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A unified Minorization-Maximization approach for

estimation of general mixture models

HUANG Xi-fen1,∗ LIU Deng-ge1 ZHOU Yun-peng2 ZHU Fei1

Abstract. The mixed distribution model is often used to extract information from heteroge-

neous data and perform modeling analysis. When the density function of mixed distribution is

complicated or the variable dimension is high, it usually brings challenges to the parameter es-

timation of the mixed distribution model. The application of MM algorithm can avoid complex

expectation calculations, and can also solve the problem of high-dimensional optimization by

decomposing the objective function. In this paper, MM algorithm is applied to the parameter

estimation problem of mixed distribution model. The method of assembly and decomposition is

used to construct the substitute function with separable parameters, which avoids the problems

of complex expectation calculations and the inversion of high-dimensional matrices.

§1 Introduction

Due to the existence of heterogeneity in real life data, the mixture model has been widely

applied in different fields to identify the hidden, latent classes. The books [15] did a thorough

introduction on finite mixture models and provided applications in different areas. [5] made a

summary of the early applications of both continuous mixed model and discrete mixed model.

For the continuous mixture of distributions, many recent researches in clustering adopted the

setting of Gaussian mixture by [1]. Similarly, such clustering technique can be used in the field

of computer vision, [23] applied this model to detect objects from image. In addition, there

are many other applications using different mixed distributions like gamma distributions. In

clinical practice, [11] applied the mixture of two different distributions to estimate the maximum

likelihood estimators for parameters of interest. [16] used Weibull mixture distribution to
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model the heterogeneous data. Also, the mixed exponential distribution is used to model the

loss distributions in actuarial studies [10]. For the discrete mixture of distributions, Poisson

distribution is commonly applied in different applications. [9] discussed the properties of Poisson

mixtures. Following this, [8] also developed an EM type of algorithm for parameter estimation

and provided its application on crime data. As for the computational inefficiency caused by the

complicated mixed distribution, [18] proposed the Monte Carlo sampling to avoid the numerical

problem. Also, mixed Poisson distribution can be applied for the analysis of count data [4] and

high-dimensional noisy data [6]. Also, in recent studies, the mixture model can be applied in

other fields like modeling the wind speed [21] and capturing the stock price volatility [13].

The most general way to estimate the parameters in a mixture model is EM algorithm

developed by [19] and the computer assisted mixture analysis is given by [2]. However, the

M-step is computationally inefficient when we consider complex objective functions or high-

dimensional covariates. [17] introduced an ECM algorithm which replaces the M-step with

a computationally simpler CM-step which shares similar convergence properties where each

parameter is maximized conditionally with other parameters being fixed. However, ECM cannot

deal with the general class of mixture models given complex objective functions. Since the EM

algorithm belongs to the class of MM algorithm, some researchers adopted this method to solve

the parameter estimation problem. [20] applied MM algorithm to the two-component mixture

model. For a general class of Gaussian mixture model (GMM), [14] provided an MM scheme

which had a closed form for GMM parameters and an efficient optimization scheme for latent

variables. Similarly, [7] introduced a new surrogate function for General Mixed Multinomial

Logit Models to achieve efficient estimation. However, these methods cannot be applied to the

general mixture models. Different from their approaches, [3] modified the CM-step based on the

logarithm properties which extend the ECM optimization to a more general case with various

linear constraints on parameter spaces.

The methods mentioned above do not target on the general case of mixture model. There-

fore, in order to achieve efficient estimation with general objective functions, based on the work

of [12], we decompose the objective function using [22]’s approach and apply the MM algorithm

to avoid the complex expectation calculation and achieve efficient parameter estimation. We

introduce the general MM algorithm and use the Normal, T, Gamma, Poisson and Geometric

models to illustrate the performance of our MM algorithm for both continuous and discrete

distributions by conducting simulations on the property of convergence and computational ef-

ficiency. Also, a real dataset is applied where the number of latent variables are determined

using the BIC criterion.

The paper is organized as follows. In Section 2, we give a brief overview of the principles

of Minorization-Maximization principle (MM algorithm). In Section 3, a general method for

parameter estimation of mixture models is constructed using the MM algorithm. In Section 4,

the parameter estimation of mixed Normal, T, Gamma, Poisson and Geometric distributions

are studied based on the MM algorithm. In Section 5, we illustrate the convergence properties of

the MM algorithm under mildly regular conditions. In Section 6, we apply the BIC criterion to

determine the order of the mixture distribution and perform numerical simulations. In Section
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7, we apply the MM algorithm to fit a real data case. The final discussion is in Section 8.

§2 MM algorithm

Assuming that Yobs is the observed data, ℓ(θ | Yobs) is the log-likelihood function of Yobs. The

unknown parameter is θ = (θ1, . . . , θq)
T and the corresponding maximum likelihood estimate of

θ is θ̂ = argmax ℓ(θ | Yobs). MM algorithm [24] includes a minimization step and a maximization

step. The minimization step is to construct a substitution function through a series of inequality

scaling which satisfies {
Q(θ | θ(t)) 6 ℓ(θ | Yobs)

Q(θ(t) | θ(t)) = ℓ(θ(t) | Yobs)
, (1)

where θ(t) is the approximate value of the t-th iteration of θ̂. By formula (1), the function

Q(· | θ(t)) is always below ℓ(· | Yobs), Q(· | θ(t)) is the tangent of ℓ(· | Yobs) at θ = θ(t). Then,

Q(θ | θ(t)) is the substitution function of the objective function ℓ(θ | Yobs) in the (t + 1)-th

iteration. For the maximization step, the (t + 1)-th approximation of θ̂ can be obtained by

maximizing the substitution function Q(θ | θ(t)) where θ(t+1) = argmax Q(θ | θ(t)).

