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Strong invariance principle for a counterbalanced

random walk

TAN Hui-qun1 HU Zhi-shui1 DONG Liang2,∗

Abstract. We study a counterbalanced random walk Šn = X̌1 + · · ·+ X̌n, which is a discrete

time non-Markovian process and X̌n are given recursively as follows. For n ≥ 2, X̌n is a new

independent sample from some fixed law µ ̸= 0 with a fixed probability p, and X̌n = −X̌v(n)

with probability 1 − p, where v(n) is a uniform random variable on {1, · · · , n − 1}. We apply

martingale method to obtain a strong invariance principle for Šn.

§1 Introduction

Random walks with long memory have been widely used in applied mathematics, theoretical

physics, computer sciences and econometrics. One of them is the so-called elephant random

walk introduced by Schütz and Trimper [15]. It is a discrete time random walk on Z whose

increments at each step depend on the whole history of the process. Let p, q ∈ [0, 1] be fixed

constants. At time zero, an elephant starts at the origin. At time n = 1, the elephant moves

to the right with probability q and to the left with probability 1 − q. At any time n ≥ 2, the

elephant remembers one step chosen uniformly at random from the past, with probability p the

elephant repeats it, and with probability 1− p it makes a step in the opposite direction.

A wide range of literature is available on the asymptotic behaviour of the elephant random

walk and its variants, see, for instance, [1], [2], [4], [5], [6], [7], [8], [13]. The memory parameter

p influences the limiting distribution of the elephant random walk ([9], [14], [15]). By using the

connection of the elephant random walk to Pólya-type urns, Baur and Bertoin [1] derived the

limiting process of the elephant random walk. In the diffusive regime (0 ≤ p < 3/4) and the

critical regime (p = 3/4), the limiting process turns out to be Gaussian; in the superdiffusive

regime (3/4 < p ≤ 1), the limit is not Gaussian. Coletti, Gava and Schütz ([7], [8]) studied the

central limit theorem and strong invariance principle of the elephant random walk.
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In this paper, we turn our attention to a counterbalanced random walk which is a gener-

alization of the elephant random walk and was introduced in [4]. Let (Xn)n≥1, (εn)n≥2 and

(v(n))n≥2 be random variables which are independent of each other, where (Xn)n≥1 are i.i.d.

random variables with some given non-degenerate law µ, ε1 = 1 and ε2, ε3, ... are i.i.d. Bernoulli

random variables with parameter p ∈ [0, 1], and for each n ≥ 2, v(n) has the uniform distri-

bution {1, · · · , n − 1}. We construct a counterbalanced sequence (X̌n) by interpreting each

{εn = 0} as a counterbalancing event and each {εn = 1} as an innovation event. Denote the

number of innovations after n steps i(n) by

i(n) =
n∑

j=1

εj for n ≥ 1.

Let X̌1 = X1 and for n ≥ 2, (X̌n) be defined recursively

X̌n =

−X̌v(n), if εn = 0,

Xi(n), if εn = 1.
(1)

Then we get the counterbalanced random walk:

Šn = X̌1 + · · ·+ X̌n, n ∈ N.

Bertoin [4] obtained the law of large numbers and the central limit theorem for Šn by

applying a coupling with a reinforcement algorithm due to H. A. Simon and properties of random

recursive trees. Bertenghi and Rosales-Ortiz [3] studied the joint weak invariant principles via

a method of martingale functional central limit theorem. The main purpose of our work is to

establish a strong invariance principle for Šn. As a by-product of our main result Theorem 1.1,

we get the law of the iterated logarithm and weak convergence onD[0, 1] for the counterbalanced

random walk.

For any k ∈ N, we write

mk =

∫
R
xkµ(dx)

for the moment of order k of µ whenever
∫
R |x|kµ(dx) < ∞. Let

b1 =
p

2− p
m1, (2)

then we observe that m2 − b21 > 0.

Our main results are stated as follows.

