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Characterizations of semihoops based on derivations

WANG Mei1,3 ZHANG Xiao-hong2,∗

Abstract. In this paper, we discuss the related properties of some particular derivations in

semihoops and give some characterizations of them. Then, we prove that every Heyting algebra

is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra

is isomorphic to the algebra of all implicative derivations. Finally, we show that the sets of

multiplicative and implicative derivations on bounded regular idempotent semihoops are in one-

to-one correspondence.

§1 Introduction

BL-algebras were defined by Hájek as the equivalent algebraic semantics of Basic Logic in

1996 [13]. Although these algebras were introduced in the late 1990s, it was proved in [12] that

their {0}-free subreducts determine a class of algebraic structures that were already introduced

by Büchi and Owens during the 1970s in the unpublished manuscript [5]. These structures were

called hoops and BL-algebras turned out to be equivalent to bounded basic hoops [12]. Indeed,

every hoop is a meet-semilattice ordered residuated integral divisible and commutative monoid

[2]. A semihoop is a hoop without the divisibility equation, and this algebraic structure covers

all the mathematical structures that appear in a fuzzy logic framework. Therefore, semihoops

play an important role in studying fuzzy logic and the related algebraic structures.

The notion of derivations, introduced from the analytic theory, is helpful for studying alge-

braic structures and properties in algebraic systems. In 1957, Posner [1] introduced the notion

of derivations in a prime ring (R,+, ·), which is a map d : R→ R satisfying the two conditions:

(i) d(σ + δ) = d(σ) + d(δ), (ii) d(σ · δ) = d(σ) · δ + σ · d(δ)

for all σ, δ ∈ R. Inspired by derivations on rings, Y B Jun, et al. [16,22] applied the notion

of derivations to BCI-algebras and gave some characterizations of p-semisimple BCI-algebras.

In 2008, Xin [20,21] introduced the concept of derivations in a lattice (L,∧,∨), which is a map

d : L → L satisfies the following condition:

d(σ ∧ δ) = (d(σ) ∧ δ) ∨ (σ ∧ d(δ))
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for all σ, δ ∈ L. They also characterized modular lattices and distributive lattices by isotone

derivations. Subsequently, Alshehri et al. [11,18] applied the notions of derivations to an

MV-algebra (L,⊕,∗ , 0, 1), which is a map d : L → L satisfying the following condition:

d(σ ⊙ δ) = (d(σ)⊙ δ)⊕ (σ ⊙ d(δ))

for any σ, δ ∈ L. Recently, Wang et al. [6,8] further explored derivations of MV-algebras

and obtained some interesting and meaningful results. In particular, they proved in [6] that

the fixed point set of Boolean additive derivations and that of their adjoint derivations are

isomorphic, and showed that every MV-algebra is isomorphic to the direct product of the fixed

point set of Boolean additive derivations and that of their adjoint derivations, which provide

a new representation of MV-algebras based on these derivations. In 2016, He [15] investigated

the notion of multiplicative derivation is a map d : L → L satisfying the following condition:

d(σ ⊙ δ) = (d(σ)⊙ δ) ∨ (σ ⊙ d(δ))

and implicative derivation is a map g : L → L satisfying the following condition:

g(σ → δ) = (g(σ) → δ) ∨ (σ → g(δ))

in residuated lattices, and characterized Heyting algebras in terms of the above derivations.

The paper is motivated by the following considerations:

(1) As we have mentioned in the above paragraph, derivations have been studied on MV-

algebras, BL-algebras and residuated lattices, etc, we have observed that although they are

essentially different logical algebras, they are all particular types of bounded semihoops. Then

it is meaningful to establish the derivation theory of semihoops for studying the common prop-

erties of derivations in the above-mentioned logical algebras.

(2) The previous research about derivations on logical algebras mainly involves its basic

algebraic properties, without using it to characterize the algebraic structures. Then, it is

interesting to characterize the algebraic structure of logical algebras by kinds of derivations.

(3) It has always been known that Galois connections play a central role in studying logical

algebras, and so the relation between derivations and Galois connections is an important re-

search topic to study. However, there are few researches about the relation between derivations

and Galois connections on logical algebras so far. Then, it is necessary for us to study the

relation between derivations and Galois connections on logical algebras.

Over these considerations, we introduce and study the derivations of semihoops. Indeed, we

will obtain the following main results:

(1) We introduce the concept of derivations on semihoops, and show that is the natural

generalization of derivations on residuated lattices (See Definitions 3.1 and 4.1, Remarks 3.10

and 4.).

(2) Every Heyting algebra is isomorphic to the algebra of all multiplicative derivations on

Heyting algebras (See Theorem 3.17).

(3) Every Boolean algebra is isomorphic to the algebra of all implicative derivations on

Boolean algebras (See Theorem 4.16).

(4) The sets of multiplicative and implicative derivations on bounded regular idempotent

semihoops are in one-to-one correspondence (See Theorem 4.18).