§3 The MM estimation method for Mixed Model

Assuming that the random variable X comes from a mixed distribution composed of m

distributions gk(·) with a proportional πk, (k = 1, . . . ,m) where
∑m

k=1 πk = 1. The density

function of this mixed distribution can be expressed as

f(x | ν) =
m∑

k=1

πkgk(x | θk), (2)

ν = {{πk}mk=1, {θk}mk=1} ∈ Θ where Θ is the parameter space. gk(x | θk) is density function

from the k-th distribution with parameter θk. Then (2) is called m-order mixed distribution

model. Assuming that Yobs = {yi}ni=1 is the observed data from the m-order mixed distribution

model (2), the log-likelihood function can be decomposed into the following form

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πkgk(θk | yi) = ℓ0(ν) +

n1∑
i=1

ℓ1i(a
T
i hi(ν)) +

n2∑
i=1

ℓ2i(ri(ν)), (3)

where ℓ0(ν) =
∑q

i=1 ℓ0i(νi) is completely additively separable, each ℓ0i(·) is a univariate func-

tion; ℓ1i(·) is a univariate concave function, ai = (ai1, . . . , aip)
T and {hij(ν)}pi

j=1 may be non-

linear; ℓ2i(·) is a univariate convex function, and each ri(·) is a linear combination of several

low-dimensional functions. Under this setting, the objective function is decomposed into three

parts and the appropriate inequality is chosen to scale each part according to its concavity or

convexity in order to obtain the final substitution function. For mixed continuous distribution

model or mixed discrete distribution model, the log-likelihood function can be written as

ℓ(ν | Yobs) =
n∑

i=1

log(aTi hi(ν | yi)) =
n∑

i=1

ℓ1i(a
T
i hi(ν | yi)).



346 Appl. Math. J. Chinese Univ. Vol. 39, No. 2

Then we have ℓ1i(·) = log(·); ai = (ai1, . . . , aim)T and for all k = 1, . . . ,m, aik = 1; hi(ν |
yi) = (hi1(π1,ν1 | yi), . . . , him(πm,νm | yi))T , for all k = 1, . . . ,m, we have hik(πk,θk | yi) =
πkgk(yi | θk). It can be seen that ℓ(ν | Yobs) only contains the second term in (3), and the

substitution function that satisfies (1) can be obtained through Jensen’s inequality. That

Q(ν | ν(t)) =
m∑

k=1

n∑
i=1

wik(yi | ν(t)) log(πkgk(yi | θk)) + c(t),

where

wik(yi | ν(t)) = π
(t)
k

1

f(yi | ν(t))
gk(yi | θ(t)

k )

is the weight function, wik(yi | ν(t)) > 0 and
∑m

i=1 wik(yi | ν(t)) = 1, c(t) = −
∑n

i=1

∑m
i=1 wik(yi

| ν(t)) logwik(yi | ν(t)) is a constant term that does not depend on ν. To solve the maximum

likelihood estimation(MLE) of the substitution function Q(ν | ν(t)), the function Q(ν | ν(t))

can be written as

Q(ν | ν(t)) =
m∑

k=1

(
Q1k(πk | ν(t)) +Q2k(θk | ν(t))

)
+ c(t), (4)

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk

is a function of πk, and

Q2k(θ | ν(t)) =

n∑
i=1

wik(yi | ν(t)) log gk(yi | θk)

is a function of the other unknown parameters. Then, solving the MLE for Q(ν | ν(t)) is

equivalent to solving the MLE for Q1k(πk | ν(t)) and Q2k(θ | ν(t)). Then the following iterative

algorithm can be obtained.

Step 1. Let ν(0) be the initial value of ν.

Step 2. Update the estimation of πk by maximizing Q1k(πk | ν(t)). Update the estimation of

θk via maximizing Q2k(θk | ν(t)).

Step 3. Repeat step 2, until 1
|ℓ(ν(t)|Yobs)| + 1

|ℓ(ν(t+1) | Yobs)− ℓ(ν(t) | Yobs)| < ε, where ε is a

sufficiently small value.

§4 Applications

4.1 Mixed Normal Distribution

Assume that Yobs is from the m-order mixed Normal distribution with a density function of

f(x | ν) =
m∑

k=1

πk
1√
2πσ2

k

e
− (x−µk)2

2σ2
k ,

where π1, . . . , πm is the mixing ratio and ν = {{πk}mk=1, {µk}mk=1, {σk}mk=1}. Then the log-

likelihood function of Yobs is

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πk
1√
2πσ2

k

e
− (yi−µk)2

2σ2
k .
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The MLE of ν can be obtained by maximizing the log-likelihood function ℓ(ν | Yobs). Using

the MM algorithm, via (4), the objective function of the (t+ 1)-th iteration is given by

Q(ν | ν(t)) =

m∑
k=1

(
Q1k(πk | ν(t)) +Q2k(µk, σ

2
k | ν(t))

)
+ c(t), (5)

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk

is a function of πk,

Q2k(µk, σ
2
k | ν(t)) =

n∑
i=1

wik(yi | ν(t))

[
− log σ2

k

2
− (yi − µk)

2

2σ2
k

]
is a function of µk and σ2

k, c
(t) is a constant term that does not depend on ν, the weight function

wik(yi | ν(t)) = π
(t)
k

1

f(yi | ν(t))

1√
2πσ

2(t)
k

e
−

(yi−µ
(t)
k

)2

2σ
2(t)
k .

Then, the maximization of the log-likelihood function ℓ(ν | Yobs), namely solving the MLE

of ν, can be turned to the maximization of the substitution function Q(ν | ν(t)). By (5), the

unknown parameters πk, µk and σ2
k have been separated, where Q1k(πk | ν(t)) is a function of

πk, and Q2k(µk, σ
2
k | ν(t)) is a function of µk and σ2

k. We can obtain the (t+ 1)-th iteration of

π is π
(t+1)
k = 1

n

∑n
i=1 wik(yi | ν(t)), then we get the (t+ 1)-th iteration of µk and σ2

k by letting
∂Q2k(µk,σ

2
k|ν

(t))
∂µk

= 0 and
∂Q2k(µk,σ

2
k|ν

(t))

∂σ2
k

= 0 for k = 1, · · · ,m. Therefore, the final parameter

iteration formula is

π
(t+1)
k =

1

n

n∑
i=1

wik(yi | ν(t))

µ
(t+1)
k =

1∑n
i=1 wik(yi | ν(t))

n∑
i=1

wik(yi | ν(t))yi

(σ2
k)

(t+1) =
1∑n

i=1 wik(yi | ν(t))

n∑
i=1

wik(yi | ν(t))(yi − µ
(t)
k )2

(6)

