions by Ali [20]. An analysis was made to study boundary layer flow and heat transfer
over an exponentially shrinking sheet by Bhattacharyya [21]. The analysis of Bhattacharyya
[21] revealed the conditions for the existence of steady boundary layer flow due to exponential
shrinking of the sheet and also investigated that when the mass suction parameter exceeds a
certain critical value, steady flow is possible. Due to other engineering applications, unsteadi-
ness is also an integral part of such problems. For this purpose the unsteady mixed convection
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boundary layer flow and heat transfer due to a stretching vertical surface in a quiescent viscous
and incompressible fluid were studied theoretically by Ishak [22].

Most of the solutions presented in the papers included in the reference list are the numerical
solutions of the Navier-Stokes equations. Moreover, these numerical solutions of the Navier-
Stokes equations are obtained by transforming them into a system of boundary values ODE’s
with the appropriate similarity variables. In addition, dual solutions of some classical problems
have been obtained, however, we emphasize on the stability of these dual solutions. In order to
get the objectives and valid results, it is necessary to consider the unsteady form of the steady
flow problem (see [23-28]). A set of common and usual similarity transformations are used in
all these papers included in the reference list. As a result, the final boundary values ODE’s are
obtained in view of the techniques which are solved numerically.

In real engineering systems, the conduction resistance of sheets is necessarily important,
whereas, in typical analysis very thin walls are undertaken. The surface thickness is ignored in
the classical studies of flow and heat transfer problems. However, it’s the compulsory compo-
nent in many physical problems, therefore, we thoroughly examined the perceptiveness of wall
thickness on the field variables and the transport of heat between solid surfaces and fluids. The
phenomenon of variable wall thickness is extensively investigated with the combination of other
boundary inputs. In this paper, we introduce an interesting and mathematically compact, new
and generalized similarity transformation for stream function and similarity variable and hence
present the most modified form of transformations. These transformations are used to simplify
the boundary value partial differential equations and provide an exact boundary value ODE.
Further, these transformations give rise to a new set of parameters that play a role in con-
trolling the suction (injection), stretching (shrinking) and the thickness of the sheet (boundary
deformation). Realistic and noticeable features of the study are elaborated by considering the
results of the classical models included in the reference list and all these papers are recovered in
one go. The final problem (ODE with BCs) is solved by using a numerical method discussed in
Cebeci, and Keller [29]. We also present the code and flow chart of the numerical scheme used
for the numerical solution of the final third order, nonlinear ODE, which satisfies the boundary
condition. This code was developed by Kierzenka and Shampine [30] for solutions of BVPs of
ODEs and many problems of two-point BVPs are solved by using these techniques.The effects
of different parameters are seen on velocity, temperature and shear stress profiles. Strictly
speaking, the set of different profiles includes the cases of Magyari, and Keller [8], Fang [13],
Zaimi [15] Bhattacharyya [21] and Ishaq [27] and obviously recovered from the solution of the
current model in a special case. Multiple (dual) solutions of the final problem are focused and
presented in different graphs and tables. We also found that the dual solution only exists for
a certain range of the suction/injection parameters . A linear stability analysis of the dual
solutions is focused and presented; however, it is discussed in view of the already established
methodology of [23-28]. To the best of our knowledge, this generalized problem has not been
studied earlier; therefore, the results obtained are new and different from the classical solutions.
The multiple solutions of Magyari, and Keller [8], Zaimi [15], Bhattacharyya [21] and Ishaq [27]
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are also extracted from the current model when parameters are fixed accordingly.