Theorem 1.1. Suppose that p ∈ (0, 1] and ||X1||∞ < ∞. Then we can redefine {Šn, n ≥ 1} on

a new probability space such that there exists a Brownian motion {W (t), t ≥ 0} satisfying that

1√
n log log n

sup
0≤t≤1

∣∣∣∣∣
√

3− 2p

m2 − b21

(
Š[nt] − [nt]b1

)
− (nt)p−1W ((nt)3−2p)

∣∣∣∣∣ −→ 0 a.s.

and

1√
n

sup
0≤t≤1

∣∣∣∣∣
√

3− 2p

m2 − b21

(
Š[nt] − [nt]b1

)
− (nt)p−1W ((nt)3−2p)

∣∣∣∣∣ p−→ 0.

Corollary 1.1. Suppose that p ∈ (0, 1] and ||X1||∞ < ∞.
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(a). We have the law of the iterated logarithm:

lim sup
n→∞

|Šn − nb1|√
2n log log n

=

√
m2 − b21
3− 2p

a.s. (3)

(b). Let {W (t), t ≥ 0} be a Brownian motion, then we have weak convergence on D[0, 1] with

respect to the uniform topology:√
3− 2p

m2 − b21

Š[nt] − [nt]b1√
n

=⇒ tp−1W (t3−2p). (4)

Remark 1.1. In Theorem 1.1 and Corollary 1.1, we require the restrictive condition ||X1||∞ <

∞ instead of E(X2
1 ) < ∞ for technical reasons in the proof. In order to weaken the condition

||X1||∞ < ∞, one should use the truncation method. For weak limit theorems including central

limit theorem and functional central limit theorem, Bertenghi and Rosales-Ortiz [3] used a

special truncation technique to obtain the results in the centered case(see section 4.2 in [3]).

But the truncation technique in [3] is not applicable to strong limit theorems. To our knowledge,

there was no strong limit theorem for Šn except that Bertenghi and Rosales-Ortiz [3] obtained

the strong law of large numbers under the condition ||X1||∞ < ∞. It is an open question to get

some strong limit theorems for Šn without the condition ||X1||∞ < ∞.

The rest of this paper is organised as follows: In section 2 we introduce a martingale

associated with the counterbalanced random walk. We obtain the result about asymptotic

variance of the partial sum process of the counterbalanced random walk Šn. Section 3 is

devoted to several preliminaries. We shall present some key results about strong law of large

numbers of Ŝn, Šn and angle bracket process ⟨M⟩n. Finally, in section 4 we apply the martingale

method to obtain a strong invariance principle for Šn.

§2 A martingale associated with the counterbalanced random walk

Set γn = n+p−1
n and a1 = 1. For all n ≥ 2, we define

an =
n−1∏
k=1

γk =
Γ(n+ p− 1)

Γ(n)Γ(p)
,

where Γ(·) stands for the Euler gamma function. Denote by Fn = σ({(Xi(j), εj , v(j)) : 1 ≤ j ≤
n}) and

Mn =
Šn − nb1

an
, (5)

where b1 is defined in (2). If
∫
R |x|µ(dx) < ∞, then it follows from the definition (1) that for

any n ≥ 1,

E(X̌n+1|Fn) = pE(Xi(n)+1|Fn)− (1− p)
X̌1 + · · ·+ X̌n

n
= pm1 − (1− p)

Šn

n
. (6)

This implies that E(Šn+1|Fn) = pm1 + γnŠn and then

E(Šn+1|Fn)− (n+ 1)b1 = γn(Šn − nb1). (7)



TAN Hui-qun, et al. Strong invariance principle for a counterbalanced random walk 373

Hence E(Mn+1|Fn) = Mn, i.e. Mn is a martingale with respect to the filtration Fn. Note that

an ∼ np−1/Γ(p). Then by applying (7) and recalling E(Š1) = m1, we obtain that

E(Šn)

n
→ b1 as n → ∞.