4.2 Mixed T Distribution

Assume that Yobs is from the m-order mixed T distribution with a density function of

f(x | ν) =
m∑

k=1

πk

Γ
(
1+vk

2

)
Γ
(
vk
2

) (
1

πσ2
kvk

) 1
2

[
1 +

(x− uk)
2

σ2
kvk

]− 1+vk
2

,

where π1, . . . , πm is the mixing ratio and ν = {{πk}mk=1, {uk}mk=1, {σk}mk=1, {vk}mk=1}. We obtain

a mixed T distribution with location parameter uk, scale parameter σk and degrees of freedom

vk. Then the log-likelihood function of Yobs is

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πk

Γ
(
1+vk

2

)
Γ
(
vk

2

) (
1

πσ2
kvk

) 1
2

[
1 +

(yi − uk)
2

σ2
kvk

]− 1+vk
2

.



348 Appl. Math. J. Chinese Univ. Vol. 39, No. 2

The MLE of ν can be obtained by maximizing the log-likelihood function ℓ(ν | Yobs). Using

the MM algorithm, via (4), the objective function of the (t+ 1)-th iteration is given by

Q(ν | ν(t)) =

m∑
k=1

(
Q1k(πk | ν(t)) +Q2k(uk, σ

2
k, vk | ν(t))

)
+ c(t), (7)

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk

is a function of πk,

Q2k(uk, σ
2
k, vk | ν(t)) =

n∑
i=1

wik(yi | ν(t))

[
log Γ(

1 + vk
2

)− log Γ(
vk
2
)

−1

2
log πσ2

kvk − 1 + vk
2

log(1 +
(yi − uk)

2

σ2
kvk

)

]
is a function of uk , σ2

k and vk, c
(t) is a constant term that does not depend on ν, the weight

function

wik(yi | ν(t)) = π
(t)
k

1

f(yi | ν(t))

Γ(
1+v

(t)
k

2 )

Γ(
v
(t)
k

2 )
(

1

πσ
2(t)
k v

(t)
k

)
1
2 [1 +

(yi − u
(t)
k )2

σ
2(t)
k v

(t)
k

]−
1+v

(t)
k

2 .

Then, the maximization of the log-likelihood function ℓ(ν | Yobs), namely solving the MLE

of ν, can be turned to the maximization of the substitution function Q(ν | ν(t)). By (7), the

unknown parameters πk, uk, σ
2
k and vk have been separated, where Q1k(πk | ν(t)) is a function

of πk, and Q2k(uk, σ
2
k, vk | ν(t)) is a function of uk , σ2

k and vk. We can obtain the (t + 1)-th

iteration of π is π
(t+1)
k = 1

n

∑n
i=1 wik(yi | ν(t)), then we get the (t + 1)-th iteration of uk, σ

2
k

and vk by letting
∂Q2k(uk,σ

2
k,vk|ν

(t))
∂uk

= 0,
∂Q2k(uk,σ

2
k,vk|ν

(t))

∂σ2
k

= 0 and
∂Q2k(uk,σ

2
k,vk|ν(t))

∂vk
= 0,

k = 1, · · · ,m.

For vk, we get

∂Q2k(uk, σ
2
k, vk | ν(t))

∂vk
=

n∑
i=1

wik(yi | ν(t))

[
d
(
log Γ

(
1+vk

2

))
dvk

−
d
(
log Γ

(
vk
2

))
dvk

−1

2
log(1 +

(yi − uk)
2

σ2
kvk

) +
1

2

(yi − uk)
2 − σ2

k

σ2
kvk + (yi − uk)

2

]
= 0

is nonlinear. Here we take the approach of most authors and only perform parameter estimation

on the mixed T distribution with known degrees of freedom, and the MM estimation method

for mixed T distribution model has been well represented. Let u
(t)
ik =

1+v
(t)
k

v
(t)
k (σ2

k)
(t)+(yi−u

(t)
k )2

, then,

the final parameter iteration formula is

π
(t+1)
k =

1

n

n∑
i=1

wik(yi | ν(t))

u
(t+1)
k =

1∑n
i=1 wik(yi | ν(t))u

(t)
ik

n∑
i=1

wik(yi | ν(t))u
(t)
ik yi

(σ2
k)

(t+1) =
1∑n

i=1 wik(yi | ν(t))

n∑
i=1

wik(yi | ν(t))(σ2
k)

(t)u
(t)
ik (yi − u

(t)
k )2

.
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4.3 Mixed Gamma Distribution

Assume that Yobs is from the m-order mixed Gamma distribution with a density function

of

f(x | ν) =
m∑

k=1

πk
βαk

k

Γ(αk)
xαk−1e−βkx,

where π1, . . . , πm is the mixing ratio and ν = {{πk}mk=1, {αk}mk=1, {βk}mk=1}. The log-likelihood

function of Yobs is

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πk
βαk

k

Γ(αk)
yαk−1
i e−βkyi .

The MLE of ν can be obtained by maximizing the log-likelihood function ℓ(ν | Yobs). Using

the MM algorithm, via (4), then the objective function of the (t+ 1)-th iteration can be given

by

Q(ν | ν(t)) =
m∑

k=1

(
Q1k(πk | ν(t)) +Q2k(αk, βk | ν(t))

)
+ c(t), (8)

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk

is a function of πk,

Q2k(αk, βk | ν(t)) =

n∑
i=1

wik(yi | ν(t)) [αk log βk − log Γ(αk) + (αk − 1) log yi − βkyi]

is a function of αk and βk, c
(t) is a constant term that does not depend on ν, the weight function

wik(yi | ν(t)) = π
(t)
k

1

f(yi | ν(t))

(
1

Γ(α
(t)
k )

(β
(t)
k )α

(t)
k y

α
(t)
k −1

i e−β
(t)
k yi

)
.