The paper is organized as follows: In Section 2, we review some basic definitions and

results about semihoops. In Section 3, we introduce the notion of multiplicative derivations on
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semihoops and give a representation of Heyting algebras by them. In Section 4, we introduce the

concept of implicative derivations on semihoops and discuss the relation between multiplicative

and implicative derivations.

§2 Preliminaries

In this section, we recall some fundamental definitions and notations which are necessary

for the reader to follow the paper.

Definition 2.1. ([3])An algebra (A,∧) is called a ∧-semilattice if it satisfies the following

conditions: for any σ, δ, γ ∈ A,

(1) σ ∧ σ = σ,

(2) σ ∧ δ = δ ∧ σ,
(3) (σ ∧ δ) ∧ γ = σ ∧ (δ ∧ γ).

Given a ∧-semilattice A, we can define a binary relation ≤ on A by

σ ≤ δ iff σ ∧ δ = σ.

Then ≤ is a partial order relation on A.

Definition 2.2. ([7,6,17])An algebra (L,⊙,→,∧, 1) of type (2, 2, 2, 0) is called a semihoop if

it satisfies the following conditions:

(1) (L,∧, 1) is a ∧-semilattice with upper bound 1,

(2) (L,⊙, 1) is a commutative monoid,

(3) (σ ⊙ δ) → γ = σ → (δ → γ), for any σ, δ, γ ∈ L.

In what follows, by L we denote the universe of a semihoop (L,⊙,→,∧, 1). A semihoop L
is a bounded semihoop if there exists an element 0 ∈ L such that 0 ≤ σ for all σ ∈ L. In a

bounded semihoop, we define the negation ¬: ¬σ = σ → 0 for all σ ∈ L. If ¬¬σ = σ, that

is, ¬(¬σ) = σ for any σ ∈ L, then the bounded semihoop is said to have a double negation

property (DNP, for short). If σ ⊙ σ = σ for any σ ∈ L, then the semihoop L is said to be

idempotent. We denote the set of all idempotent element of L by I(L).

Definition 2.3. ([2])Let L be a semihoop. Then

(1) L is said to be regular if it satisfies the double negation property: ¬¬σ = σ for any

σ ∈ L.
(2) L is said to be a hoop if it satisfies the divisibility equation: σ∧ δ = σ⊙ (σ → δ) for any

σ, δ ∈ L.
(3) L is said to be a Brouwerian semilattice if it satisfies the equation: σ ⊙ σ = σ for any

σ ∈ L.

It must be pointed out here that not all semihoops (hoops, Brouwerian semilattices) have a

lattice reduct, the ones that do are exactly the join free reducts of residuated lattice (Rℓ-monoid,

Heyting algebra). Moreover, in any regular bounded semihoop, we define further operation in

the following manner:

σ ⊕ δ = ¬(¬σ ⊙ ¬δ),
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and check that

σ ⊙ δ = ¬(¬σ ⊕ ¬δ), σ → δ = ¬σ ⊕ δ.

Proposition 2.4. ([6,12,14,17])Let L be a semihoop. Then the following properties hold: for

all σ, δ, γ ∈ L,
(1) σ ≤ δ iff σ → δ = 1,

(2) σ ⊙ δ ≤ γ iff σ ≤ δ → γ,

(3) σ ⊙ δ ≤ σ ∧ δ,
(4) 1 → σ = σ, σ → 1 = 1,

(5) σ ⊙ (σ → δ) ≤ δ,

(6) if σ ≤ δ, then δ → γ ≤ σ → γ, γ → σ ≤ γ → δ and σ ⊙ γ ≤ δ ⊙ γ,

(7) σ ≤ (σ → δ) → δ,

(8) σ → (σ ∧ δ) = σ → δ,

(9) (σ → δ)⊙ γ ≤ (σ ⊙ γ) → (δ ⊙ γ),

(10) σ ≤ δ → σ,

(11) σ → (δ ∧ γ) ≤ (σ → δ) ∧ (σ → γ),

(12) σ → δ ≤ (γ → σ) → (γ → δ),

(13) σ → δ ≤ (δ → γ) → (σ → γ),

(14) if L is a hoop, then σ ⊙ (δ ∧ γ) = (σ ⊙ δ) ∧ (σ ⊙ γ),

(15) if σ ∈ I(L) and δ ∈ L, then
(i) σ ⊙ δ = σ ∧ δ = σ ⊙ (σ → δ),

(ii) σ → (δ → γ) = (σ → δ) → (σ → γ).

Definition 2.5. ([10])A residuated lattice is a algebraic structure (L,∧,∨,⊙,→, 0, 1) of type

(2, 2, 2, 2, 0, 0) satisfying the following conditions:

(1) (L,∧,∨, 0, 1) is a bounded lattice,

(2) (L,⊙, 1) is a commutative semigroup (with the unit element 1),

(3) σ ⊙ δ ≤ γ iff σ ≤ δ → γ, for any σ, δ, γ ∈ L.

Proposition 2.6. ([10])Let L be a residuated lattice. Then the following properties hold: for

all σ, δ, γ ∈ L,
(1) σ → δ ≤ (σ ∨ γ) → (δ ∨ γ),
(2) σ → δ = (σ ∨ δ) → δ,

(3) σ ⊙ (δ ∨ γ) = (σ ⊙ δ) ∨ (σ ⊙ γ).