Proposition 2.1. Assume that
∫
R |x|2µ(dx) < ∞, then

Var(Šn)

n
→ m2 − b21

3− 2p
.

Proof. Similar arguments as in (6) yields that

E(X̌2
n+1|Fn) = pm2 + (1− p)

Vn

n
where Vn =

∑n
i=1 X̌

2
i . Thus,

E(Vn+1)− (n+ 1)m2 =
n+ 1− p

n

(
E(Vn)− nm2

)
.

With the initial condition E(X̌2
1 ) = m2, we deduce that E(Vn) = m2n. By applying (6), we

have

E(Š2
n+1|Fn) = Š2

n + 2ŠnE(X̌n+1|Fn) + E(X̌2
n+1|Fn)

= Š2
n + 2Šn

(
pm1 −

1− p

n
Šn

)
+ E(X̌2

n+1|Fn)

=
n+ 2p− 2

n
Š2
n + 2pm1Šn + E(X̌2

n+1|Fn).

Hence

E(Š2
n+1) =

n+ 2p− 2

n
E(Š2

n) + 2pm1E(Šn) +m2.

It follows from (7) that

E2(Šn+1) =
n+ 2p− 2

n
E2(Šn) +

(
p− 1

n
E(Šn) + pm1

)2

+ 2pm1E(Šn).

By letting

γ′
n =

n+ 2p− 2

n
and αn = m2 −

(p− 1

n
E(Šn) + pm1

)2
,

we conclude that Var(Šn+1) = γ′
nVar(Šn) + αn. Therefore,

Var(Šn+1) = Var(Š1)

n∏
k=1

γ′
k +

n−1∑
j=1

n∏
k=j+1

γ′
kαj + αn. (8)

Using the fact that
n∑

k=1

1

k
= log n+ γ +O

(
1

n

)
where γ is Euler’s constant, we obtain∑n−1

j=[n1/2]
∏n

k=j+1
k+2p−2

k

=
∑n−1

j=[n1/2] exp
(∑n

k=j+1 log
(
1 + 2p−2

k

))
=
∑n−1

j=[n1/2] exp
(∑n

k=j+1

(
2p−2
k +O

(
1
k2

)))
=
∑n−1

j=[n1/2] exp
(
(2p− 2)

(
log n

j +O
(

1
j

))
+O

(
1
j

))
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=
∑n−1

j=[n1/2] exp
(
(2p− 2) log n

j

)
+O(n1/2).

Noting that
n−1∑

j=[n1/2]

exp

(
(2p− 2)

(
log

n

j

))
=

n−1∑
j=[n1/2]

(
j

n

)2−2p

∼ n

3− 2p

and
[n1/2]−1∑

j=1

n∏
k=j+1

k + 2p− 2

k
= O(n1/2),

we have

1

n

n−1∑
j=1

n∏
k=j+1

γ′
k =

1

n

[n1/2]−1∑
j=1

n∏
k=j+1

k + 2p− 2

k
+

1

n

n−1∑
j=[n1/2]

n∏
k=j+1

k + 2p− 2

k
→ 1

3− 2p
.

This together with the fact that αn → m2 − b21 implies that

1

n+ 1

n−1∑
j=1

n∏
k=j+1

γ′
kαk +

αn

n+ 1
→ m2 − b21

3− 2p
. (9)

Note that
n∏

k=1

γ′
k =

Γ(n+ 2p− 1)

Γ(n+ 1)Γ(2p− 1)
∼ n2p−2

Γ(2p− 1)
,

which yields

Var(Š1)

n+ 1

n∏
k=1

γ′
k → 0. (10)

We can conclude from (8)-(10) that

Var(Šn+1)

n+ 1
→ m2 − b21

3− 2p
.

The proof of Proposition 2.1 is completed.