§2 Formulation and the numerical solution of the problem

Viscous fluid flow over heated, stretching (shrinking) and permeable surfaces of variable
thickness are considered. The continuity, momentum and energy equations subject to the kine-
matic boundary conditions at the surface of the sheet are given below: The equation of continu-
ity comes from the conservation of mass law, whereas, for incompressible and two dimensional
flows it has the following form:

∂u

∂x
+
∂u

∂y
= 0 (1)

The following momentum equation comes from the Newton’s second law of motion, however,
it is the steady, two dimensional and boundary layer form of the Navier Stokes equation and
valid for laminar flow of fluid, which has uniform viscosity:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(2)

The energy equation comes from the first law of thermodynamics and the boundary layer form
of this equation is presented below and it is valid for the fluids of uninform thermal properties
without the viscous dissipation term:

u
∂T

∂x
+ v

∂T

∂y
=

κ

ρcp

∂2T

∂y2
(3)

The velocity field has two components; u(x, y) and v(x, y) in x and y directions, respectively.
Further, T, ν = µ

ρ , κ and cp are temperature, kinematic viscosity, density, thermal conductivity
and specific heat respectively. The kinematic viscosity (ν = µ/ρ), coefficient of fluid viscosity
(µ) and density (ρ) are constants in the flow region. Boundary conditions for the momentum
equation are described below:

u(x, y) = Uw(x), v(x, y) = Vw(x) at y = f(x), (4)

u(x, y) = U∞(x) = 0, (5)
The sheets are assumed of very small thickness in the classical simulations of flow over a plate.
However, the thickness of the sheets is of significant importance in the practical problems of
heat transfer from the surface of wall into the fluid. Therefore, we have taken the sheet of
nonuniform thickness in the current analysis. Here we have taken the boundary layer flow over
a heated, porous and stretching/ shrinking sheet of variable thickness so it is mandatory that
the fluid in contact with sheet will have the temperature of the sheet due to no temperature
jump condition. Moreover, the stagnant fluid away from the sheet has an ambient temperature.
Note that here we only considered the case of heat transfer at the surface of the sheet and this
is the reason that the following physical conditions are taken for temperature at the surface of
the sheet:

T = Tw at y = A
√
dαβ , T = T∞ when y → ∞, (6)

Note that f(x) = A
√
dαβ , α = d0 + (d1 + 2d2)A1x and β = d1+d2

d1+2d2
. Also Uw(x) = B

d2
A2α

1−2β

and Vw(x) = c√
d2
A1A2α

−β are stretching (shrinking) and injection (suction) velocities, re-
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spectively. Further, Vw ≻ 0(Uw ≻ 0) for injection (stretching), Vw ≺ 0(Uw ≺ 0) for suc-
tion (shrinking) and Vw = 0(Uw = 0) correspond to an impermeable (fixed) sheet. Further,
A, A1, A2, B, c, d0, d1 and d2 are the controlling parameters. Note that Tw = T∞+T0(

α
A1

)k1/τ

is the variable temperature of the sheet, T∞ is the constant free stream temperature, where
τ = d1 + 2d2 and T0 and k1(k1 = −d1) are constant temperature controlling parameters.

The concept of stream function for two dimensional flow is the great obligation of Stokes,
therefore, it is also known as the Stokes stream function. The stream function of two variables
give arbitrary lines/ curves in the flow field and its derivatives with respect to each of these
variables gives the velocity components. Note that the two variables usually representing the
Cartesian Coordinates in two dimensional plane. We may get rid of the continuity equation (1)
by invoking the proper definition of the stream function. On the other hand, Blasius used the
stream function for simplifying the viscous flow model maintained over a sheet and introduced
the similarity variables such that the governing partial differential equations of continuity and
boundary layer form of momentum equation are transformed into a single ODE. The following
similarity transformations are introduced in terms of stream functions ψ, temperature T and
similarity variable η:

ψ = A2
α1−β
√
d2
f(η), θ(η) =

T − T∞
Tw − T∞

, η =
y√
d2
α−β , (7)

where η is the similarity variable and f(η) and θ(η) are unknown functions, representing velocity
components and temperature respectively. The stream function satisfies the relations u = ∂ψ

∂y

and v = −∂ψ
∂x . In view of these definitions, Eq. (1) is identically satisfied and by substituting

the transformations defined in Eq. (7) into Eqs. (2-5), we obtain the following exact boundary
value ODE:

Figure 1. Physical geometry of the problem.

f ′′′ + δ1f
′2 + δ2ff

′′ = 0, (8)
θ′′ + Pr (δ2fθ

′ − δ3f
′θ) = 0, (9)

f(A) =
−c+AB(d1 + d2)

d2
, f ′(A) + b, f ′(∞) = 0, (10)
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θ(A) = 1, θ(∞) = 0, (11)
where δ1 = A1A2d1

ν , δ2 = A1A2d2
ν , δ3 = A1A2k1

ν , Pr = ν
α and A2, k1(k1 = −d1) are constant

temperature controlling parameters. Note that δ1 and δ2 determine the non-linear nature of
stretching (shrinking) and injection (suction) velocities, respectively, whereas, δ3 determines
the non-linearity in the variable temperature of the sheet.

§3 Flwo chart for MATLAB Script bvp4c

The nonlinear boundary value problem in equations (8-11) is solved numerically with the
help of the numerical scheme developed by Cebeci and Keller [29]. In this section, we present
the code and flow chart for the employed numerical scheme for the numerical solution of the final
third order, nonlinear ODE’s (8-9), satisfying the boundary conditions (10-11). There are built-
in functions in MATLAB which can solve BVPs and the two very famous and advantageous
methos i.e. bvp4c and bvp5c are widely used for the solution of such problems. These techniques
are residual control based and adoptive mesh solvers. These codes were developed by Kierzenka
and Shampine [30] for solutions of BVPs of ODEs and many problems of two-point BVPs are
solved by using these techniques. The MATLAB package bvp4c integrates the system of ODEs
in Eqs. (8-9) on the interval [A, S] subject to two-point boundary value conditions given in
Eqs. (10-11) where S represents the lab infinity. This technique gives a continuous solution
to the problem on [A, S]. This method requires reducing the system of third and second-order
ODEs into five first-order systems of ODEs. It is a finite difference scheme based on a three-
stage Lobatoo IIIa collocation technique and the collocation polynomial gives a fourth-order
accurate solution which is uniformly changed on [A, S]. A convergent solution is found for the
minimum number of initial mesh points, which are 5. The mesh size and error minimization
strictly depend upon the residual of the solution.

The system of BVPs in Eqs. (8-11) is solved by bvp4c which contains two unknown functions
f and θ. The MATLAB code is used to solve the problem numerically. The script file employed
for the solution of the modeled problem does not need external function files for specifying the
ODE’s and their relevant BCs. The script file will also need an initial guess for the unknown
field quantites depending upon the total order of the system of ODE’s. The general Matlab
script file for the solution of Eqs. (8-9) satisfying the boundary conditons in Eqs. (10-11) is
given in the link https://ww2.mathworks.cn/help/matlab/ref/bvp4c.html.

§4 Graphs and their discussion

The nonlinear boundary value problem in equations (8 - 11) is solved numerically with the
help of the numerical scheme developed by Cebeci and Keller [29]. The modeled equations are
also compared with the classical simulations for special values of the controlling parameters.
Effects of different parameters are seen on the velocity, temperature and shear stress profiles. In
one case, the dual solutions of velocity profiles are also presented and further investigations of
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all such solutions have been elaborated in the following consequent subsections. Note that the
effects of different parameters are seen in different graphs and tables and thoroughly discussed
in the following sections. For sake of simplicity and convenience, we divide this section into
four subsections.