Definition 2.7. ([19])A bounded commutative Rℓ-monoid is a algebraic structure (L,∧,∨,⊙,→
, 0, 1) of type (2, 2, 2, 2, 0, 0) satisfying the following conditions:

(1) (L,∧,∨, 0, 1) is a bounded lattice,

(2) (L,⊙, 1) is a commutative monoid,

(3) σ ⊙ δ ≤ γ iff σ ≤ δ → γ, for any σ, δ, γ ∈ L,
(4) σ ∧ δ = σ ⊙ (σ → δ), for any σ, δ ∈ L.

Definition 2.8. ([3])A Heyting algebra is an algebra (L,∧,∨,→, 0, 1) such that (L,∧,∨, 0, 1)
is a bounded distributive lattice that satisfies the condition:

σ ∧ δ ≤ γ iff σ ≤ δ → γ,
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for any σ, δ, γ ∈ L.

Definition 2.9. A semihoop L is said to be prelinear if for any σ, δ ∈ L, 1 is the unique upper

bound in L of the set

{(σ → δ), (δ → σ)}.

Example 2.10. Let L = {0, α, β, γ, θ, 1}, where 0 ≤ α, β, γ, θ ≤ 1. Defining operations ⊙ and

→ as follows:

⊙ 0 α β γ θ 1

0 0 0 0 0 0 0

α 0 α β θ θ α

β 0 β β 0 0 β

γ 0 θ 0 θ θ γ

θ 0 θ 0 θ θ θ

1 0 α β γ θ 1

→ 0 α β γ θ 1

0 1 1 1 1 1 1

α 0 1 β γ γ 1

β γ α 1 γ γ 1

γ β α β 1 α 1

θ β α β α 1 1

1 0 α β γ θ 1

Then (L,∧,⊙,→, 0, 1) is a semihoop. However, it is not a prelinear semihoop since 1 is not the

unique upper bound of the set

{(γ → θ), (θ → γ)}.

Example 2.11. Let L = {0, α, β, θ, 1}, where 0 ≤ α ≤ β, θ ≤ 1. Defining operations ⊙ and →
as follows:

⊙ 0 α β θ 1

0 0 0 0 0 0

α 0 α α α α

β 0 α β α β

θ 0 α α θ θ

1 0 α β θ 1

→ 0 α β θ 1

0 1 1 1 1 1

α 0 1 1 1 1

β 0 θ 1 θ 1

θ 0 β β 1 1

1 0 α β θ 1

Then (L,∧,⊙,→, 0, 1) is a prelinear semihoop.

Notice that the prelinearity does not necessitate the presence of a join operator in a semihoop

L. However, in the following, we will show that every prelinear semihoop has a lattice reduct

whereby the join operation is definable in terms of the meet and the implication.

Proposition 2.12. Let L be a prelinear semihoop. Then we have: for any σ, δ, γ ∈ L,
(1) σ → (δ ∧ γ) = (σ → δ) ∧ (σ → γ),

(2) L has a lattice reduct whereby σ ∨ δ = ((σ → δ) → δ) ∧ ((δ → σ) → σ).

Proof. (1) By Proposition 2.4(6),(8) and (12), we have

δ → γ = δ → (δ ∧ γ)
≤ (σ → δ) → (σ → (δ ∧ γ))
≤ ((σ → δ) ∧ (σ → γ)) → (σ → (δ ∧ γ)).

By similarity, we have

γ → δ ≤ ((σ → δ) ∧ (σ → γ)) → (σ → (δ ∧ γ)).
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Further by prelinearity, we have

((σ → δ) ∧ (σ → γ)) → (σ → (δ ∧ γ)) = 1,

which implies

(σ → δ) ∧ (σ → γ) ≤ σ → (δ ∧ γ).

The opposite inequality follows from Proposition 2.4(11).

(2) It is well known in [17] that every prelinear residuated ∧-semilattice is a lattice, whereby

the join operation is given by

σ ∨ δ = ((σ → δ) → δ) ∧ ((δ → σ) → σ).

Notice that every prelinear semihoop is a prelinear residuated ∧-semilattice. Hence the above

result also holds in semihoops.

Theorem 2.13. Let L be a semihoop. Then the following statements are equivalent: for any

σ, δ, γ ∈ L,
(1) L is prelinear,

(2) σ → (δ ∨ γ) = (σ → δ) ∨ (σ → γ),

(3) σ → γ ≤ (σ → δ) ∨ (δ → γ).

Proof. (1) ⇒ (2) By Proposition 2.12(2), we get that every prelinear semihoop has a lattice

structure, then it follows from Proposition 2.6(2), Proposition 2.4(6) and (12), we have

δ → γ = (δ ∨ γ) → γ

≤ (σ → (δ ∨ γ)) → (σ → γ)

≤ (σ → (δ ∨ γ)) → ((σ → γ) ∨ (σ → δ)).

