Strong invariance principle for a counterbalanced random walk

TAN Hui-qun¹ HU Zhi-shui¹ DONG Liang^{2,*}

Abstract. We study a counterbalanced random walk $\check{S}_n = \check{X}_1 + \cdots + \check{X}_n$, which is a discrete time non-Markovian process and \check{X}_n are given recursively as follows. For $n \geq 2$, \check{X}_n is a new independent sample from some fixed law $\mu \neq 0$ with a fixed probability p, and $\check{X}_n = -\check{X}_{v(n)}$ with probability 1 - p, where v(n) is a uniform random variable on $\{1, \cdots, n-1\}$. We apply martingale method to obtain a strong invariance principle for \check{S}_n .

§1 Introduction

Random walks with long memory have been widely used in applied mathematics, theoretical physics, computer sciences and econometrics. One of them is the so-called elephant random walk introduced by Schütz and Trimper [15]. It is a discrete time random walk on \mathbb{Z} whose increments at each step depend on the whole history of the process. Let $p, q \in [0, 1]$ be fixed constants. At time zero, an elephant starts at the origin. At time n = 1, the elephant moves to the right with probability q and to the left with probability 1 - q. At any time $n \ge 2$, the elephant remembers one step chosen uniformly at random from the past, with probability p the elephant repeats it, and with probability 1 - p it makes a step in the opposite direction.

A wide range of literature is available on the asymptotic behaviour of the elephant random walk and its variants, see, for instance, [1], [2], [4], [5], [6], [7], [8], [13]. The memory parameter p influences the limiting distribution of the elephant random walk ([9], [14], [15]). By using the connection of the elephant random walk to Pólya-type urns, Baur and Bertoin [1] derived the limiting process of the elephant random walk. In the diffusive regime ($0 \le p < 3/4$) and the critical regime (p = 3/4), the limiting process turns out to be Gaussian; in the superdiffusive regime (3/4), the limit is not Gaussian. Coletti, Gava and Schütz ([7], [8]) studied thecentral limit theorem and strong invariance principle of the elephant random walk.

MR Subject Classification: 60F17, 60F05.

 $Keywords:\ random\ walk,\ martingale,\ invariance\ principle.$

Received: 2022-03-22. Revised: 2022-06-22.

Digital Object Identifier (DOI): https://doi.org/10.1007/s11766-024-4718-z.

Supported by the National Natural Science Foundation of China(11671373).

^{*}Corresponding author.

In this paper, we turn our attention to a counterbalanced random walk which is a generalization of the elephant random walk and was introduced in [4]. Let $(X_n)_{n\geq 1}, (\varepsilon_n)_{n\geq 2}$ and $(v(n))_{n\geq 2}$ be random variables which are independent of each other, where $(X_n)_{n\geq 1}$ are i.i.d. random variables with some given non-degenerate law μ , $\varepsilon_1 = 1$ and $\varepsilon_2, \varepsilon_3, ...$ are i.i.d. Bernoulli random variables with parameter $p \in [0, 1]$, and for each $n \geq 2$, v(n) has the uniform distribution $\{1, \dots, n-1\}$. We construct a counterbalanced sequence (\check{X}_n) by interpreting each $\{\varepsilon_n = 0\}$ as a counterbalancing event and each $\{\varepsilon_n = 1\}$ as an innovation event. Denote the number of innovations after n steps i(n) by

$$i(n) = \sum_{j=1}^{n} \varepsilon_j$$
 for $n \ge 1$.

Let $\check{X}_1 = X_1$ and for $n \ge 2$, (\check{X}_n) be defined recursively

$$\check{X}_n = \begin{cases} -\check{X}_{v(n)}, & \text{if } \varepsilon_n = 0, \\ X_{i(n)}, & \text{if } \varepsilon_n = 1. \end{cases}$$
(1)

Then we get the counterbalanced random walk:

 $\check{S}_n = \check{X}_1 + \dots + \check{X}_n, \qquad n \in \mathbb{N}.$

Bertoin [4] obtained the law of large numbers and the central limit theorem for \check{S}_n by applying a coupling with a reinforcement algorithm due to H. A. Simon and properties of random recursive trees. Bertenghi and Rosales-Ortiz [3] studied the joint weak invariant principles via a method of martingale functional central limit theorem. The main purpose of our work is to establish a strong invariance principle for \check{S}_n . As a by-product of our main result Theorem 1.1, we get the law of the iterated logarithm and weak convergence on D[0, 1] for the counterbalanced random walk.