4.1 Comparison of the solutions with the classical results:

The nonlinear boundary value problem in equations (8 - 11) is solved numerically with the
help of the numerical scheme developed by Cebeci and Keller [29]. Moreover, we retrieved the
published results for the specific values of the parameters of the current model. Initially, the
problem in [13] is recovered when special values are proposed for the involved parameters in the
problem in equations (8 - 11)(i.e. A = 0, B = −1, c = −s, δ1 = −β, δ2 = d2 = 1, where the
symbols β & s represent the controlling and injection/ suction parameters, respectively in [13]).
The results obtained for the special values are shown in Figs. 2-3, whereas the profiles shown
in the plots are the replicate of the solutions in [13]. We also retrieved the model published in
[8] for the parameters value: A = 0, δ1 = −2m/(m+ 1), for m = −1/3, δ2 = d2 = 1, B = 1

and c = −fw. These numerical values of the parameters exactly provided the same set of
problems as discussed in [8]. Note that m is the representative of fw where m is any finite
real number used in [8]. They provide the exact solution to the model equations for a special
value of parameters. In [8], only exact solutions of the problem are discussed. The comparison
of the current model with [8] ensures the validity and authenticity of the formulation and its
numerical solutions. These numerical solutions are shown in Figs.4-5. On the other hand, the
modeled problem that appeared in [15] is also a special case of the current model when we
provide values to the parameters as A = 0, δ1 = −1, δ2 = d1 = d2 = 1, B = σ = −0.2 and
c = −S. Where σ & S are responsible for stretching/ shrinking and suction/ injection in [15].
The observations are recorded in Fig. 6 and the solutions are exactly matched with the results
of [15]. These arguments have confirmed the validity of the current model.

4.2 Velocity profiles

Numerical solutions of the modeled problem in equations (8) and (10) are presented for the
components of velocity and multiple results are obtained for different parameters value. The
axial velocity component (f ′) is graphed in Fig. 2 for different δ1. A thin boundary layer is seen
near the sheet for small values δ1 and c ≺ 0. In Fig. 3, effects c ≺ 0 are noted on the velocity
profiles and massive flow overshoot is seen near the surface. The variation in parameters caused
changes in downstream velocity. As a result, an abrupt and maximum increase in the velocity
is observed in Figs. 4-5 with simultaneous changes in the permeable stretching sheet. In these
figures, the velocity profiles have high peaks for c and B. Therefore, as c decreases from +∞
to −∞, the shape of velocity profiles at the wall changes from convex to concave as the value
c = 1 is reached. For 1 ≻ c ≻ −1 the shape of the velocity profiles near the wall is still concave,
whereas, for c ≺ 1 once again they become convex. As one switches from injection (c ≻ 1)
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to suction (c ≺ 1) and it obviously implies a change from positive to negative skin friction,
therefore, a sudden increase in the velocity profiles with peaks is observed. For large c and
B ≻ 0, high peaks of the velocity profiles are observed which are shown in Fig. 6. Note that
the velocity of the fluid is retarded (in the absolute sense) and the boundary layer is increased
with the increasing of while significant changes in the behavior of the boundary layer have
been seen. Effects of the different parameters on fluid velocity (f ′(η)) are observed inside the
boundary layer. More results for the velocity profiles are also shown in Figs.7-8 for different A
and fixed c ≺ 0. In these observations, negative and positive values are taken for A and the
results are shown in Figs. 7-8, respectively. In Fig. 7, f ′(η) profiles are increased with the
decreasing of A(≺ 0). Contrary to that, in Fig. 8, f ′(η) is decreased when A is increasing and
the boundary layers thickness is also increased. On the other hand, the graphs are changing
their position around the origin with the variation in A depending upon its sign. These types
of changes in profiles are related to translation of the graphs on η-axis by A. In Fig. 9, the
decreasing behavior of fluid velocity and boundary layers against the increasing B is noted.
Whereas in Fig. 10 effects of B ≺ 0 are studied on fluid velocity. The fluid velocity is decreased
and boundary layer thickness is increased with the decreasing of B.