By similarity, we have

γ → δ = (γ ∨ δ) → δ ≤ (σ → (δ ∨ γ)) → ((σ → γ) ∨ (σ → δ)).

Hence by prelinearity, we have

(σ → (δ ∨ γ)) → ((σ → γ) ∨ (σ → δ)) = 1,

that is,

σ → (δ ∨ γ) ≤ (σ → δ) ∨ (σ → γ).

On the other hand, using Proposition 2.4(6),

σ → δ ≤ σ → (δ ∨ γ), σ → γ ≤ σ → (δ ∨ γ).

Thus,

(σ → δ) ∨ (σ → γ) ≤ σ → (δ ∨ γ).

(2) ⇒ (3) By Proposition 2.6(1), we have

σ → γ ≤ (δ ∨ σ) → (δ ∨ γ) = ((δ ∨ σ) → δ) ∨ ((δ ∨ σ) → γ) ≤ (σ → δ) ∨ (δ → γ).

(3) ⇒ (1) Taking σ = γ in (3), we have

1 = γ → γ ≤ (γ → δ) ∨ (δ → γ).
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Proposition 2.14. Every prelinear semihoop is a distributive lattice.

Proof. By Proposition 2.6(2), we have

δ → γ = (δ ∨ γ) → γ ≤ (σ ∧ (δ ∨ γ)) → (σ ∧ γ).

By similarity, we have

γ → δ = (δ ∨ γ) → δ ≤ ((σ ∧ (δ ∨ γ)) → (σ ∧ δ).

Hence by prelinearity, we have

1 = (δ → γ) ∨ (γ → δ)

≤ ((σ ∧ (δ ∨ γ)) → (σ ∧ γ)) ∨ ((σ ∧ (δ ∨ γ)) → (σ ∧ δ))
= (σ ∧ (δ ∨ γ)) → ((σ ∧ δ) ∨ (σ ∧ γ)),

which implies

σ ∧ (δ ∨ γ) ≤ (σ ∧ δ) ∨ (σ ∧ γ).

This proves distributivity, since the opposite inequality is always valid.

Definition 2.15. ([3])Given ordered sets E,F and order-preserving maps f : E −→ F and

g : F −→ E, we say that the pair (f, g) establishes a Galois connection between E and F if

fg ≥ idF and gf ≤ idE .

§3 Multiplicative derivations of semihoops

In this section, we introduce some derivations in semihoops and give some characterizations

of them. Then, we show that every Heyting algebra is isomorphic to the algebraic structure

the set of all multiplicative derivations on Heyting algebras.

Definition 3.1. Let L be a semihoop. A map d : L −→ L is called a multiplicative derivation

on L if it satisfies the following condition: for any σ, δ ∈ L,

d(σ ⊙ δ) = σ ⊙ d(δ).

We denote by D(L) the set of all multiplicative derivations of L.

Now, we will present some examples for multiplicative derivations on semihoops.

Example 3.2. Let L be a bounded semihoop. Defining a map d0 : L → L by d0(σ) = 0 for

all σ ∈ L. Then d0 is a multiplicative derivation on L, which is called the zero multiplicative

derivation. Moreover, we define a map d1 : L → L by d1(σ) = σ for all σ ∈ L. Then d1 is also

a multiplicative derivation on L, which is called the identity multiplicative derivation.

Example 3.3. Let L = {0, α, β, γ, 1}, where 0 ≤ α ≤ β ≤ γ ≤ 1. Defining operations ⊙ and

→ as follows:
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⊙ 0 α β γ 1

0 0 0 0 0 0

α 0 α 0 α α

β 0 0 β β β

γ 0 α β γ γ

1 0 α β γ 1

→ 0 α β γ 1

0 1 1 1 1 1

α β 1 1 1 1

β α α 1 1 1

γ 0 α β 1 1

1 0 α β γ 1

Then (L,∧,⊙,→, 0, 1) is a bounded semihoop. Now we define d : L → L as follows:

d(σ) =

{
0, σ = 0, β

α, σ = α, γ, 1

It is verified that d is a multiplicative derivation on L.

Example 3.4. Let (G,+,−,∧,∨) be an arbitrary ℓ-group. For an arbitrary element u ∈ G,

u ≥ 0 defined on the set G[u] = [0, u] the following operations:

α⊙ β = (α− u+ β) ∨ 0, α→ β = (β − α+ u) ∧ u.

Then (G[u],∧,⊙,→, 0, u) is a bounded semihoop. Now, we define a map d : G[u] → G[u] as

follows: for all σ ∈ [0, u], and β ∈ [0, u]

d(σ) =

{
β, σ = u

β ⊙ σ, σ ̸= u

It is easily verified that d is a multiplicative derivation on G[u].

Proposition 3.5. Let L be a semihoop and d be a multiplicative derivation on L. Then we

have: for any σ, δ ∈ L,
(1) if L is bounded, then d(0) = 0,

(2) d(σ) = σ ⊙ d(1),

(3) d(σ) ≤ σ,

(4) d(σ)⊙ δ = σ ⊙ d(δ),

(5) if σ ≤ δ, then d(σ) ≤ d(δ),

(6) d(σ)⊙ d(δ) ≤ d(σ ⊙ δ),

(7) d(σ → δ) ≤ d(σ) → d(δ),

(8) if L is a hoop, then d(σ ∧ δ) = d(σ) ∧ d(δ).