§3 Preliminaries

Our analysis relies on a natural coupling of the counterbalanced random walk with the

step reinforced random walk. Specifically, consider the same sequences (Xn)n≥1, (εn)n≥1 and

(v(n))n≥2 in (1). The step reinforced random walk is defined recursively

X̂n =

X̂v(n), if εn = 0,

Xi(n), if εn = 1.
(11)

Then we get the step reinforced random walk:

Ŝn = X̂1 + · · ·+ X̂n, n ∈ N.

The following Lemma 3.1 can be found in Bertenghi and Rosales-Ortiz [3] (Proposition 2.5,

Lemmas 2.2 and 5.1). It is a law of large numbers of the step reinforced random walk, which

will be used in the proof of Lemma 3.3.

Lemma 3.1. Suppose that ||X1||∞ < ∞.
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(a) For p ∈ (0, 1/2), we have

Ŝn − nm1

n1−p
→ W a.s. and in L2(P),

where W ∈ L2(P) is a non-degenerate random variable.

(b) For p = 1/2, we have

Ŝn − nm1√
n log n

→ 0 a.s.

(c) For p ∈ (1/2, 1), we have

Ŝn − nm1

np
→ 0 a.s.

Remark 3.1. In the case p = 1, i.e. when no reinforcement events occur, Ŝn is just the partial

sum of i.i.d. random variables (Xn)n≥1 with given law µ. Hence, for p = 1, it follows from the

classical law of large numbers that (Ŝn − nm1)/n → 0 a.s.

Lemma 3.2. Let p ∈ (0, 1] and suppose that ||X1||∞ < ∞. We have

Šn

n
→ b1 a.s.

Remark 3.2. For the weak law of large numbers, Bertoin [4] obtained Šn/n → b1 in probability

under the assumption that E(|X1|) < ∞ (see Proposition 1.1 in [4]).

Proof. Note that

|∆Mk| =

∣∣∣∣ Šk − kb1
ak

− Šk−1 − (k − 1)b1
ak−1

∣∣∣∣
≤

∣∣∣∣X̌k − b1
ak

+
Šk−1 − (k − 1)b1

k − 1

1− p

ak

∣∣∣∣ ≤ C||X1||∞
ak

. (12)

Then
∞∑
k=1

a2k
k2

E(∆M2
k |Fk−1) < ∞ a.s.

By Theorem 2.17 of [11], we obtain that
∑∞

k=1 ak∆Mk/k converges almost surely. By

applying Kronecker’s Lemma and n/an ↑ ∞, we have

Šn − nb1
n

=
anMn

n
=

an
n

n∑
k=1

∆Mk → 0 a.s.

The proof of Lemma 3.2 is completed.

Let Mn be defined in (5). Define

⟨M⟩n =
n∑

k=1

E(∆M2
k |Fk−1), n ≥ 1,

where {∆Mk, k ≥ 1} is the martingale difference sequence, which is defined by ∆M1 = M1,

and for k ≥ 2, ∆Mk = Mk −Mk−1. We set

s2n :=
n∑

k=1

1

a2k
.
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Then we have

an ∼ np−1

Γ(p)
, s2n ∼ Γ2(p)

3− 2p
n3−2p and snan ∼

√
n

3− 2p
. (13)

Lemma 3.3. Let p ∈ (0, 1] and suppose that ||X1||∞ < ∞. Then

⟨M⟩n
s2n

→ m2 − b21 a.s.

Proof. Note that

∆Mn =
X̌n − b1

an
+

1− p

n+ p− 2

Šn−1 − (n− 1)b1
an−1

,

and, by Lemma 3.2 and an/an−1 → 1,

1− p

n+ p− 2

Šn−1 − (n− 1)b1
an−1

= o(a−1
n ) a.s.