For any $k \in \mathbb{N}$, we write

$$m_{k} = \int_{\mathbb{R}} x^{k} \mu(dx)$$

for the moment of order k of μ whenever $\int_{\mathbb{R}} |x|^{k} \mu(dx) < \infty$. Let
 $b_{1} = \frac{p}{2-p}m_{1},$ (2)

then we observe that $m_2 - b_1^2 > 0$.

Our main results are stated as follows.

Theorem 1.1. Suppose that $p \in (0,1]$ and $||X_1||_{\infty} < \infty$. Then we can redefine $\{\check{S}_n, n \ge 1\}$ on a new probability space such that there exists a Brownian motion $\{W(t), t \ge 0\}$ satisfying that

$$\frac{1}{\sqrt{n\log\log n}} \sup_{0 \le t \le 1} \left| \sqrt{\frac{3-2p}{m_2-b_1^2}} \left(\check{S}_{[nt]} - [nt]b_1 \right) - (nt)^{p-1} W((nt)^{3-2p}) \right| \longrightarrow 0 \quad a.s.$$

and

$$\frac{1}{\sqrt{n}} \sup_{0 \le t \le 1} \left| \sqrt{\frac{3 - 2p}{m_2 - b_1^2}} \left(\check{S}_{[nt]} - [nt]b_1 \right) - (nt)^{p-1} W((nt)^{3-2p}) \right| \xrightarrow{p} 0$$

Corollary 1.1. Suppose that $p \in (0,1]$ and $||X_1||_{\infty} < \infty$.

(a). We have the law of the iterated logarithm:

$$\limsup_{n \to \infty} \frac{|\check{S}_n - nb_1|}{\sqrt{2n \log \log n}} = \sqrt{\frac{m_2 - b_1^2}{3 - 2p}} \qquad a.s.$$
(3)

(b). Let $\{W(t), t \ge 0\}$ be a Brownian motion, then we have weak convergence on D[0,1] with respect to the uniform topology:

$$\sqrt{\frac{3-2p}{m_2-b_1^2}}\frac{\check{S}_{[nt]}-[nt]b_1}{\sqrt{n}} \Longrightarrow t^{p-1}W(t^{3-2p}).$$
(4)

Remark 1.1. In Theorem 1.1 and Corollary 1.1, we require the restrictive condition $||X_1||_{\infty} < \infty$ instead of $\mathbb{E}(X_1^2) < \infty$ for technical reasons in the proof. In order to weaken the condition $||X_1||_{\infty} < \infty$, one should use the truncation method. For weak limit theorems including central limit theorem and functional central limit theorem, Bertenghi and Rosales-Ortiz [3] used a special truncation technique to obtain the results in the centered case(see section 4.2 in [3]). But the truncation technique in [3] is not applicable to strong limit theorems. To our knowledge, there was no strong limit theorem for \check{S}_n except that Bertenghi and Rosales-Ortiz [3] obtained the strong law of large numbers under the condition $||X_1||_{\infty} < \infty$. It is an open question to get some strong limit theorems for \check{S}_n without the condition $||X_1||_{\infty} < \infty$.

The rest of this paper is organised as follows: In section 2 we introduce a martingale associated with the counterbalanced random walk. We obtain the result about asymptotic variance of the partial sum process of the counterbalanced random walk \check{S}_n . Section 3 is devoted to several preliminaries. We shall present some key results about strong law of large numbers of \hat{S}_n , \check{S}_n and angle bracket process $\langle M \rangle_n$. Finally, in section 4 we apply the martingale method to obtain a strong invariance principle for \check{S}_n .

§2 A martingale associated with the counterbalanced random walk

Set $\gamma_n = \frac{n+p-1}{n}$ and $a_1 = 1$. For all $n \ge 2$, we define $a_n = \prod_{k=1}^{n-1} \gamma_k = \frac{\Gamma(n+p-1)}{\Gamma(n)\Gamma(p)},$

where $\Gamma(\cdot)$ stands for the Euler gamma function. Denote by $\mathscr{F}_n = \sigma(\{(X_{i(j)}, \varepsilon_j, v(j)) : 1 \le j \le n\})$ and

$$M_n = \frac{\check{S}_n - nb_1}{a_n},\tag{5}$$

where b_1 is defined in (2). If $\int_{\mathbb{R}} |x| \mu(dx) < \infty$, then it follows from the definition (1) that for any $n \ge 1$,

$$\mathbb{E}(\check{X}_{n+1}|\mathscr{F}_n) = p\mathbb{E}(X_{i(n)+1}|\mathscr{F}_n) - (1-p)\frac{X_1 + \dots + X_n}{n} = pm_1 - (1-p)\frac{S_n}{n}.$$
 (6)

This implies that $\mathbb{E}(\check{S}_{n+1}|\mathscr{F}_n) = pm_1 + \gamma_n \check{S}_n$ and then

$$\mathbb{E}(\check{S}_{n+1}|\mathscr{F}_n) - (n+1)b_1 = \gamma_n(\check{S}_n - nb_1).$$

$$\tag{7}$$

TAN Hui-qun, et al.