Proof. (1) Taking σ = δ = 0 in Definition 3.1, we have

d(0) = d(0⊙ 0) = 0⊙ d(0) = 0.

(2) Taking δ = 1 in Definition 3.1, we have

d(σ) = d(1⊙ σ) = σ ⊙ d(1).

(3) It follows from (2) that d(σ) = σ ⊙ d(1) ≤ σ.

(4) From (2), we have

d(σ)⊙ δ = σ ⊙ d(1)⊙ δ = σ ⊙ (δ ⊙ d(1)) = σ ⊙ d(δ).
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(5) If σ ≤ δ, then it follows from (2) that

d(σ) = σ ⊙ d(1) ≤ δ ⊙ d(1) = d(δ).

(6) From (2), we have

d(σ)⊙ d(δ) = σ ⊙ d(1)⊙ δ ⊙ d(1) ≤ (σ ⊙ δ)⊙ d(1) = d(σ ⊙ δ).

(7) From Proposition 2.4(9), we have

d(σ → δ) = (σ → δ)⊙ d(1) ≤ (σ ⊙ d(1)) → (δ ⊙ d(1)) = d(σ) → d(δ).

(8) If L is a hoop, then it follows from (2) and Proposition 2.4(14) that

d(σ ∧ δ) = (σ ∧ δ)⊙ d(1) = (σ ⊙ d(1)) ∧ (δ ⊙ d(1)) = d(σ) ∧ d(δ).

The following example shows that the converse of Proposition 3.5(6) and (7) are not true

in general.

Example 3.6. Let L be the bounded semihoop in Example 2.10. Now we define d : L → L as

follows:

d(σ) =


0, σ = 0, β

θ, σ = α, γ, θ

γ, σ = 1

It is verified that d is a multiplicative derivation on L. Since

d(1)⊙ d(1) = γ ⊙ γ = θ � γ = d(1) = d(1⊙ 1),

which shows that the converse of Proposition 3.5(6) does not hold in general.

Example 3.7. Let L be the bounded semihoop and d be the multiplicative derivation on L in

Example 3.3. Since

d(α→ γ) = d(1) = α � 1 = α→ α = d(α) → d(γ),

which shows that the converse of Proposition 3.5(7) does not hold in general.

The following example shows that the condition in Proposition 3.5(8) is necessary.

Example 3.8. Let L be the bounded semihoop and d be a multiplicative derivation on L in

Example 3.3. Since

α = d(α) = d(α ∧ β) ̸= d(α) ∧ d(β) = α ∧ 0 = 0,

which shows that Proposition 3.5(8) does not hold in semihoops in general.

Proposition 3.9. Let L be a semihoop and d : L → L be a map on L. Then the following

statements are equivalent: for any σ, δ ∈ L,
(1) d is a multiplicative derivation on L,
(2) d(σ ⊙ δ) = d(σ)⊙ δ,

(3) d(σ) = d(1)⊙ σ.
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Proof. (1) ⇒ (2) By Definition 3.1 and Proposition 3.5(4), we have d(σ⊙δ) = σ⊙d(δ) = d(σ)⊙δ.
(2) ⇒ (3) Taking δ = σ and σ = 1 in (2).

(3) ⇒ (1) From (3), we have

d(σ ⊙ δ) = d(1)⊙ (σ ⊙ δ) = σ ⊙ (d(1)⊙ δ) = σ ⊙ d(δ).

Remark 3.10. He introduced in [13] that a multiplicative derivation on a residuated lattice as

a map d : L → L satisfies the following condition:

(DR) d(σ ⊙ δ) = (d(σ)⊙ δ) ∨ (σ ⊙ d(δ)).

Proposition 3.9 shows that a map d : L → L is a multiplicative derivation if and only if

(DS) d(σ ⊙ δ) = σ ⊙ d(δ) = d(σ)⊙ δ.

In the case of residuated lattice, the condition (DS) implies the validity of (DR). Hence the

notion of a multiplicative derivation on semihoops essentially generalized that of a multiplicative

derivation on residuated lattices.

The following example shows that the condition (DR) does not imply (DS).

Example 3.11. Let L = {0, α, β, 1} be a chain and operations ⊙ and → be defined as follows:

⊙ 0 α β 1

0 0 0 0 0

α 0 0 α α

β 0 α β β

1 0 α β 1

→ 0 α β 1

0 1 1 1 1

α α 1 1 1

β 0 α 1 1

1 0 α β 1

Then (L,∧,∨,⊙,→, 0, 1) is a residuated lattice, where σ∧δ = min{σ, δ} and σ∨δ = max{σ, δ}
for all σ, δ ∈ L. Now, we define a map d : L → L as follows:

d(σ) =

{
0, σ = 0,

α, σ = α, β, 1

One can check that d is a derivation on (L,∧,∨,⊙,→, 0, 1). However, it is not a derivations on

semihoops, since α = d(α) = d(α⊙ β) ̸= α⊙ d(β) = α⊙ α = 0.