4.3 Shear stress profiles

Here we present the shear stress profiles which obtained from the solution of equations (8)
and (10). The shear stress profiles are consistently graphed in Figs. 2-3 and Figs. 7-10 in order
to discuss the behavior of shear stress profiles for the current model against different parameters
subject to the classical data. It is a fact that the current formulation includes the modeling
of power law stretching. More precisely, the published profiles for (f ′′) are recovered from
the current model and shown in Figs. 2-3 for different δ1. In view of these observations, the
influence of all parameters is observed on f ′′(η). Besides that, the wall drag is increased with
decreasing of δ1. More classical results are also recovered for f ′′(η) from the current problems
and shown in Figs. 7-8. These two graphs are plotted for different A (surface deformation) and
c ≺ 0 (suction case). The analysis is further extended for negative and positive values of A and
the results are shown in Figs. 7-8, respectively. In Fig. 7, f ′′(η) is increased with the decreasing
of A(A ≺ 0). Whereas, in Fig. 8, the profiles of f ′′(η) are decreased with the increasing values
of A. Moreover, profiles are translated backward (forward) from the origin according to A if
taken negative (positive). The variation in A, just shifts the profiles to the left or right side of
η-axis by the value of A(A ≻ 0). Figs. 9-10 show the graphs of f ′′(η) for different values of
B ≻ 0 (stretching) and B ≺ 0 (shrinking), respectively. In Fig. 9 shear stress is decreased with
the increasing of B. In Fig. 10 effects of B ≺ 0 are analyzed on f ′′ and it is increased with
decreasing B.

In Table 1, the quantitative results of skin friction coefficient f ′′(0) is presented and com-
pared with [4], [15] and [30]. The skin friction coefficient is decreases as the magnitude ofn
the stretching/shrinking parameter increases in the absence of suction or injection. A good
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agreement between the results is found as shown in this table. Similarly in Table 2 comparison
of θ′(0) is made with [26-29]. Results in this table are matched to the best accuracy level.
We conclude from this table that an increase in Pr leads to an increase in the amount of heat
transfer at the surface of the sheet.

Table 1. f ′′(0) is compared with existing literature when A = 0, δ1 = −1 and d1 = d2 = δ2 = 1.

Different B, c = 0 Results in [4] Results in [ 15] Results in [22] New Results

0.1 - -0.031623 - -0.03164
0.5 - -0.353553 - -0.35355
1 -1 -1.000000 -1.000000 -1.000000
2 - -2.828427 - -2.82843

Table 2. θ′(0) is compared with existing literature when A = c = d1 = δ1 = 0, B = δ2 = δ3 =
d2 = 1 and different Pr.

Pr Results in [3] Results in [17] Results in [18] Results in [19] Results in [20] New results

0.7 0.3492 0.34924 0.3508 0.3492 0.3476 0.34927
0.1 0.4438 - - 0.4438 0.4416 0.44375
10.0 1.6804 - 1.6808 1.6790 1.6713 1.68031

4.4 Dual solutions of the problem

In this section, we are emphasize on the dual solution of the modeled problem in equations
(8) and (10). Dual solutions of the unknown function f ′ are found for the same set of parameters
value and the velocity is graphed in Fig.6. There are two branches of profiles in this figure and
groups are named by "First solution" and "Second solution". It is observed from the "First
solution" group that the absolute velocity of the fluid is decreased when c is increasing. It is
concluded that the suction retards the flow. Moreover, it is also confirmed that the boundary
layer size is minimized with the increasing of c and the opposite behavior of the velocity is
recorded in the "Second solution" group. In the "Second solution" group the boundary
layer size is propagated when c is increasing and significant changes have been noted in it. For
the sake of convenience, we avoided more dual solutions of the model problem obtained for
other sets of parameter values.

In Fig 11, dual temperature profiles θ(η) are demonstrated for different values of c. In first
solution, there is a fall or decrease in the temperature of the fluid with the increasing of c,
however, these profiles in the second solution are increased with the increasing of c for fixed
values of Pr and similar predictions/results are reported in [21]. Besides that, the order of the
thermal boundary layer is smaller in the case of the first solution as compared to the order of
the boundary layer in the second solution.
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§5 Stability analysis of solutions