Similar to the mixed Normal distribution, the maximization of ℓ(ν | Yobs) with solving

the MLE of ν can be turned to solve the MLE of ν by maximizing the substitution function

Q(ν | ν(t)). By (8), where πk, αk and βk have been separated. We can obtain the (t + 1)-th

iteration of π is π
(t+1)
k = 1

n

∑n
i=1 wik(yi | ν(t)), then we get the (t+1)-th iteration of αk and βk

by setting ∂Q2k(αk,βk|ν(t))
∂αk

= 0 and ∂Q2k(αk,βk|ν(t))
∂βk

= 0 for k = 1, · · · ,m.

Since there is no explicit solution for αk, Newton’s method is applied to solve these equations.

The final parameter iteration formula is



π
(t+1)
k =

1

n

n∑
i=1

wik(yi | ν(t))

α
(t+1)
k = α

(t)
k +

∑n
i=1 wik(yi | ν(t))

[
(Γ(α

(t)
k ))2(log β

(t)
k + log yi)− Γ(α

(t)
k )Γ(α

(t)
k )′

]
∑n

i=1 wik(yi | ν(t))
[
Γ(α

(t)
k )Γ(α

(t)
k )′′ − (Γ(α

(t)
k )′)2

]
β
(t+1)
k =

1∑n
i=1 wik(yi | ν(t))yi

n∑
i=1

wik(yi | ν(t))α
(t)
k

.
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4.4 Mixed Poisson Distribution

Suppose that Yobs is the m-order mixed Poisson distribution from the density function

f(x | ν) =
m∑

k=1

πk
λx
k

x!
e−λk ,

where π1, . . . , πm is the mixing ratio and ν = {{πk}mk=1, {λk}mk=1}. The log-likelihood function

of Yobs is

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πk
λyi

k

yi!
e−λk .

The MLE of ν can be obtained by maximizing the log-likelihood function ℓ(ν | Yobs). Using the

proposed MM algorithm to estimate the unknown parameters, via (4), the objective function

of the (t+ 1)-th iteration is

Q(ν | ν(t)) =

m∑
k=1

(
Q1k(πk | ν(t)) +Q2k(λk | ν(t))

)
+ c(t), (9)

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk

is a function of πk,

Q2k(λk | ν(t)) =
n∑

i=1

wik(yi | ν(t))(yi log λk − λk)

is a function of λk, c
(t) is a constant term that does not depend on ν, the weight function

wik(yi | ν(t)) = π
(t)
k

1

f(yi | ν(t))

(λ
(t)
k )yi

yi!
e−λ

(t)
k .

Similar to the continuous mixed distribution in previous subsections, the original problem

is transformed into solving the MLE of ν by maximizing the substitution function Q(ν | ν(t)).

By (9), πk and λk have been separated. We can obtain the (t+ 1)-th iteration of π is π
(t+1)
k =

1
n

∑n
i=1 wik(yi | ν(t)), then we get the (t+1)-th iteration of λk by letting ∂Q2k(λk|ν(t))

∂λk
= 0, k =

1, · · · ,m. Finally the iterative formula is given by


π
(t+1)
k =

1

n

n∑
i=1

wik(yi | ν(t))

λ
(t+1)
k =

1∑n
i=1 wik(yi | ν(t))

n∑
i=1

wik(yi | ν(t))yi

.

4.5 Mixed Geometric Distribution

Suppose that Yobs is from the m-order mixed Geometric distribution with the density func-

tion

f(x | ν) =
m∑

k=1

πk(1− pk)
xpk,
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where π1, . . . , πm is the mixing ratio and ν = {{πk}mk=1, {pk}mk=1}. Thus, the log-likelihood

function of Yobs is

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πk(1− pk)
yipk.

The MLE of ν can be obtained by maximizing the log-likelihood function ℓ(ν | Yobs). Using

the MM algorithm to estimate the unknown parameters, the objective function of the (t+1)-th

iteration from (4) is

Q(ν | ν(t)) =
m∑

k=1

(
Q1k(πk | ν(t)) +Q2k(pk | ν(t))

)
+ c(t), (10)

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk

is a function of πk,

Q2k(pk | ν(t)) =

n∑
i=1

wik(yi | ν(t)) [yi log(1− pk) + log pk]

is a function of pk, c
(t) is a constant term that does not depend on ν, the weight function

wik(yi | ν(t)) = π
(t)
k

1

f(yi | ν(t))
(1− p

(t)
k )yip

(t)
k .

Similar to continuous mixed distribution, here we maximize the substitution function Q(ν |
ν(t)) with unknown parameters πk and pk separated by (10). We can obtain the (t + 1)-th

iteration of π is π
(t+1)
k = 1

n

∑n
i=1 wik(yi | ν(t)), then we get the (t + 1)-th iteration of pk by

letting ∂Q2k(pk|ν(t))
∂pk

= 0, k = 1, · · · ,m. Therefore, we have the iterative formula
π
(t+1)
k =

1

n

n∑
i=1

wik(yi | ν(t))

p
(t+1)
k =

1∑n
i=1 wik(yi | ν(t))(yi + 1)

n∑
i=1

wik(yi | ν(t))

.

§5 Convergence Properties of the Proposed MM Algorithms

In this section, we first denote ℓ(ν | Yobs) be the log-likelihood function to maximize and

Q(ν | ν(t)) be the corresponding surrogate function of ℓ(ν | Yobs), where ν is the parameter

vector and ν(t) is its current estimate. Let M(ν) be the maximizer of Q(ν | ν(t)). Following

[25], we present the convergence properties of the MM algorithms in Section 4 based on the

following regularity conditions.

C1. The parameter space Ω is an open set.

C2. ℓ(ν | Yobs) is differentiable, with continuous derivative ℓ′(ν | Yobs).

C3. The level set Ωc = {ν ∈ Ω : ℓ(ν | Yobs) ≥ c} is compact.

C4. Q(ν | ν(t)) is continuous in both ν and ν(t), and differentiable in ν.

C5. All the stationary points of ℓ(ν | Yobs) are isolated.

C6. There exists a unique global maximum of Q(ν | ν(t)).



352 Appl. Math. J. Chinese Univ. Vol. 39, No. 2

Then we provide a lemma ([26]) which gives general conditions for proving the convergence

of an MM sequence.

Lemma 1 ([26]). Let ν(t), t = 0, 1, 2, · · · denote an MM sequence.

(i) If C6 holds, then M(·) is continuous at ν(t).