Then we introduce the notion of idempotent multiplicative derivation in semihoops and give

some characterization of Brouwerian semilattices by them.

Definition 3.12. A multiplicative derivation d on a semihoop is called an idempotent multi-

plicative derivation provided that d(1) ∈ I(L), that is d(1)⊙ d(1) = d(1).

Example 3.13. The multiplicative derivation d in Example 3.3 is idempotent. However, the

multiplicative derivation d in Example 3.4 is not idempotent since d(u) = β /∈ I(L).

Proposition 3.14. Let L be a semihoop and d be an idempotent multiplicative derivation on

L. Then we have: for any σ, δ ∈ L,
(1) d(d(σ)) = d(σ),

(2) d(σ ∧ δ) = d(σ) ∧ d(δ),
(3) d(σ ⊙ δ) = d(σ)⊙ d(δ),

(4) Fixd(L) = d(L), where Fixd(L) = {σ ∈ L|d(σ) = σ},
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(5) d(L) = L iff d = d1, where d1 is the multiplicative derivation in Example 3.2,

(6) d(σ) ≤ δ iff d(σ) ≤ d(δ).

Proof. (1) From Proposition 3.5(2) and d(1) ∈ I(L), we have

d(d(σ)) = d(d(1)⊙ σ) = d(1)⊙ d(1)⊙ σ = d(1)⊙ σ = d(σ).

(2) From Proposition 3.5(2), we have

d(σ ∧ δ) = d(1)⊙ (σ ∧ δ)
= d(1) ∧ (σ ∧ δ)
= (d(1) ∧ σ) ∧ (d(1) ∧ δ)
= (d(1)⊙ σ) ∧ (d(1)⊙ δ)

= d(σ) ∧ d(δ).
(3) From Proposition 3.5(2), we have

d(σ ⊙ δ) = d(1)⊙ (σ ⊙ δ)

= d(1)⊙ d(1)⊙ (σ ⊙ δ)

= (d(1)⊙ σ)⊙ (d(1)⊙ δ)

= d(σ)⊙ d(δ).

(4) Let δ ∈ d(L). Then there exists σ ∈ L such that δ = d(σ). Hence by (1), d(δ) =

d(d(σ)) = d(σ) = δ. It follows that δ ∈ Fixd(L). Conversely, if δ ∈ Fixd(L), we have δ ∈ d(L).
Therefore, d(L) = Fixd(L).

(5) (⇒) Suppose that d(L) = L, then for any σ ∈ L, there exists a δ ∈ L such that d(δ) = σ.

Hence d(σ) = d(d(δ)) = d(δ) = σ, that is d(σ) = σ. Therefore, d = d1.

(⇐) Suppose that d = d1, that is for any σ ∈ L, d(σ) = σ. Hence d(L) = L.
(6) By Proposition 3.9(3) and d be an idempotent multiplicative derivation , we have d(σ) ≤

δ iff d(1)⊙ σ ≤ δ iff d(1)⊙ d(1)⊙ σ ≤ d(1)⊙ δ iff d(1)⊙ σ ≤ d(1)⊙ δ iff d(σ) ≤ d(δ).

Theorem 3.15. Let L be a semihoop and d be a multiplicative derivation on L. Then the

following statements are equivalent:

(1) L is a Brouwerian semilattice,

(2) every multiplicative derivation d on L satisfies d(σ)⊙ d(σ) = d(σ) for any σ ∈ L,
(3) every multiplicative derivation d on L satisfies

d(σ ∧ δ) = d(σ)⊙ d(δ) = d(σ)⊙ (d(σ) → d(δ))

for any σ, δ ∈ L.

Proof. (1) ⇒ (2) It is noted that any Brouwerian semilattice is equivalent to the idempotent

semihoop. In this case, by Proposition 3.5(2), we have d(σ) ⊙ d(σ) = d(1) ⊙ σ ⊙ d(1) ⊙ σ =

d(1)⊙ σ = d(σ).

(2) ⇒ (3) By Propositions 2.4(15)(i), 3.14(2) and (3), we can get

d(σ ∧ δ) = d(σ ⊙ δ) = d(σ)⊙ d(δ) = d(σ)⊙ (d(σ) → d(δ)).

(3) ⇒ (1) If every multiplicative derivation d on L satisfies d(σ ∧ δ) = d(σ) ⊙ d(δ) for

any σ, δ ∈ L, then taking d = d1, we have σ ∧ δ = σ ⊙ δ for any σ, δ ∈ L, which implies that L
is a Brouwerian semilattice.
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In what follows, we focus on algebraic structure of the set of all multiplicative derivations.

Proposition 3.16. Let L be an Rℓ-monoid. Then (D(L),⊓,⊔, d0, d1) is a Heyting algebras,

where

(di ⊓ dj)(σ) = di(σ) ∧ dj(σ),
(di ⊔ dj)(σ) = di(σ) ∨ dj(σ),

(di 7→ dj)(σ) = ⊔{d|di ⊓ d ≤ dj}(σ),

for any di, dj ∈ D(L) and σ ∈ L.

