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On the global smooth solutions of 3D incompressible
Hall-MHD equations

YUE Gao-cheng* SUN Wen-da

Abstract. The present paper is devoted to the well-posedness issue for the 3D incompressible
Hall-MHD system obtained from kinetic models. Our analysis strongly relies on the use of the
Fourier analysis. We establish the global existence of smooth solutions for a class of large initial

data, this result implies the initial velocity and magnetic field can be arbitrarily large.

81 Introduction

In this paper, we study the global well-posedness of the following three-dimensional incom-
pressible two-fluid magnetohydrodynamics system:
ou+ (u-V)u+Vp—vAu= (V x B) x B, (t,z) € RT x R3,
B -V x (ux B)4+V x ((VxB)xB)—uAB =0, (L1)
V-u=0, V-B=0, '
ult=0 = ug, Bli=0 = Bo,
where u = u(t,z) and B = B(t,x) are the fluid velocity and magnetic field, depending on the
spatial position z and the time ¢. The scalar functions p = p(¢,z) denote the pressure. The
positive constants v and p are the viscosity and the resistivity coefficients respectively.
Using vector identity, we can rewrite (1.1) as follows:

dpu+(u-Vyu+V (p+B5) —vau=(B-V)B, (t,2) R xR?,
0B+ (u-V)B+V x ((VxB)xB)—uAB = (B-V)u,
V-u=0, V-B=0,

(1.2)

ult=0 = uo, Bli=o = Bo.
Systems of this type can be derived from either two fluids models or kinetic models. Compared
with the usual viscous incompressible MHD system, the Hall-MHD equations have the Hall term
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V x ((V x B) x B), which plays an important role in magnetic reconnection when the magnetic
shear is large. We refer to [10,17] for the physical background of the magnetic reconnection and
the Hall-MHD. Note that the Hall term breaks the scaling invariant of such a system, which is
different from that of the classical MHD system.

There have been a lot of studies on Hall-MHD by physicists and mathematicians because
of their prominent roles in modeling many phenomena in e.g., space plasmas, star formation,
neutron stars and geo-dynamo, see [3,11,15,18,19] and the references cited therein. The global
existence of weak solutions in the periodic domain is done in [1] by a Galerkin approximation.
The global existence in the whole domain in R3 as well as the local well-posedness of smooth
solution is proved in [4], where the global existence of smooth solution for small initial data is
also established. Chae and Lee [5] proved an optimal blow-up criterion for classical solutions to
the incompressible resistive Hall-magnetohydrodynamic equations and established two global-
in-time existence results of the classical solutions for small initial data, the smallness conditions
of which are given by the suitable Sobolev and the Besov norms, respectively. Chae, Wan
and Wu proved in [8] the local wellposedness of classical solutions to the Hall-MHD equations
with the magnetic diffusion given by a fractional Laplacian operator, (—A)®. Temporal decay
for the weak solution and smooth solution with small data to Hall-MHD are also established
in [6]. Dai [9] studied the regularity problem for the 3D incompressible resistive viscous Hall-
magneto-hydrodynamic system by splitting the wavenumber combined with an estimate of the
energy flux. Very recently, Chae and Weng [7] proved that the incompressible Hall-MHD system
without resistivity is not globally in time well-posed in any Sobolev space H™(R?), m > %

We should mention that the recent work of Lei-Lin [13] and Lin et al. [14] will play a crucial
role in our work. This method has been used in the study of the global well-posedness to
3-D incompressible Navier-Stokes equations and MHD equations. Throughout this paper, C
represents some “harmless” constant, which can be understood from the context.

The aim of this paper is to establish global smooth solutions to the Cauchy’s problem of
Hall-MHD system (1.1) with a class of large initial data in three space dimensions. Our result
generalizes that of Kwak et al. [12] for the 3D incompressible Hall-MHD equations to the case
of such equations with large velocity fields and magnetic fields. We first construct a stability
result for the 3D Hall-MHD system which generalizes a small data global well-posedness result
of Kwak and Lkhagvasuren [12] for this equation. We can now state the main result of this

paper.

Theorem 1.1. Consider the Cauchy problem (1.2). Suppose that

uo(x) = uo1 (@) + uoz2(), (1.3)
Bo(x) = Bo1(z) + Boz(), (1.4)
with
V - ugi(z) = V- Boi(z) =0, (1.5)
2 () = a1vo(z), (1.6)

BOQ({E) = OZQ’U()(.Z‘), (17)
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where a1, ag are two real constants and vo(x) has the following properties
(1) V-wvo(z) =0,
(11) V xvo(z) = V—Avg(x),
(111) suppip(§) C{€:1 -0 <[{| <140}, 0<46<
(iv)  [volpr sy < M,
where vy denotes the Fourier transform for vg.