Hence $\mathbb{E}(M_{n+1}|\mathscr{F}_n) = M_n$, i.e. M_n is a martingale with respect to the filtration \mathscr{F}_n . Note that $a_n \sim n^{p-1}/\Gamma(p)$. Then by applying (7) and recalling $\mathbb{E}(\check{S}_1) = m_1$, we obtain that

$$\frac{\mathbb{E}(\check{S}_n)}{n} \to b_1 \qquad \text{as} \quad n \to \infty.$$

Proposition 2.1. Assume that $\int_{\mathbb{R}} |x|^2 \mu(dx) < \infty$, then

$$\frac{\operatorname{Var}(\check{S}_n)}{n} \to \frac{m_2 - b_1^2}{3 - 2p}.$$

Proof. Similar arguments as in (6) yields that

$$\mathbb{E}(\check{X}_{n+1}^2|\mathscr{F}_n) = pm_2 + (1-p)\frac{V_n}{n}$$

where $V_n = \sum_{i=1}^n \check{X}_i^2$. Thus,

$$\mathbb{E}(V_{n+1}) - (n+1)m_2 = \frac{n+1-p}{n} \big(\mathbb{E}(V_n) - nm_2 \big).$$

With the initial condition $\mathbb{E}(\check{X}_1^2) = m_2$, we deduce that $\mathbb{E}(V_n) = m_2 n$. By applying (6), we have

$$\mathbb{E}(\check{S}_{n+1}^2|\mathscr{F}_n) = \check{S}_n^2 + 2\check{S}_n\mathbb{E}(\check{X}_{n+1}|\mathscr{F}_n) + \mathbb{E}(\check{X}_{n+1}^2|\mathscr{F}_n)$$
$$= \check{S}_n^2 + 2\check{S}_n\left(pm_1 - \frac{1-p}{n}\check{S}_n\right) + \mathbb{E}(\check{X}_{n+1}^2|\mathscr{F}_n)$$
$$= \frac{n+2p-2}{n}\check{S}_n^2 + 2pm_1\check{S}_n + \mathbb{E}(\check{X}_{n+1}^2|\mathscr{F}_n).$$

Hence

$$\mathbb{E}(\check{S}_{n+1}^2) = \frac{n+2p-2}{n} \mathbb{E}(\check{S}_n^2) + 2pm_1 \mathbb{E}(\check{S}_n) + m_2.$$

It follows from (7) that

$$\mathbb{E}^{2}(\check{S}_{n+1}) = \frac{n+2p-2}{n} \mathbb{E}^{2}(\check{S}_{n}) + \left(\frac{p-1}{n} \mathbb{E}(\check{S}_{n}) + pm_{1}\right)^{2} + 2pm_{1} \mathbb{E}(\check{S}_{n}).$$

By letting

$$\gamma'_n = \frac{n+2p-2}{n} \quad \text{and} \quad \alpha_n = m_2 - \left(\frac{p-1}{n}\mathbb{E}(\check{S}_n) + pm_1\right)^2,$$

we conclude that $\operatorname{Var}(\check{S}_{n+1}) = \gamma'_n \operatorname{Var}(\check{S}_n) + \alpha_n$. Therefore,

$$\operatorname{Var}(\check{S}_{n+1}) = \operatorname{Var}(\check{S}_1) \prod_{k=1}^n \gamma'_k + \sum_{j=1}^{n-1} \prod_{k=j+1}^n \gamma'_k \alpha_j + \alpha_n.$$
(8)