Proof. For any di, dj ∈ D(L) and σ ∈ L, by Proposition 2.4(14), we have

(di ⊓ dj)(σ ⊙ δ) = di(σ ⊙ δ) ∧ dj(σ ⊙ δ)

= (σ ⊙ di(δ)) ∧ (σ ⊙ dj(δ))

= σ ⊙ (di(δ) ∧ dj(δ))
= σ ⊙ (di ⊓ dj)(δ),

and by Proposition 2.6(3), we have

(di ⊔ dj)(σ ⊙ δ) = di(σ ⊙ δ) ∨ dj(σ ⊙ δ)

= (σ ⊙ di(δ)) ∨ (σ ⊙ dj(δ))

= σ ⊙ (di(δ) ∨ dj(δ))
= σ ⊙ (di ⊔ dj)(δ),

which implies di ⊓ dj , di ⊔ dj ∈ D(L).
Also, for any di ∈ D(L) and σ ∈ L, we have

(di ⊓ d0)(σ) = di(σ) ∧ d0(σ)
= di(σ) ∧ 0

= d0(σ),

(di ⊔ d1)(σ) = di(σ) ∨ d1(σ)
= di(σ) ∨ 1

= d1(σ),

which implies di ⊓ d0 = d0 and di ⊔ d1 = d1.

Then we will prove that (D(L),⊓,⊔, d0, d1) is a bounded distributive lattice. In particular,

for any di, dj , dk ∈ D(L) and σ ∈ L, by the distributivity of Rℓ-monoid, we have

(di ⊓ (dj ⊔ dk))(σ) = di(σ) ∧ (dj(σ) ∨ dk(σ))
= (di(σ) ∧ dj(σ)) ∨ (di(σ) ∧ dk(σ))
= ((di ⊓ dj) ⊔ (di ⊓ dk))(σ)

which implies di ⊓ (dj ⊔ dk) = (di ⊓ dj) ⊔ (di ⊓ dk). Similaly, one can prove di ⊔ (dj ⊓ dk) =

(di ⊔ dj) ⊓ (di ⊔ dk).
Moreover, by D(L) is closed under ⊓,⊔, we obtain that di 7→ dj is well defined. Then we

will show that

di ⊓ d ≤ dj if and only if di ≤ d 7→ dj .
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In particular, if di ⊓ d ≤ dj , that is di(σ) ∧ d(σ) ≤ dj(σ) for any σ ∈ L, which implies that

d ∈ {f |di ⊓ f ≤ dj}. So d ≤ ⊔{f |di ⊓ f ≤ dj}, that is, di ≤ d 7→ dj . Conversely, if di ≤ d 7→ dj ,

then di(σ) ≤ d 7→ dj(σ) for any σ ∈ L. So di ≤ ⊔{f |d ⊓ f ≤ dj}, which implies di ⊓ d ≤ dj .

Thus (D(L),⊓,⊔, 7→, d0, d1) is a Heyting algebra.

Theorem 3.17. Let (L,∧,∨,→, 0, 1) be a Heyting algebra. Then Heyting algebra (L,∧,∨,→
, 0, 1) is isomorphic to (D(L),⊓,⊔, 7→, d0, d1).

Proof. Notice that each Heyting algebra is an idempotent Rℓ-monoid [4]. Then it follows from

Proposition 3.16 that (D(L),⊓,⊔, 7→, d0, d1) is a Heyting algebra.

Let λ : L → D(L) be defined by

λ(a)(σ) = a ∧ σ,

for a given a ∈ L and any σ ∈ L. Then it follows from Proposition 3.9 (1) ⇔ (3) that λ is well

defined.

(1) If λ(a) = λ(b), then λ(a)(σ) = λ(b)(σ), and hence a ∧ σ = b ∧ σ for all σ ∈ L. Now,

if σ = a, then a = a ∧ a = a ∧ b, that is, a ≤ b. If σ = b, then a ∧ b = b ∧ b = b, and hence

a ∧ b = b, that is, b ≤ a. So a = b, which shows that λ is an injective function.

(2) For any d ∈ D(L), there exists a d(1) ∈ L such that d = λ(d(1)), which implies that λ

is a surjective function. Indeed, by Proposition 3.9(3), we have

d(σ) = d(1)⊙ σ = d(1) ∧ σ = λ(d(1))(σ)

for any σ ∈ L.
(3) For any a, b ∈ L, we have

λ(a ∧ b)(σ) = (a ∧ b) ∧ σ = (a ∧ σ) ∧ (b ∧ σ) = (λ(a) ⊓ λ(b))(σ),
λ(a ∨ b)(σ) = (a ∨ b) ∧ σ = (a ∧ σ) ∨ (b ∧ σ) = (λ(a) ⊔ λ(b))(σ),

λ(a→ b)(σ) = (a→ b) ∧ σ = ∨{λ(σ)|λa(σ) ∧ λ(σ) ≤ λb(σ)} = (λa 7→ λb)(σ),

which implies that λ is a homomorphism.