We obtain that

E((∆Mn)
2|Fn−1) =

1

a2n
E((X̌n − b1)

2|Fn−1) + o(a−2
n )E(X̌n − b1|Fn−1) + o(a−2

n ) a.s. (14)

By (6) and Lemma 3.2, we have

E(X̌n − b1|Fn−1) = pm1 − (1− p)
Šn

n
− b1 → 0 a.s., (15)

and similarly,

E((X̌n − b1)
2|Fn−1) = E(X̌2

n|Fn−1)− 2b1E(X̌n − b1|Fn−1)− b21

= pm2 − b21 + (1− p)
Vn−1

n− 1
+ o(1) a.s.,

where

Vn−1 =
n−1∑
k=1

X̌2
k =

n−1∑
k=1

X̂2
n.

Note that (X̂2
n)n≥1 is also a step reinforced random walk which can be defined in (11) by

replacing (Xn)n≥1 with (X2
n)n≥1. It follows from Lemma 3.1 and Remark 3.1 that Vn−1/(n−

1) → m2 a.s. Hence

E((X̌n − b1)
2|Fn−1) → m2 − b21 a.s.

This together with (14) and (15) implies that

a2nE((∆Mn)
2|Fn−1) → m2 − b21 a.s.

By noting that

s2n =

n∑
k=1

1

a2k
∼ Γ2(p)

3− 2p
n3−2p → ∞

and applying Toeplitz Lemma, we conclude that

⟨M⟩n
s2n

=
1

s2n

n∑
k=1

a2kE((∆Mk)
2|Fk−1)

a2k
→ m2 − b21 a.s.

The proof of Lemma 3.3 is completed.
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§4 Proof of main results

Before presenting the proof of Theorem 1.1, we first introduce two lemmas which are minor

modifications of Lemmas 1 and 2 in [10]. The detailed proofs are omitted here.

Lemma 4.1. Assume that {W (t), t ≥ 0} is a Brownian motion. Let {an}, {a′n}, {sn}, {s′n} be

sequences of non-decreasing real positive numbers. If an ∼ a′n, sn ∼ s′n and an, sn → ∞, then

we have

anW (s2n)− a′nW ((s′n)
2)

ansn
√
log log sn

−→ 0 a.s.

and

sup
1≤k≤n

∣∣∣akW (s2k)− a′kW ((s′k)
2)
∣∣∣

ansn

p−→ 0.

Lemma 4.2. Assume that {W (t), t ≥ 0} is a Brownian motion. If 0 < p ≤ 1, then we have

1√
n

sup
0≤t≤n

∣∣∣[t]p−1W ([t]3−2p)− tp−1W (t3−2p)
∣∣∣ −→ 0 a.s.

Proof of Theorem 1.1. In the proof, we shall apply the martingale version of the Skorohod

embedding theorem which is successfully used in [8]. For n ≥ 1, we let

M ′
n =

Mn√
m2 − b21

.

By (5), {M ′
n,Fn, n ≥ 1} is a martingale. By applying the martingale version of the Skorohod

embedding theorem (see e.g. Theorem 14.16 in [12], we can redefine {M ′
n,Fn, n ≥ 1} on a

new probability space such that there exists a Brownian motion {B(t), t ≥ 0} with associated

stopping times 0 = T0 ≤ T1 ≤ · · · such that M ′
n = B(Tn) a.s. for all n ≥ 1 and

E(∆Tn|Gn−1) = E((∆M ′
n)

2|Fn−1), E((∆Tn)
2|Gn−1) ≤ 4E((∆M ′

n)
4|Fn−1), n ≥ 1, (16)

where ∆Tn = Tn − Tn−1, ∆M ′
n = M ′

n −M ′
n−1 and Gn = σ(B(t), t ≤ Tn) for any n ≥ 1. By

applying Lemma 3.3, we have
n∑

k=1

E((∆M ′
k)

2|Fk−1) ∼ s2n a.s.