Using the fact that

$$\sum_{k=1}^{n} \frac{1}{k} = \log n + \gamma + O\left(\frac{1}{n}\right)$$

where γ is Euler's constant, we obtain

$$\sum_{j=[n^{1/2}]}^{n-1} \prod_{k=j+1}^{n} \frac{k+2p-2}{k}$$
$$= \sum_{j=[n^{1/2}]}^{n-1} \exp\left(\sum_{k=j+1}^{n} \log\left(1 + \frac{2p-2}{k}\right)\right)$$
$$= \sum_{j=[n^{1/2}]}^{n-1} \exp\left(\sum_{k=j+1}^{n} \left(\frac{2p-2}{k} + O\left(\frac{1}{k^2}\right)\right)\right)$$
$$= \sum_{j=[n^{1/2}]}^{n-1} \exp\left((2p-2)\left(\log\frac{n}{j} + O\left(\frac{1}{j}\right)\right) + O\left(\frac{1}{j}\right)\right)$$

$$= \sum_{j=[n^{1/2}]}^{n-1} \exp\left((2p-2)\log\frac{n}{j}\right) + O(n^{1/2}).$$

Noting that

$$\sum_{j=[n^{1/2}]}^{n-1} \exp\left((2p-2)\left(\log\frac{n}{j}\right)\right) = \sum_{j=[n^{1/2}]}^{n-1} \left(\frac{j}{n}\right)^{2-2p} \sim \frac{n}{3-2p}$$

and

$$\sum_{j=1}^{[n^{1/2}]-1} \prod_{k=j+1}^{n} \frac{k+2p-2}{k} = O(n^{1/2}),$$

we have

$$\frac{1}{n}\sum_{j=1}^{n-1}\prod_{k=j+1}^{n}\gamma'_{k} = \frac{1}{n}\sum_{j=1}^{[n^{1/2}]-1}\prod_{k=j+1}^{n}\frac{k+2p-2}{k} + \frac{1}{n}\sum_{j=[n^{1/2}]}^{n-1}\prod_{k=j+1}^{n}\frac{k+2p-2}{k} \to \frac{1}{3-2p}$$

This together with the fact that $\alpha_n \to m_2 - b_1^2$ implies that

$$\frac{1}{n+1} \sum_{j=1}^{n-1} \prod_{k=j+1}^{n} \gamma'_k \alpha_k + \frac{\alpha_n}{n+1} \to \frac{m_2 - b_1^2}{3 - 2p}.$$
(9)

Note that

$$\prod_{k=1}^n \gamma_k' = \frac{\Gamma(n+2p-1)}{\Gamma(n+1)\Gamma(2p-1)} \sim \frac{n^{2p-2}}{\Gamma(2p-1)}$$

which yields

$$\frac{\operatorname{Var}(\check{S}_1)}{n+1} \prod_{k=1}^n \gamma'_k \to 0.$$
(10)

We can conclude from (8)-(10) that

$$\frac{\operatorname{Var}(\check{S}_{n+1})}{n+1} \to \frac{m_2 - b_1^2}{3 - 2p}$$

The proof of Proposition 2.1 is completed.

§3 Preliminaries

Our analysis relies on a natural coupling of the counterbalanced random walk with the step reinforced random walk. Specifically, consider the same sequences $(X_n)_{n\geq 1}$, $(\varepsilon_n)_{n\geq 1}$ and $(v(n))_{n\geq 2}$ in (1). The step reinforced random walk is defined recursively

$$\hat{X}_n = \begin{cases} \hat{X}_{v(n)}, & \text{if } \varepsilon_n = 0, \\ X_{i(n)}, & \text{if } \varepsilon_n = 1. \end{cases}$$
(11)

Then we get the step reinforced random walk:

$$\hat{S}_n = \hat{X}_1 + \dots + \hat{X}_n, \qquad n \in \mathbb{N}$$

The following Lemma 3.1 can be found in Bertenghi and Rosales-Ortiz [3] (Proposition 2.5, Lemmas 2.2 and 5.1). It is a law of large numbers of the step reinforced random walk, which will be used in the proof of Lemma 3.3.

Lemma 3.1. Suppose that $||X_1||_{\infty} < \infty$.

374

TAN Hui-qun, et al.

(a) For $p \in (0, 1/2)$, we have

$$\frac{S_n - nm_1}{n^{1-p}} \to W \qquad a.s. \ and \ in \ L^2(\mathbb{P}),$$

where $W \in L^2(\mathbb{P})$ is a non-degenerate random variable.

(b) For p = 1/2, we have

$$\frac{\hat{S}_n - nm_1}{\sqrt{n}\log n} \to 0 \qquad a.s$$

(c) For $p \in (1/2, 1)$, we have

$$\frac{\hat{S}_n - nm_1}{n^p} \to 0 \qquad a.s.$$

Remark 3.1. In the case p = 1, i.e. when no reinforcement events occur, \hat{S}_n is just the partial sum of i.i.d. random variables $(X_n)_{n\geq 1}$ with given law μ . Hence, for p = 1, it follows from the classical law of large numbers that $(\hat{S}_n - nm_1)/n \to 0$ a.s.