The dual solutions of equations (8-11) are presented in Figs. 6, 11 & 12 for shrinking sheet
and wide range of suction/injection parameter c. However, we are searching for the stability of
these two solutions. Therefore, it is important to consider the unsteady form of equations of
motion (1 & 2) and note that equation (1) is valid for both steady and unsteady flows whereas
equation (2) is replaced by:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
, (12)
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where t denotes the time variable. Keeping in view equation (7), we introduce the following
new dimensionless variable for the stream function and similarity variable

ψ = A2
α1−β
√
d2
f(η), η =

y√
d2
α−β , τ = at. (13)

Note that the variable τ gives rise to an initial value problem and meanwhile, it is consistent
with the practical solutions that we may have. We hope that the stability of the first (upper) and
second (lower) branches solutions for a general time-dependent problem is directly associated
with steady states stable and unstable problems, respectively see [23]. By invoking the assertions
for the steam function and similarity variables in equation (13) into equation (12) we obtained
that:

∂3f

∂η3
+ δ2

(
f
∂2f

∂η2
−
(
∂f

∂η

)2
)

− δ4
∂2f

∂η∂τ
= 0, (14)

Subject to the boundary conditions:

f(A, τ) =
−c+AB(d1 + d2)

d2
,

∂f

∂η
(A, τ) = B,

∂f

∂η
(∞, τ) = 0, (15)

where δ4 = ad2/ν. Note that equation (14) is similar by taking the assumption δ1 = −δ2.
The stability of the solution of steady flow problem can be obtained by a well-established and
standard method. Finally, we established the methodology of [23-28] and decomposed the
solution of Eq. (14) as under:

f(η, τ) = f0(η) + e−γτF (η, τ), (16)

where the first component in Eq. (16) i.e. f(η) = f0(η) satisfies the boundary value problem
in equations (8) and (10), and γ represents an unknown eigenvalue. Moreover, the unknown
function F (η, τ) in the second component of Eq. (16) is asymptotically smaller than f0(η). On
the other hand, the problem in equations (14-15) contains eigenvalues and by Strum-Liouville
theorem there exists an infinite number of eigenvalues such that γ1 ≺ γ2 ≺ · · · . If the smallest
eigenvalue is negative then the solution in Eq. (16) grows exponentially and the flow remains
unstable due to these disturbances. However, the solution in Eq. (16) decays exponentially for
the largest positive eigenvalues and the flow becomes stable in this case. Substituting equation
(16) into equation (14), we obtain the following linearized problem.

∂3F

∂η3
+ δ2f0

∂2F

∂η2
+ δ2Ff

′′
0 + (γδ4 − 2δ2f

′
0)
∂F

∂η
+

∂2F

∂η∂τ
, (17)

with the boundary conditions

F (0, τ) = 0,
∂F

∂η
(0, τ) = 0,

∂F

∂η
(η, τ) → 0 as η → ∞. (18)

In fact, the significant observation and analysis of [23] are still valid for the current simulations
when γ = 0 and δ1 = −δ2 whereas the problem in equations (17-18) is homogenous. The
solution f(η) = f0(η) of the steady boundary value problem in equations (8) and (10) may
be obtained by setting τ = 0 and δ1 = −δ2. Hence, the unknown function F (η) = F0(η) in
equation (17) is associated with the initial growth or decay of the solution (16). In this regard
we have to solve the following linear eigenvalue problem:

F ′′′
0 + δ2f0F

′′
0 + (γδ4 − 2δ2f

′
0)F

′
0 = 0. (19)
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With the boundary conditions

F0(0) = 0, F ′
0(0) = 0, F ′

0(∞) = 0. (20)

The stability of the corresponding steady flow solution f0(η) will be determined by the smallest
eigenvalue γ. A feasible region for finding the eigenvalue can be selected by adjusting the
condition on F0(η) see [28]. A new boundary condition will be imposed in order to determine
an eigenvalue from the solution of Eqs. (19-20) for a certain initial fixed value of γ. We
solved the problem in equations (19-20) with the additional boundary condition F ′′

0 (0) = 1. In
addition, unique solutions of Eqs. (8) and (10) are obtained for stretching cases whereas the
dual solutions are found for flow over a shrinking sheet.