Hence it follows from (16) that
n∑

k=1

E(∆Tk|Gk−1) ∼ s2n a.s. (17)

For 1 ≤ k ≤ n, we denote ∆T ′
k = ∆Tk − E(∆Tk|Gk−1). Using (12) and (16), then for some

C1 > 0, we have

E((∆T ′
k)

2|Gk−1) = E((∆Tk)
2|Gk−1)− E2(∆Tk|Gk−1) ≤

C1||X1||∞
a4k

a.s.

We conclude from (13) that
∞∑
k=1

E
( (∆T ′

k)
2

s4k

)
≤

∞∑
k=1

C2
1 ||X1||2∞
(aksk)4

< ∞.
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By Theorem 2.18 of [11], we obtain
∞∑
k=1

∆T ′
k

s2k
< ∞ a.s.

Then, by applying Kronecker’s lemma, we have

1

s2n

n∑
k=1

∆T ′
k → 0 a.s.

This together with (17) implies that

Tn =
n∑

k=1

∆Tk ∼ s2n a.s.

Then from the proof of Theorem 14.6 in [12], we can obtain that

B(Tn)−B(s2n) = o(
√

s2n log log sn) a.s.

and

s−1
n sup

0≤t≤1

∣∣∣B(T[nt])−B(s2[nt])
∣∣∣ p−→ 0.

Since
Šn − nb1√
m2 − b21

− anB(s2n) = anM
′
n − anB(s2n) = an(B(Tn)−B(s2n)) a.s.,

we have
Šn − nb1√
m2 − b21

− anB(s2n) = o(ansn
√
log log sn) a.s. (18)

and

(ansn)
−1 sup

0≤t≤1

∣∣∣∣∣ Š[nt] − [nt]b1√
m2 − b21

− a[nt]B(s2[nt])

∣∣∣∣∣ p−→ 0.

By applying (13), (18) and Lemma 4.1, we obtain

1√
n log log n

( Šn − nb1√
m2 − b21

− np−1

Γ(p)
B
( (Γ(p))2
3− 2p

n3−2p
))

−→ 0 a.s. (19)

For 0 ≤ t ≤ 1, we define

W (t) =

√
3− 2p

Γ(p)
B
( (Γ(p))2
3− 2p

t
)
.

By applying the rescaling property, {W (t), t ≥ 0} is a standard Brownian motion. By rewriting

(19), we obtain

1√
n log log n

(√
3− 2p

m2 − b21

(
Šn − nb1

)
− np−1W (n3−2p)

)
−→ 0 a.s.

This implies that

1√
n log log n

sup
0≤t≤1

∣∣∣∣∣
√

3− 2p

m2 − b21

(
Š[nt] − [nt]b1

)
− (nt)p−1W ((nt)3−2p)

∣∣∣∣∣ −→ 0 a.s. (20)

Similarly, we obtain that

1√
n

sup
0≤t≤1

∣∣∣∣∣
√

3− 2p

m2 − b21

(
Š[nt] − [nt]b1

)
− (nt)p−1W ((nt)3−2p)

∣∣∣∣∣ p−→ 0. (21)

Now Theorem 1.1 follows from (20), (21) and Lemma 4.2.
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Proof of Corollary 1.1. By applying Theorem 1.1, we have

sup
0≤t≤1

∣∣∣∣∣
√

3− 2p

m2 − b21

Š[nt] − [nt]b1√
n

− np−3/2tp−1W ((nt)3−2p)

∣∣∣∣∣ p−→ 0.

Since {np−3/2W ((nt)3−2p), t ≥ 0} is also a Brownian motion, we have

{np−3/2tp−1W ((nt)3−2p), t ≥ 0} d
= {tp−1W (t3−2p), t ≥ 0}.

Then we can get (4). Similarly, (3) follows from Theorem 1.1 and the law of the iterated

logarithm for Brownian motion. The proof of Corollary 1.1 is completed.
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[7] C F Coletti, R Gava, G M Schütz. Central limit theorem and related results for the elephant

random walk, Journal of mathematical physics, 2017, 58(5), https://doi.org/10.1063/1.4983566.
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