Lemma 3.2. Let $p \in (0,1]$ and suppose that $||X_1||_{\infty} < \infty$. We have

$$\frac{S_n}{n} \to b_1 \qquad a.s.$$

Remark 3.2. For the weak law of large numbers, Bertoin [4] obtained $\check{S}_n/n \to b_1$ in probability under the assumption that $\mathbb{E}(|X_1|) < \infty$ (see Proposition 1.1 in [4]).

Proof. Note that

$$\begin{aligned} |\Delta M_k| &= \left| \frac{\check{S}_k - kb_1}{a_k} - \frac{\check{S}_{k-1} - (k-1)b_1}{a_{k-1}} \right| \\ &\le \left| \frac{\check{X}_k - b_1}{a_k} + \frac{\check{S}_{k-1} - (k-1)b_1}{k-1} \frac{1-p}{a_k} \right| \le \frac{C||X_1||_{\infty}}{a_k}. \end{aligned}$$
(12)

Then

$$\sum_{k=1}^{\infty} \frac{a_k^2}{k^2} \mathbb{E}(\Delta M_k^2 | \mathscr{F}_{k-1}) < \infty \qquad \text{a.s.}$$

By Theorem 2.17 of [11], we obtain that $\sum_{k=1}^{\infty} a_k \Delta M_k / k$ converges almost surely. By applying Kronecker's Lemma and $n/a_n \uparrow \infty$, we have

$$\frac{\check{S}_n - nb_1}{n} = \frac{a_n M_n}{n} = \frac{a_n}{n} \sum_{k=1}^n \Delta M_k \to 0 \qquad \text{a.s.}$$

The proof of Lemma 3.2 is completed.

Let M_n be defined in (5). Define

$$\langle M \rangle_n = \sum_{k=1}^n \mathbb{E}(\Delta M_k^2 | \mathscr{F}_{k-1}), \quad n \ge 1,$$

where $\{\Delta M_k, k \ge 1\}$ is the martingale difference sequence, which is defined by $\Delta M_1 = M_1$, and for $k \ge 2$, $\Delta M_k = M_k - M_{k-1}$. We set

$$s_n^2 := \sum_{k=1}^n \frac{1}{a_k^2}.$$

Then we have

$$a_n \sim \frac{n^{p-1}}{\Gamma(p)}, \quad s_n^2 \sim \frac{\Gamma^2(p)}{3-2p} n^{3-2p} \quad \text{and} \quad s_n a_n \sim \sqrt{\frac{n}{3-2p}}.$$
 (13)

Lemma 3.3. Let $p \in (0,1]$ and suppose that $||X_1||_{\infty} < \infty$. Then

$$\frac{\langle M \rangle_n}{s_n^2} \to m_2 - b_1^2 \qquad a.s.$$

Proof. Note that

$$\Delta M_n = \frac{\check{X}_n - b_1}{a_n} + \frac{1 - p}{n + p - 2} \frac{\check{S}_{n-1} - (n-1)b_1}{a_{n-1}},$$

and, by Lemma 3.2 and $a_n/a_{n-1} \rightarrow 1$,

$$\frac{1-p}{n+p-2}\frac{\check{S}_{n-1}-(n-1)b_1}{a_{n-1}} = o(a_n^{-1}) \qquad \text{a.s.}$$

We obtain that

$$\mathbb{E}((\Delta M_n)^2|\mathscr{F}_{n-1}) = \frac{1}{a_n^2} \mathbb{E}((\check{X}_n - b_1)^2|\mathscr{F}_{n-1}) + o(a_n^{-2}) \mathbb{E}(\check{X}_n - b_1|\mathscr{F}_{n-1}) + o(a_n^{-2}) \quad \text{a.s.} \quad (14)$$