(ii) If C1-C6 hold, then for any starting value ν(0), ν(t) → ν(∗) when t → ∞, for some

stationary point ν(∗). Moreover, M(ν(∗)) = ν(∗), and if ν(t) ̸= ν(∗) for all t, the sequence of

likelihood values ℓ(ν(t) | Yobs) strictly increases to ℓ(ν(∗) | Yobs).

For all the mixed distributions of Section 4, it is easy to verify that the conditions C1,

C2 and C4 are all satisfied. To verify C3, taking the mixed Normal distribution for exam-

ple, we further denote its parameter space as G = {ν = (π1, · · · , πm, µ1, · · · , µm, σ1, · · · , σm) |∑m
i=1 πk = 1, πk > 0, σk > 0, for i = 1, · · · ,m}, and provide an extra condition A as follows.

Condition A.

(i) Define the parameter constraint as Ψ = {ν ∈ G : |µk| 6 a and 0 < b 6 σk 6 d < ∞, k =

1, · · · ,m}, for some constants a, b, d, a=max {|y1|, · · · , |yn|}.
Note that:

(i) If for any σk → 0 or ∞, ℓ(ν | Yobs) → −∞, however our ℓ(ν | Yobs) is bounded, so σk can

not go to 0 or ∞.

(ii) If ν ∈ G satisfies µk > a, then we can find ν′ ∈ G from ν by setting the k-th mean compo-

nent equal to a, s.t. ℓ(ν | Yobs) 6 ℓ(ν ′ | Yobs). Similarly, if µk < −a, an analogous result holds

by letting the k-th mean component equal to −a. It follows that

sup
ν∈G

ℓ(ν | Yobs) = sup
ν∈Ψ

ℓ(ν | Yobs).

Theorem 1. For the mixed Normal distributions in Section 4, if Condition A, C5 and C6

hold at a moderate m, for any starting value ν(0), the sequences {π(t), µ(t), σ2(t)} generated by

the MM algorithm that updates the estimates by (6) are convergent.

Proof of Theorem 1. The log-likelihood function of mixed Normal distribution is

ℓ(ν | Yobs) =
n∑

i=1

log
m∑

k=1

πk
1√
2πσ2

k

e
− (yi−µk)2

2σ2
k ,

its corresponding surrogate function is

Q(ν | ν(t)) =
m∑

k=1

(
Q1k(πk | ν(t)) +Q2k(µk, σ

2
k | ν(t))

)
+ c(t),

where

Q1k(πk | ν(t)) =
n∑

i=1

wik(yi | ν(t)) log πk,

and

Q2k(µk, σ
2
k | ν(t)) =

n∑
i=1

wik(yi | ν(t))

[
− log σ2

k

2
− (yi − µk)

2

2σ2
k

]
.

The surrogate function Q(ν | ν(t)) satisfies the conditions in (1), that is

ℓ(ν | Yobs) > Q(ν | ν(t)), ∀ν

ℓ(ν(t) | Yobs) = Q(ν(t) | ν(t)).
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From the forms of ℓ(ν | Yobs) and Q(ν | ν(t)), it is easy to verify that conditions C1, C2 and

C4 hold. For the level set Ωc = {(π, µ, σ2) : ℓ(π, µ, σ2 | Yobs) > c}, it follows from the continuity

of ℓ(π, µ, σ2 | Yobs) that Ωc is closed. By imposing a constraint Condition A, we have Ωc is

bounded, then C3 holds. So, under conditions C5 and C6, the MM sequences that update the

estimates by (6) are convergent. Similarly, we can verify C3 in the similar way and provide the

convergence properties for the MM sequences of other mixed distributions in Section 4.

§6 Simulation study

Numerical simulation is conducted using R to solve the parameter estimation problem by

MM algorithm with mixed distribution model. During each experiment, the iteration stops

when ε = 10−6. In Table (2, 4, 6, 8, 10), I is the average number of iterations; L is the average

value of sample log-likelihood function; T is the average value of run times (seconds); Bias

denotes the deviation of parameter estimation; MSE denotes the mean square error.

In order to determine the number of distributions (the m-order of the mixture distribution

model) in the mixture distribution model with a known distribution, BIC criterion is applied

with the following objective

BIC = dν logn− 2ℓ(ν̂ | Yobs),

where dν is the number of parameters in the mixed model (2), ℓ(ν̂ | Yobs) is the log-likelihood

function of the sample in the mixed model (2) and n is the sample size. In addition, for the

following four examples, the accuracy of order detection using the BIC criterion is shown by

Table (1, 3, 5, 7, 9).

EXAMPLE 1. We construct a 3-order mixed Normal distribution model: 0.3N(1, 0.52) +

0.4N(5, 0.82)+0.3N(9, 12), generate 100, 150, and 200 random samples respectively and perform

500 repeated experiments for each sample size. The steps to generate samples are as follows,

Step 1. Generate random variables X1, X2 and X3 that subject to N(1, 0.52), N(5, 0.82) and

N(9, 12), respectively.

Step 2. Generate a random number U with a uniform distribution of U(0, 1), if U 6 0.3,

X = X1; if 0.3 < U 6 0.7, X = X2; otherwise X = X3.

Step 3. Repeat step 1 and 2 to generate n random samples.

We first conduct 500 simulations to estimate the order of this mixed model at different

sample sizes. The BIC value of the mixed Normal distribution is calculated when m = 1, . . . , 6

in order to select the best m where BIC is minimized. P (m̂ = 1), . . . , P (m̂ = 6) denote the

empirical percentages of m̂ = 1, . . . , 6 in these 500 simulations. Table 1 shows that m̂ = 3

has the highest empirical percentages. When the sample size is 100, there exists 1.4% that the

smallest BIC value is not obtained at m = 3. Besides, we conduct an additional simulation with

a sample size equaling to 50 and find that the percentage of error is 35%. We can conclude that

a small sample size will lead to a large error which discriminates the true order of the mixed

normal distribution. But as the sample size increases, the accuracy of the determination of the

order of the mixed Normal distribution using the BIC criterion increases.
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Table 1. BIC Results of 3-order Mixed Normal.