The existence of dual solutions was reported in [11] for shrinking sheet problems and Figs.
6 & 12 of equations (8) and (10) provide sufficient arguments for the existence of dual solutions.
Notice that these two figures represent the unknown velocity function f ′ and are graphed for
shrinking cases in terms of different non-zero values of suction parameter c. The stability
analysis of these solutions is established by finding the eigenvalue γ involved in equation (16).
The smallest eigenvalues γ are presented in Table 3 for fixed values of suction parameter c
which shows that γ is positive for the first (upper branch) solution and negative for the second
(lower branch) solution. Thus, we assert that the first (upper branches) solution is linearly
stable and physically acceptable, while the second (lower branches) solution is linearly unstable
when δ1 = −1, δ2 = 1, A = 0 and B = −0.2 or B = −1. A comparative analysis is given
in Fig. 12 and Table 3 and new results are compared with the previous results of [27] for
δ1 = −1, δ2 = 1, A = 0 and B = −1 which supports the validity of the numerical solution of
the modeled problem and its stability analysis with the best accuracy.

Table 3. The smallest eigenvalues γ for δ1 = −1 and δ2 = 1 and compared with [27].

First (Upper Branch) Solution First (Lower Branch) Solution
(c, B) Present Previous [27] Present Previous [27]

(−0.9,−0.2) 0.063 - -0.058 -
(−1.0,−0.2) 0.166 - -0.135 -
(−1.2,−0.2) 0.315 - -0.224 -
(−2.1,−1) 0.404 0.4040 -0.336 -0.3355
(−2.3,−1) 0.757 0.7574 -0.537 -0.5371
(−2.5,−1) 1.053 1.0527 -0.652 -0.6511
(−3,−1) 1.795 1.7952 -0.805 -0.8042
(−4,−1) 3.585 3.5817 -1.198 -0.9514
(−5,−1) 5.836 5.7390 -1.489 -1.4885

§6 Conclusion

The classical simulation of flows and heat transfer overheated, thin and uniform sheets are
generalized for the fluid flow and heat transfer on the plates of nonuniform thickness with
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variable stretching (shrinking) and injection (suction) velocities and nonuniform surface tem-
perature. The current modeled problem is described as the most accurate version of a real
engineering system of heat transfer which has variable and plump surfaces. A more realistic
model and its solutions are presented to reveal the latest facts regarding viscous fluid flows
on a stretching (shrinking) and porous sheet of variable thickness and encompass all the infor-
mation previously emerged in different published research articles. The problem is formulated
in terms of new and unusual transactions for the stream function and obviously invokes the
results shown by Magyari and Keller [8], Fang [13], Zaimi [15], Bhattacharyya [21] and Ishaq
[27] when parameters of the current article have been properly adjusted. Finally, the effects of
all parameters and their physical consequences have been seen on fluid velocity, temperature
and shear stress profiles which are concurrent to the previously published results. The numer-
ical results are evidence of the fact that the dual solutions are possible for different values of
the shrinking parameter whereas it is not the case for stretching sheet problems. The stability
analysis showed that the solution in Eq. (16) decays (grows) for the upper (lower) branch
solution. Thus, the first (upper branches) solution is linearly stable, while the second (lower
branches) solution is linearly unstable. Note the upper branch solutions correspondg to positive
values of eigenvalues and vice versa. The main physical results of the current problem can be
summarized as follows.

1. The skin friction coefficient is decreases as the magnitude of the stretching/shrinking
parameter increases when c = 0, A = 0, δ1 = −1, d1 = d2 = δ2 = 1.

2. The velocity of fluid is retarded (in the absolute sense) and the boundary layer is increased
with the increasing of c while significant changes in the behavior of the boundary layers
(i.e. momentum and thermal boundary layers) have been seen.

3. The rate of heat transfer at the surface increases with the increase of Pr when A = c =

d1 = δ1 = 0 and B = δ2 = δ3 = d2 = 1.
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