By (6) and Lemma 3.2, we have

$$\mathbb{E}(\check{X}_n - b_1 | \mathscr{F}_{n-1}) = pm_1 - (1-p)\frac{S_n}{n} - b_1 \to 0 \qquad \text{a.s.},$$
(15)

and similarly,

$$\begin{split} \mathbb{E}((\check{X}_n - b_1)^2 | \mathscr{F}_{n-1}) &= \mathbb{E}(\check{X}_n^2 | \mathscr{F}_{n-1}) - 2b_1 \mathbb{E}(\check{X}_n - b_1 | \mathscr{F}_{n-1}) - b_1^2 \\ &= pm_2 - b_1^2 + (1-p) \frac{V_{n-1}}{n-1} + o(1) \quad \text{a.s.}, \end{split}$$

where

$$V_{n-1} = \sum_{k=1}^{n-1} \check{X}_k^2 = \sum_{k=1}^{n-1} \hat{X}_n^2.$$

Note that $(\hat{X}_n^2)_{n\geq 1}$ is also a step reinforced random walk which can be defined in (11) by replacing $(X_n)_{n\geq 1}$ with $(X_n^2)_{n\geq 1}$. It follows from Lemma 3.1 and Remark 3.1 that $V_{n-1}/(n-1) \rightarrow m_2$ a.s. Hence

$$\mathbb{E}((\check{X}_n - b_1)^2 | \mathscr{F}_{n-1}) \to m_2 - b_1^2 \qquad \text{a.s.}$$

This together with (14) and (15) implies that

$$a_n^2 \mathbb{E}((\Delta M_n)^2 | \mathscr{F}_{n-1}) \to m_2 - b_1^2$$
 a.s.

By noting that

$$s_n^2 = \sum_{k=1}^n \frac{1}{a_k^2} \sim \frac{\Gamma^2(p)}{3 - 2p} n^{3 - 2p} \to \infty$$

and applying Toeplitz Lemma, we conclude that

$$\frac{\langle M \rangle_n}{s_n^2} = \frac{1}{s_n^2} \sum_{k=1}^n \frac{a_k^2 \mathbb{E}((\Delta M_k)^2 | \mathscr{F}_{k-1})}{a_k^2} \to m_2 - b_1^2 \qquad \text{a.s}$$

The proof of Lemma 3.3 is completed.

376

§4 Proof of main results

Before presenting the proof of Theorem 1.1, we first introduce two lemmas which are minor modifications of Lemmas 1 and 2 in [10]. The detailed proofs are omitted here.

Lemma 4.1. Assume that $\{W(t), t \ge 0\}$ is a Brownian motion. Let $\{a_n\}, \{a'_n\}, \{s_n\}, \{s'_n\}$ be sequences of non-decreasing real positive numbers. If $a_n \sim a'_n, s_n \sim s'_n$ and $a_n, s_n \to \infty$, then we have

$$\frac{a_n W(s_n^2) - a_n' W((s_n')^2)}{a_n s_n \sqrt{\log \log s_n}} \longrightarrow 0 \quad a.s.$$

and

$$\frac{\sup_{1\le k\le n} \left| a_k W(s_k^2) - a'_k W((s'_k)^2) \right|}{a_n s_n} \xrightarrow{p} 0.$$

Lemma 4.2. Assume that $\{W(t), t \ge 0\}$ is a Brownian motion. If 0 , then we have

$$\frac{1}{\sqrt{n}} \sup_{0 \le t \le n} \left| [t]^{p-1} W([t]^{3-2p}) - t^{p-1} W(t^{3-2p}) \right| \longrightarrow 0 \quad a.s.$$

Proof of Theorem 1.1. In the proof, we shall apply the martingale version of the Skorohod embedding theorem which is successfully used in [8]. For $n \ge 1$, we let

$$M_n' = \frac{M_n}{\sqrt{m_2 - b_1^2}}.$$

By (5), $\{M'_n, \mathscr{F}_n, n \ge 1\}$ is a martingale. By applying the martingale version of the Skorohod embedding theorem (see e.g. Theorem 14.16 in [12], we can redefine $\{M'_n, \mathscr{F}_n, n \ge 1\}$ on a new probability space such that there exists a Brownian motion $\{B(t), t \ge 0\}$ with associated stopping times $0 = T_0 \le T_1 \le \cdots$ such that $M'_n = B(T_n)$ a.s. for all $n \ge 1$ and

 $\mathbb{E}(\Delta T_n | \mathscr{G}_{n-1}) = \mathbb{E}((\Delta M'_n)^2 | \mathscr{F}_{n-1}), \quad \mathbb{E}((\Delta T_n)^2 | \mathscr{G}_{n-1}) \le 4\mathbb{E}((\Delta M'_n)^4 | \mathscr{F}_{n-1}), \quad n \ge 1, \quad (16)$ where $\Delta T_n = T_n - T_{n-1}, \quad \Delta M'_n = M'_n - M'_{n-1}$ and $\mathscr{G}_n = \sigma(B(t), t \le T_n)$ for any $n \ge 1$. By applying Lemma 3.3, we have

$$\sum_{k=1}^{n} \mathbb{E}((\Delta M'_{k})^{2}|\mathscr{F}_{k-1}) \sim s_{n}^{2} \quad \text{ a.s}$$