Then there exists a positive constant € sufficiently small, and depending only on v, 1, a1, as
and M such that the Cauchy problem (1.2) has a global smooth solution provided that
0<e (1.8)
and

[ glan©ld + [ (4l Bon(©)lde <. (1.9)
R3 R3

S
€] €]

82 The proof of Theorem 1.1

In order to obtain the existence of a solution of (1.1), we shall seek a solution of the form
u=ur+w and B = Bp+0D,
where (w,b) and (up, Br) solve (2.1)-(2.2) and (2.3)-(2.4), respectively.
By substituting the above formula into (1.2), we find that w, B must satisfy
atw+(w~V)w+V(p+¥) —vAw+ (w- V)up + (up - V)w
=—(up-V)up+ (Bp-V)Bp+ (b-V)b+ (Bp -V)b+ (b- V)Bp,

(2.1)
V.-w=0,
def
Wli=0 = uo1 = uo — Uo2,
and
Otb+ (up - V)Bp + (up - V)b+ (w- V)Bp + (w- V)b — pAb
+V x ((V x Bp) xb) +V x ((Vx Bp) x Bp)
+V X ((Vxb) x Bp) +V x ((Vxb)xb) (2.2)

= (B -Vur + (Br - Vw4 (b-V)ur + (b- V)w,
V-b=0,
blt=o = Bo1 et By — By,

and up, Bp must satisfy

Oyup — vAup = 0,

up(0) = ugg,
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and
0¢Br — pABp =0,
tDF — HADF (2.4)
Br(0) = Boa.
Since V- w = 0, by using the vector identity a- Va = (V x a) x a + 1V/|a|?, we can rewrite
(2.1) by projection it onto the divergence-free space. Then, we obtain
dw — vAw +P[(w- V)w+ (w- V)up + (up - V)w
7(() . V)bf (BF . V)b — (b V)BF} = ]P’[(V X BF) X BF — (V X ’U,F) X UF],

V-w=0, 25)
wli=0 = uo1 L Up — Up2;,
and

b+ (up - V)b+ (w-V)Bp + (w- V)b — pAb

+V x (VxBp)xb)+V x((Vxb)xBp)+V x((Vxb)xb)

—(Brp - Vw—=(b-Vup — (b-V)w=-V X (Br Xxur)—V x ((V x Br) x Bp),
V-b=0
bli=0 = Bo1 Y By — Bea.

(2.6)

We first prove a stability result which generalizes a theorem of Kwak and Lkhagvasuren [12].

Theorem 2.1. Consider the system of equations (2.5)-(2.6), suppose that up satisfies (2.3)
and Br satisfies (2.4) and suppose that

1.
[0+ gplialde+ [ 1+ gplBaeld < 4 (27)

Then there exists a small positive constant g depending only on v, u and M such that (2.5)-(2.6)
have a global smooth solution satisfying

[+ oo [ [+ iehiat.olear
/ (1+ |€|>|b<t LOdE+ g / / €11+ |€DIb(t, ) dédr < Cdo, (28)

provided that

1 ~
/( m)lﬂm(t s>|ds+/ (1-+ 1) Bon (1, )

. t 1 .
+/O Lo+ o+ [ [ asgiéeoar<a. o)
where F = (VX Bp)x Bp — (VXup)Xup and G = =V x (up x BF) =V x ((V x Br) x Bp).

Proof. Let .
Bot) = [ (14 gl ol + [ 1+ gl el (2.10)

B =v [ [ i [ [ s be o 2
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Taking the Fourier transform of the first equation of (2.5)-(2.6), we get
Ay + v|EPw = H + PF (2.12)

and

Ab+ p|e?b =T + PG, (2.13)
where
H=-P[(w-Vw+ (w-V)up + (up - V)w—(b-V)b— (Bp-V)b— (b V)Br|,
I=—(up-V)b—(w-V)Br — (w-V)b—V x ((V x Br) xb)
—Vx((be)xBF)—Vx((be)><b)+(BF Viw+ (b V)ur + (b V)w.

Taking an inner product of (2.12), (2.13) by \wl( + IE\) b1+ |£|) respectively, we obtain

1 w 1. - 1 .
1+ — )0 o = (1 H. 14+ —)PF. —, 2.14
( +|£|) b (1 +[&P|w] = ( +|£|) r |+( +|§|) ] (2.14)
and - - -
1... b 1.. b 1. b
14+ —)0h- — 1 b I “IPG - —, 2.15
(1+ |§|) b + v[€[( 7+ 1ENI0l = (1 + |§|) Bl +(1+ |5|) 0 (2.15)
Note R(Opw \%I) = Oy (|]), R(D4b - ﬁ) d,(|b]), taking the real part of (2.14) and (2.15)
get
1 X
) | b = H. PF - )
t[(1+|§|)le]+1/|£|(1+\£l)lw| RI(1+ |ﬂ) ] +(1 +|§|) B |} (2.16)
and _ _
20+ )b+ el + Dbl = m[ + o7 L vy Lype. L (2.17)
€] : HiamE e
Using the divergence free condition, We have
(1+ |§|)\IE”FI (1+ ‘ﬂ)IFI,
(1+ B |)|1P’G|<(1+‘ |)IGI
(1+ |£|)|H|<(1+|§|)[|uv*uv|+2|w*u3w|+\8*8|+2|13*3ﬂ],
(14 1] <2(1+ €]) [ eie] + |10+ Bl + i « b]

€l
+ €1+ 1€ [20b * Br| + b+ b]].