Sample size P (m̂ = 1) P (m̂ = 2) P (m̂ = 3) P (m̂ = 4) P (m̂ = 5) P (m̂ = 6)

n=100 0.014 0 0.986 0 0 0

n=150 0 0 1 0 0 0

n=200 0 0 1 0 0 0

Then, based on the order estimated result, we present the estimation results of the other

parameters with 500, 800 and 1000 simulation results, respectively, to show that 500 simulations

are sufficient, where m = 3. In Table 2, the true value of parameters of the mixed Normal

distribution model is µ1 = 1, µ2 = 5, µ3 = 9, σ2
1 = 0.25, σ2

2 = 0.64 and σ2
3 = 1. The mixing

ratio is π1 = 0.3, π2 = 0.4 and π3 = 0.3. From Table 2, Bias and MSE are relatively small which

shows the accuracy of estimated parameters under mixed normal model. Also, the consistency

of estimated parameters is also verified by the decreasing trend of Bias and MSE as the increase

of sample size. We also conducted 800 and 1000 simulations and the results are shown in Table

2. From Table 2, it can be easily found that there are not much differences in their results by

running 500, 800 and 1000 replications. That means 500 replications is enough.

EXAMPLE 2. We construct a 3-order mixed T distribution model: 0.3T (2, 12, 3) +

0.4T (7, 12, 3) + 0.3T (11, 12, 3), generate 100, 150, and 200 random samples respectively and

perform 500 repeated experiments for each sample size. The steps to generate samples are as

follows.

Step 1. Generate random variables X1, X2 and X3 that subject to T (2, 12, 3), T (7, 12, 3) and

T (11, 12, 3), respectively.

Step 2. Generate a random number U with a uniform distribution of U(0, 1), if U 6 0.3,

X = X1; if 0.3 < U 6 0.7, X = X2; otherwise X = X3.

Step 3. Repeat step 1 and 2 to generate n random samples.

Analogous to example 1, we conduct 500 simulations to estimate the order of this mixed

model. The BIC value of the mixed T distribution is calculated when m = 1, . . . , 6 in order

to select the best m where BIC is minimized. P (m̂ = 1), . . . , P (m̂ = 6) denote the empirical

percentages of m̂ = 1, . . . , 6 in these 500 simulations. Table 3 shows that m̂ = 3 has the highest

empirical percentages. When the sample size is 100, there exists 3.8% that the smallest BIC

value is not obtained at m = 3. When the sample size is 150, the percentage is 0.4% where the

value of BIC is not the smallest at m = 3. Also, as the sample size increases, the accuracy of

the determination of the order of the mixed T distribution using BIC criterion increases.

Then, based on the order estimated result, where m = 3. We present a comparison of the

estimation results of other parameters between the EM algorithm and the MM algorithm. In

Table 4, the true value of parameters of the mixed T distribution model is u1 = 2, u2 = 7, u3 =

11, σ2
1 = 1, σ2

2 = 1 and σ2
3 = 1, degrees of freedom are the same and known v1 = v2 = v3 = 3.

The mixing ratio is π1 = 0.3, π2 = 0.4 and π3 = 0.3. From Table 4, for different sample sizes,

and under the same sample data, it can be seen from the comparison that the EM algorithm

needs more iterations, and on the whole, the MSE generated by the EM algorithm is larger.
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Table 2. Simulation Results for Example 1.

0.3 Normal(1 , 0.52)+0.4 Normal(5 , 0.82)+0.3 Normal(9 , 12)

500 simulations

n=100 n=150 n=200
I 15.142 14.734 14.588
L -214.543 -324.039 -432.933
T 0.004 0.004 0.005

Bias MSE Bias MSE Bias MSE
µ1 0.002 0.008 0.000 0.006 -0.000 0.004
µ2 -0.005 0.025 -0.002 0.013 0.001 0.010
µ3 0.015 0.053 -0.005 0.028 -0.002 0.021
σ2
1 0.006 0.005 0.002 0.003 0.005 0.002

σ2
2 0.007 0.037 0.004 0.022 0.004 0.017

σ2
3 0.004 0.137 0.025 0.074 -0.000 0.056

π1 -0.002 0.002 0.001 0.001 -0.000 0.001
π2 0.003 0.003 0.001 0.002 0.000 0.001
π3 -0.002 0.002 -0.002 0.001 0.000 0.001

800 simulations

n=100 n=150 n=200
I 15.049 14.942 14.386
L -214.202 -323.327 -432.445
T 0.003 0.004 0.005

Bias MSE Bias MSE Bias MSE
µ1 -0.003 0.008 -0.003 0.006 0.002 0.004
µ2 0.004 0.023 -0.001 0.014 0.002 0.010
µ3 0.008 0.059 0.004 0.033 -0.001 0.023
σ2
1 0.014 0.005 0.006 0.003 0.008 0.002

σ2
2 0.005 0.042 0.005 0.025 0.007 0.016

σ2
3 0.006 0.160 0.018 0.081 0.009 0.053

π1 -0.002 0.002 0.001 0.001 0.002 0.001
π2 0.005 0.003 -0.001 0.002 -0.001 0.001
π3 -0.003 0.002 -0.002 0.001 -0.001 0.001

1000 simulations

n=100 n=150 n=200
I 15.112 14.504 14.416
L -214.467 -323.677 -432.458
T 0.003 0.004 0.005

Bias MSE Bias MSE Bias MSE
µ1 0.002 0.009 0.000 0.006 -0.002 0.005
µ2 -0.004 0.021 0.003 0.014 0.003 0.009
µ3 0.011 0.050 0.008 0.034 0.004 0.023
σ2
1 0.007 0.005 0.003 0.003 0.004 0.002

σ2
2 0.005 0.042 0.009 0.023 0.009 0.017

σ2
3 0.007 0.124 0.003 0.085 0.008 0.060

π1 0.002 0.002 -0.000 0.001 -0.000 0.001
π2 0.000 0.003 0.000 0.002 0.001 0.001
π3 -0.002 0.002 0.000 0.001 -0.000 0.001
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Table 3. BIC Results of 3-order Mixed T.