Hence it follows from (16) that

$$\sum_{k=1}^{n} \mathbb{E}(\Delta T_k | \mathscr{G}_{k-1}) \sim s_n^2 \quad \text{a.s.}$$
(17)

For $1 \leq k \leq n$, we denote $\Delta T'_k = \Delta T_k - \mathbb{E}(\Delta T_k | \mathscr{G}_{k-1})$. Using (12) and (16), then for some $C_1 > 0$, we have

$$\mathbb{E}((\Delta T'_k)^2 | \mathscr{G}_{k-1}) = \mathbb{E}((\Delta T_k)^2 | \mathscr{G}_{k-1}) - \mathbb{E}^2(\Delta T_k | \mathscr{G}_{k-1}) \le \frac{C_1 ||X_1||_{\infty}}{a_k^4} \quad \text{a.s}$$

We conclude from (13) that

$$\sum_{k=1}^{\infty} \mathbb{E}\Big(\frac{(\Delta T'_k)^2}{s_k^4}\Big) \le \sum_{k=1}^{\infty} \frac{C_1^2 ||X_1||_{\infty}^2}{(a_k s_k)^4} < \infty.$$

By Theorem 2.18 of [11], we obtain

$$\sum_{k=1}^{\infty} \frac{\Delta T'_k}{s_k^2} < \infty \qquad \text{a.s.}$$

Then, by applying Kronecker's lemma, we have

$$\frac{1}{s_n^2} \sum_{k=1}^n \Delta T'_k \to 0 \qquad \text{a.s.}$$

This together with (17) implies that

$$T_n = \sum_{k=1}^n \Delta T_k \sim s_n^2 \qquad \text{a.s.}$$

Then from the proof of Theorem 14.6 in [12], we can obtain that

$$B(T_n) - B(s_n^2) = o(\sqrt{s_n^2 \log \log s_n}) \quad \text{a.s.}$$

and

$$s_n^{-1} \sup_{0 \le t \le 1} \left| B(T_{[nt]}) - B(s_{[nt]}^2) \right| \stackrel{p}{\longrightarrow} 0.$$

Since

$$\frac{\check{S}_n - nb_1}{\sqrt{m_2 - b_1^2}} - a_n B(s_n^2) = a_n M_n' - a_n B(s_n^2) = a_n (B(T_n) - B(s_n^2)) \quad \text{a.s.},$$

we have

$$\frac{\check{S}_n - nb_1}{\sqrt{m_2 - b_1^2}} - a_n B(s_n^2) = o(a_n s_n \sqrt{\log \log s_n}) \quad \text{a.s.}$$
(18)

and

$$(a_n s_n)^{-1} \sup_{0 \le t \le 1} \left| \frac{\check{S}_{[nt]} - [nt]b_1}{\sqrt{m_2 - b_1^2}} - a_{[nt]} B(s_{[nt]}^2) \right| \stackrel{p}{\longrightarrow} 0.$$

By applying (13), (18) and Lemma 4.1, we obtain

$$\frac{1}{\sqrt{n\log\log n}} \left(\frac{S_n - nb_1}{\sqrt{m_2 - b_1^2}} - \frac{n^{p-1}}{\Gamma(p)} B\left(\frac{(\Gamma(p))^2}{3 - 2p} n^{3-2p} \right) \right) \longrightarrow 0 \quad \text{a.s.}$$
(19)

For $0 \le t \le 1$, we define

$$W(t) = \frac{\sqrt{3-2p}}{\Gamma(p)} B\left(\frac{(\Gamma(p))^2}{3-2p}t\right).$$

By applying the rescaling property, $\{W(t), t \ge 0\}$ is a standard Brownian motion. By rewriting (19), we obtain

$$\frac{1}{\sqrt{n\log\log n}} \left(\sqrt{\frac{3-2p}{m_2-b_1^2}} \left(\check{S}_n - nb_1 \right) - n^{p-1} W(n^{3-2p}) \right) \longrightarrow 0 \quad \text{a.s.}$$

This implies that

$$\frac{1}{\sqrt{n\log\log n}} \sup_{0 \le t \le 1} \left| \sqrt{\frac{3-2p}{m_2-b_1^2}} \left(\check{S}_{[nt]} - [nt]b_1 \right) - (nt)^{p-1} W((nt)^{3-2p}) \right| \longrightarrow 0 \quad \text{a.s.}$$
(20)

Similarly, we obtain that

$$\frac{1}{\sqrt{n}} \sup_{0 \le t \le 1} \left| \sqrt{\frac{3 - 2p}{m_2 - b_1^2}} \left(\check{S}_{[nt]} - [nt]b_1 \right) - (nt)^{p-1} W((nt)^{3-2p}) \right| \xrightarrow{p} 0.$$
(21)
m 1.1 follows from (20), (21) and Lemma 4.2.