Adding (2.16) and (2.17), and then integrating on [0,#] x R3, according to (2.9), we have

Eo(t) + Er(1)

<o+ [ [ ] @I = )l + b =) - (i) -+ b m) gl

w0 [ ] A€ = )|+ o =) - i (o] + | B ()

W o+ I+11, (2.18)
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where

r=c [ [ ] a+ie) s )i+ bee =) - Q]+ b hagdnar,

110 [ [ 102 =l + 1 = ) - (i ()] + 1B (o) dscnar

Since

_le=ul I

In| & —nl’
€] < Inl + 1€ —nl,
€17 < 2(Inl* + € = nl),

1

we get
I < C(sup Ey(t))Ey(t). (2.19)

To estimate I, we divide into the cases [€ — n| < L and | — n| > L, then

11<CL [ (| (i)l + 1B (ron) o) Eo(r)ir

+ S sup [ (et + Be(ron))in) B0, 2.20)

By (2.7), we obtain
sup [ (ui(r, )]+ |Bre(r.)l)dn < 401
T R

Plugging the estimates (2.19)-(2.20) into (2.18) gives

¢
0L ([ (o] + B o)) Ea(r)ir
We prove (2.8) by induction. We assume that
Eo(t) + Er(t) < 2C.60,
then
C (sup o (1)) Ea(t) < 4CCI0] < by,

provided that J¢ is sufficiently small.
We choose L such that L = 2C'M, then we finally obtain

Bolt)+ 35:(0) < 200 + O [ ([ (o)l + 1Bt ml)in) B
Applying the Gronwall’s inequality to the above inequality, one has
Bolt)+ B1(0) <8inexp (O [ [ (i) + Bt )
<83¢ exp(CM?).

Obviously, we complete the proof of Theorem 2.1 if we let C, = 8 exp(CM?).

Now we prove Theorem 1.1. Since Theorem 2.1, we only need to estimate
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/O /}RS(1+|£1|)|F(t,§)|d§dt+/o /IRS(1+é|)é(t,§)d§dt.
Note that
F=(VxBp)XxBp—(VxXup)Xug
=(V=ABp) x Bp — (V=Aup) x up
=(V=ABF — Br) x B — (V—Aup — up) X up,
and

G =-V x (up X Bp) =V x ((V x Bp) x Bp)
:—Vx(quBF)—vX((MBF—BF)xBF),

and the Fourier transform is supported on |£| > %, we have

[ [+ ol
0 St T
3 F(t,&)|ded
g/o B €l

< 3/0 (IBr@)]e (€] = VBr®)]11 + ldr ()] 1(1€] = Dair(8)] 1) dt

§35s12p\3}(t)|y/ \BAF(t)|L1dt+36sgp\u]w(t)|L1/ [t (t)] 1 dt
0 0

< OM?s.
On the other hand, if 4 = v, then up x Bp = 0. We need only to consider the case p < v, the

case p > v can be proved in the same manner.

up X Bp(t,€)

2 2, R
— o / eI mint g (€ ) s 4o ()
RB

2 2, R
—araz [ P () (€ - )y
R

:%QIQZ/ (e*VIE*nl%*Mn\Zt _ e*l/lnIQthEfn\zt)q;O(g — 1) X tio(n)dn.
R3
Since in the support of 4p(§ — 7) X Uo(n), we have
2 )2
= =Pl _ g
€ = nl* + [nl
So, we have the following estimate
‘e—vm—nlzt—ulnlzt _ e—l/ln|2t—u|£—n|2t’

= e—u(lé—nl2+\n\2)t|e—(v—u)|£—n|2t _ e—(v—u)|n|2t|
_ a2 2
< Cer&=nl"+Inl )t||§ —n)? - |77\2|t

2 2
(le=nl2+1n2ye 1€ = 1° = nl?|

< Ce % LA L
1€ —nl? + In|?
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Finally, from the above estimates we arrive at

/ N [+ %)Ié(t,f)ldfdt
0 R3
S3/ / [lur x Bp(t,€)| + |F[(V=ABp — Bp) x Br|(t,€)|]d¢dt
0 R3

<COM&? +3 / B (®)] 22 |(€] - DBp()| 1 dt

§0M52+3551;p\BAF(t)|L1/ \EF(t)|L1dt
0

<CM?6.
Thus, this concludes the proof of Theorem 1.1.
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