Sample size P (m̂ = 1) P (m̂ = 2) P (m̂ = 3) P (m̂ = 4) P (m̂ = 5) P (m̂ = 6)
n=100 0.004 0.034 0.962 0 0 0
n=150 0 0.004 0.996 0 0 0
n=200 0 0 1 0 0 0

This also verifies the simplicity and stability of the MM algorithm.

Table 4. EM and MM Comparison of Simulation Results for Example 2.

0.3 T (2 , 12, 3)+0.4 T (7 , 12, 3)+0.3 T (11 , 12, 3)
EM MM

n=100 n=150 n=200 n=100 n=150 n=200
I 27.786 24.962 23.984 13.832 12.818 12.186
L -257.512 -389.211 -519.869 -258.303 -389.981 -520.584
T 0.008 0.008 0.010 0.003 0.004 0.006

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
µ1 0.003 0.074 0.003 0.049 0.011 0.033 0.002 0.059 0.005 0.042 0.016 0.031
µ2 0.006 0.078 0.011 0.047 -0.003 0.033 0.014 0.056 0.017 0.041 0.002 0.027
µ3 0.022 0.110 0.010 0.060 0.007 0.047 0.003 0.069 0.004 0.041 -0.003 0.033
σ2
1 0.026 0.235 0.000 0.175 -0.016 0.120 0.039 0.060 0.020 0.039 0.012 0.035

σ2
2 -0.147 0.773 -0.087 0.362 -0.031 0.275 0.030 0.054 0.015 0.033 0.019 0.032

σ2
3 -0.045 0.441 -0.020 0.208 -0.028 0.192 0.029 0.064 0.015 0.038 0.013 0.035

π1 0.007 0.003 0.001 0.002 0.003 0.001 0.003 0.002 -0.001 0.001 0.003 0.001
π2 -0.011 0.007 -0.002 0.004 0.003 0.003 -0.005 0.003 0.001 0.002 0.004 0.002
π3 0.004 0.004 0.001 0.003 -0.006 0.002 0.002 0.003 -0.001 0.001 -0.006 0.001

EXAMPLE 3. We construct a 2-order mixed Gamma distribution model: 0.4Ga(40, 20)+

0.6Ga(6, 1), generate 100, 150, and 200 random samples respectively and perform 500 repeated

experiments for each sample size. The steps for generating random samples are as follows,

Step 1. Generate random variables X1 ∼ Ga(40, 20) and X2 ∼ Ga(6, 1) respectively.

Step 2. Generate a random number U with a uniform distribution of U(0, 1), if U 6 0.4,

X = X1; otherwise, X = X2.

Step 3. Repeat step 1 and 2 to generate n random samples.

Similar to example 1, for different sample sizes, we first conduct 500 simulations to estimate

the order of this mixed model. The BIC value of the mixed Gamma distribution is calculated

when m = 1, . . . , 6 in order to select the best m where BIC is minimized. P (m̂ = 1), . . . , P (m̂ =

6) denote the empirical percentages of m̂ = 1, . . . , 6 in these 500 simulations. From Table 5,

m̂ = 2 has the highest empirical percentages. When the sample size is 100 and 150, the

percentage is 0.6% and 0.4% where the value of BIC is not the smallest at m = 2. When the

sample size is larger, the BIC criterion is more accurate in determining the order of the mixed

Gamma distribution.

Then, the result of other parameters when m = 2 is shown at Table 6. The true value of
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Table 5. BIC Results of 2-order Mixed Gamma.

Sample size P (m̂ = 1) P (m̂ = 2) P (m̂ = 3) P (m̂ = 4) P (m̂ = 5) P (m̂ = 6)
n=100 0 0.994 0.006 0 0 0
n=150 0 0.996 0.004 0 0 0
n=200 0 1 0 0 0 0

Table 6. Simulation Results for Example 2.

0.4 Gamma(40,20)+0.6 Gamma(6,1)
n=100 n=150 n=200

I 339.922 314.64 280.958
L -198.643 -299.934 -399.856
T 0.079 0.082 0.088

Bias MSE Bias MSE Bias MSE
α1 -1.954 137.632 -0.798 89.773 -0.152 64.097
α2 -0.678 3.296 -0.476 2.323 -0.254 1.195
β1 -0.968 36.902 -0.367 23.973 -0.039 17.235
β2 -0.106 0.086 -0.074 0.058 -0.037 0.029
π1 -0.004 0.003 0.000 0.002 -0.004 0.002
π2 0.004 0.003 -0.000 0.002 0.004 0.002

parameters of the mixed Gamma distribution model is α1 = 40, α2 = 6, β1 = 20 and β2 = 1.

The mixing ratio is π1 = 0.4, and π2 = 0.6. For the mixed Gamma distribution model, we can

also observe the decreasing trend of both Bias and MSE with the increase of sample size which

shows the convergence of estimated parameters to true values.

EXAMPLE 4. We construct a 3-order mixed Poisson distribution model: 0.3P (5) +

0.3P (16) + 0.4P (59), generate 50, 100, and 150 random samples respectively and perform 500

repeated experiments for each sample size. The steps for generating random samples are as

follows,

Step 1. Generate random variables X1, X2 and X3 that subject to P (5), P (16) and P (59),

respectively.

Step 2. Generate a random number U with a uniform distribution of U(0, 1), if U 6 0.3,

X = X1; if 0.3 < U 6 0.6, X = X2; otherwise, X = X3.

Step 3. Repeat step 1 and 2 to generate n random samples.

Similar to previous examples, the BIC criterion is used. P (m̂ = 1), . . . , P (m̂ = 6) denote

the empirical percentages of m̂ = 1, . . . , 6, respectively. From Table 7, m̂ = 3 has the highest

empirical percentages. And when the sample size is 50, the proportion is 1% that the value

of BIC is not the smallest at m = 3. When the sample size is 100 and 150, the percentage of

wrong order detection is 0.4% and 0.2%. Even for a small sample size, the BIC criterion can

accurately determine the order of the mixed Poisson distribution.

Then, the simulation result for other parameter estimation given m = 3 is presented by

Table 8. The true value of parameters of the mixed Poisson distribution model is λ1 = 5,
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Table 7. BIC Results of 3-order Mixed Poisson.