Now Theorem 1.1 follows from (20), (21) and Lemma 4.2.

Vol. 39, No. 2

TAN Hui-qun, et al.

Proof of Corollary 1.1. By applying Theorem 1.1, we have

$$\sup_{0 \le t \le 1} \left| \sqrt{\frac{3 - 2p}{m_2 - b_1^2}} \frac{\check{S}_{[nt]} - [nt]b_1}{\sqrt{n}} - n^{p - 3/2} t^{p - 1} W((nt)^{3 - 2p}) \right| \stackrel{p}{\longrightarrow} 0.$$

Since $\{n^{p-3/2}W((nt)^{3-2p}), t \ge 0\}$ is also a Brownian motion, we have

$$\{n^{p-0/2}t^{p-1}W((nt)^{o-2p}), t \ge 0\} = \{t^{p-1}W(t^{o-2p}), t \ge 0\}.$$

Then we can get (4). Similarly, (3) follows from Theorem 1.1 and the law of the iterated logarithm for Brownian motion. The proof of Corollary 1.1 is completed. \Box

Acknowledgement

We thank two referees for their helpful comments that have led to many improvements of this paper.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

- E Baur, J Bertoin. Elephant Random Walks and their connection to Pólya-type urns, Physical Review E, 2016, https://doi.org/10.1103/PhysRevE.94.052134.
- [2] B Bercu. A martingale approach for the elephant random walk, Journal of Physics A: Mathematical and Theoretical, 2017, 51(1), https://doi.org/10.1088/1751-8121/aa95a6.
- [3] M Bertenghi, A Rosales-Ortiz. Joint invariance principles for random walks with positively and negatively reinforced steps, Journal of Statistical Physics, 2022, 189, https://doi.org/10.1007/s109 55-022-02993-5.
- [4] J Bertoin. Counterbalancing steps at random in a random walk, 2020, https://doi.org/10.48550/a rXiv.2011.14069.
- [5] J Bertoin. Scaling exponents of step-reinforced random walks, Probability Theory and Related Fields, 2021, 179(1): 295-315.
- [6] S Businger. The shark random swim, Journal of Statistical Physics, 2018, 172(3): 701-717.
- [7] C F Coletti, R Gava, G M Schütz. Central limit theorem and related results for the elephant random walk, Journal of mathematical physics, 2017, 58(5), https://doi.org/10.1063/1.4983566.
- [8] C F Coletti, R Gava, G M Schütz. A strong invariance principle for the elephant random walk, Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, https://doi.org/10.1088/1 742-5468/aa9680.
- [9] M A A Da Silva, J C Cressoni, G M Schütz, G M Viswanathan, S Trimper. Non-Gaussian propagator for elephant random walks, Physical Review E, 2013, 88(2), https://doi.org/10.1103/P hysRevE.88.022115.

- [10] Z Hu, Q Q Feng. The enhanced strong invariance principle for the elephant random walk, Communications in Statistics - Theory and Methods, 2024, 53(3): 834-847.
- [11] P Hall, C C Heyde. Martingale Limit Theory and Its Application, New York: Academic Press, 1980.
- [12] O Kallenberg. Foundations of Modern Probability, New York: Springer, 2002.
- [13] R Kürsten. Random recursive trees and the elephant random walk, Physical Review E, 2016, 93(3), https://doi.org/10.1103/PhysRevE.93.032111.
- [14] F N C Paraan, J P Esguerra. Exact moments in a continuous time random walk with complete memory of its history, Physical Review E, 2006, 74(3), https://doi.org/10.1103/PhysRevE.74.032 101.
- [15] G M Schütz, S Trimper. Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk, Phys Rev E Stat Nonlin Soft Matter Phys, 2004, 70(4), https://doi.org/10.1103/PhysRevE.70.045101.

¹International Institute of Finance, School of Management, University of Science and Technology of China, Hefei 230026, China.

²Center for Basic Teaching and Experiment, Nanjing University of Science and Technology, Jiangyin 21443, China.

 $Email: \ dongliang@njust.edu.cn$