Sample size P (m̂ = 1) P (m̂ = 2) P (m̂ = 3) P (m̂ = 4) P (m̂ = 5) P (m̂ = 6)
n=50 0 0.004 0.99 0.006 0 0
n=100 0 0 0.996 0.004 0 0
n=150 0 0 0.998 0.002 0 0

Table 8. Simulation Results for Example 3.

0.3 Poisson (5)+0.3 Poisson (16)+0.4 Poisson (59)
n=50 n=100 n=150

I 7.072 7.032 6.924
L -192.965 -389.167 -584.426
T 0.001 0.002 0.002

Bias MSE Bias MSE Bias MSE
λ1 0.013 0.488 0.009 0.239 -0.013 0.173
λ2 -0.035 1.425 -0.010 0.704 0.010 0.471
λ3 0.067 2.747 0.033 1.311 0.000 0.958
π1 -0.003 0.005 -0.001 0.002 -0.000 0.002
π2 0.000 0.005 0.002 0.002 0.001 0.002
π3 0.003 0.005 -0.001 0.002 -0.001 0.001

λ2 = 16 and λ3 = 59. The mixing ratio is π1 = 0.3, π2 = 0.3 and π3 = 0.4. When the sample

size is small, the MSE of λ1, λ2, and λ3 appear to be slightly large, but all the Biases are

relatively the small. However, as the sample size increases, MSE decreases. The estimated

parameters for mixed Poisson model are accurate and consistent.

EXAMPLE 5. We construct a 2-order mixed Geometric distribution model: 0.4Ge(0.1)+

0.6Ge(0.7), generate 50, 100, and 150 random samples respectively and perform 500 repeated

experiments for each sample size. The steps for generating random samples are as follows,

Step 1. Generate random variables X1 ∼ Ge(0.1) and X2 ∼ Ge(0.7) respectively.

Step 2. Generate a random number U with a uniform distribution of U(0, 1), if U 6 0.4,

X = X1; otherwise, X = X2.

Step 3. Repeat step 1 and 2 to generate n random samples.

For the 2-order mixed Geometric distribution model, we conduct simulations to estimate the

order. For the sample sizes is 50, 100, and 150, BIC are calculated correspondingly to determine

the m̂ given smallest BIC. Table 9 shows that m̂ = 2 has the highest empirical percentages.

When the sample size is 50, 3.8% of the smallest BIC is not the obtained at m = 2. When

sample size is 100 and 150, The percentage of error is 0.2%. When the sample size is larger, the

BIC criterion is more accurate in determing the order of the mixed Geometric distribution.

Then, the simulation result for other parameter estimation given m = 2 is presented by

Table 10. The true value of parameters of the mixed Geometric distribution model is p1 = 0.1

and p2 = 0.7. The mixing ratio is π1 = 0.4 and π2 = 0.6. As the sample size increases, the Bias

continues to decrease and finally stabilizes around a small value which denotes the parameter
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Table 9. BIC Results of 2-order Mixed Geometric.

Sample size P (m̂ = 1) P (m̂ = 2) P (m̂ = 3) P (m̂ = 4) P (m̂ = 5) P (m̂ = 6)

n=50 0.038 0.962 0 0 0 0

n=100 0.002 0.998 0 0 0 0

n=150 0 0.998 0.002 0 0 0

Table 10. Simulation Results for Example 4.

0.4 Geometric (0.1)+0.6 Geometric (0.7)

n=50 n=100 n=150

I 17.792 14.49 13.278

L -108.002 -217.421 -326.571

T 0.002 0.002 0.002

Bias MSE Bias MSE Bias MSE

p1 -0.006 0.001 -0.003 0.000 -0.001 0.000

p2 -0.023 0.015 -0.009 0.007 -0.004 0.005

π1 -0.010 0.012 -0.004 0.006 -0.000 0.005

π2 0.010 0.012 0.004 0.006 0.000 0.005

estimates are approaching the true value. The MSE is also relatively small with a decreasing

trend.

§7 Case Analysis

Cohort Study Data in Northeast Thailand. This data set with the name “thai cohort”

can be obtained from the R package CAMAN. The data set comes from a cohort study in

northeastern Thailand. It has records from June 1982 to September 1985 where 602 people are

checked every two weeks. The health data for the health status of school-age children record

the number of times that the children had a fever, cough, runny nose or all three symptoms

during this period.

For this real data, we first attempt a simple model to fit the data. For the count data, Poisson

distribution (P (λ)) is a commonly used statistical model. The MM algorithm is applied and

the estimated parameter λ̂ = 4.449. Adding the fitted probability mass function curve to the

frequency distribution histogram (Figure 1), it can be seen that a single Poisson distribution

cannot fit the data well. An m-order mixed Poisson distribution model might be a better choice
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for this data. Then, we use the BIC criterion to determine the order of the mixed distribution

model. According to the BIC results of this data set from Table 11, when m = 4, the BIC

results reach the smallest value.

Table 11. BIC Results of thai cohort.

m 1 2 3 4 5 6

BIC 4277.244 3292.663 3174.983 3158.864 3171.681 3184.644

Therefore, a 4-order mixed Poisson distribution model should be fitted to this data set.

Using the MM algorithm proposed in this paper to estimate the parameters of the data, the

4-order mixed Poisson distribution can be obtained as

f(x | ν̂) = 0.19P (0.12) + 0.48P (2.76) + 0.27P (8.08) + 0.06P (16.08)

Adding the fitting probability mass function of the model to the frequency distribution his-

togram, it can be seen that f(x | ν̂) can fit this data better.

Figure 1. Frequency distribution histogram of thai cohort.

§8 Discussion and Concluding Remarks

The mixed distribution model can accurately analyze the heterogeneous data, and the pa-

rameter estimation of mixed distribution models is usually based on maximum likelihood esti-

mation. MM algorithm uses the assembly decomposition technique to separate the parameters

of the objective function and construct the substitution function, which can deal with the pa-

rameter estimation of mixed distribution model very well. At the same time, the order of the

mixed distribution model can be accurately found by the BIC criterion. The proposed method

is suitable for both mixed continuous and mixed discrete distribution models. Through different

numerical simulation experiments, we have verified that the MM algorithm has good results in

the process of solving the parameter estimation of the mixed distribution model.
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