Therefore (L,∧,∨,→, 0, 1) is isomorphic to (D(L),⊓,⊔, 7→, d0, d1).

§4 Implicative derivations of semihoops

In this section, we introduce implicative derivations in semihoops and give some charac-

terizations of them. Then, we show that every Boolean algebra is isomorphic to the algebraic

structure the set of all implicative derivations on Boolean algebra and discuss the relation

between multiplicative and implicative derivations on semihoops.

Definition 4.1. Let L be a semihoop. A map g : L −→ L is called an implicative derivation

on L if it satisfies the following condition: for any σ, δ ∈ L,

g(σ → δ) = σ → g(δ).

We will denote G(L) as the set of all implicative derivations of L.
Now, we present some examples of implicative derivations on semihoops.
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Example 4.2. Let L be a semihoop. Defining a map 1g : L → L by 1g(σ) = 1 for all

σ ∈ L. Then 1g is an implicative derivation on L, which is called the one implicative derivation.

Moreover, we define a map g1 : L → L by g1(σ) = σ for all σ ∈ L. Then g1 is also an implicative

derivation on L, which is called the identity implicative derivation.

Example 4.3. Let L be the bounded semihoop in Example 3.3. Now, we define g : L → L as

follows:

g(σ) =


0, σ = 0,

α, σ = α,

β, σ = β,

1, σ = γ, 1

It is verified that g is an implicative derivation on L.

Example 4.4. Let L be the bounded semihoop in Example 3.4. Now, we define a map g :

G[u] → G[u] as follows: for all σ ∈ [0, u], and β ∈ [0, u]

g(σ) =

{
u, σ = u

β → σ, σ ̸= u

It is easily verified that g is an implicative derivation on L.

Proposition 4.5. Let L be a bounded semihoop and g be an implicative derivation on L. Then

we have: for any σ, δ ∈ L,
(1) g(1) = 1,

(2) σ ≤ g(σ),

(3) if σ ≤ δ, then σ ≤ g(δ),

(4) g(σ) → δ ≤ σ → g(δ),

(5) if L is a residuated lattice, then g(σ → δ) = (g(σ) → δ) ∨ (σ → g(δ)).

Proof. (1) Taking σ = 0 in Definition 4.1, we have

g(1) = g(0 → δ) = 0 → g(δ) = 1.

(2) Taking δ = σ in Definition 4.1, we have

1 = g(1) = g(σ → σ) = σ → g(σ),

which implies σ ≤ g(σ).

(3) If σ ≤ δ, then

1 = g(1) = g(σ → δ) = σ → g(δ)

which implies σ ≤ g(δ).

(4) It follows from (2) and Proposition 2.4(6).

(5) From (4), we have

g(σ → δ) = σ → g(δ) = (g(σ) → δ) ∨ (σ → g(δ)).
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The following example shows that the converse of Proposition 4.5(4) is not true in general.

Example 4.6. Let L be the bounded semihoop and g be the implication derivation on L in

Example 4.3. Since

g(γ) → γ = 1 → γ = γ � 1 = γ → 1 = γ → g(γ),

which shows that the converse of Proposition 4.5(4) does not hold in general.

Remark 4.7. He introduced in [13] that an implicative derivation on a residuated lattice as a

map g : L→ L satisfies the Proposition 4.5(5). Proposition 4.5(5) shows that the notion of an

implicative derivation on semihoops essentially generalized that of an implicative derivation on

residuated lattices.

Then we introduce the notion of regular implicative derivation in bounded semihoops and

give some characterization of them.

Definition 4.8. An implicative derivation g on a bounded semihoop is called a regular im-

plicative derivation provided that g(σ) = g(¬¬σ) for any σ ∈ L.

Example 4.9. The implicative derivation g in Example 4.3 is regular.

Example 4.10. Let L be the bounded semihoop in Example 3.3. Now, we define g : L → L
as follow:

g(σ) =


0, σ = 0

α, σ = α

β, σ = β, γ

1, σ = 1.

It is verified that g is an implicative derivation on L, but it is not regular, since g(γ) = β ̸=
1 = ¬γ → g(0).

Proposition 4.11. Let L be a bounded semihoop and g be a regular implicative derivation on

L. Then we have: for any σ, δ ∈ L,
(1) g(σ) = ¬σ → g(0),

(2) if σ ≤ δ, then g(σ) ≤ g(δ).

Proof. (1) For any σ ∈ L, we have

g(σ) = g(¬¬σ) = g(¬σ → 0) = ¬σ → g(0).

(2) If σ ≤ δ, by Proposition 2.4(6), then g(σ) = ¬σ → g(0) ≤ ¬δ → g(0) = g(δ).

Theorem 4.12. Let L be a bounded semihoop and g be an implicative derivation on L. Then

the following statements are equivalent:

(1) L is regular,

(2) every implicative derivation is regular,

(3) g(σ) = ¬σ → g(0) for any σ ∈ L.

Proof. (1) ⇒ (2) Clearly.
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(2) ⇒ (3) It follows from Proposition 4.11(1).

(3) ⇒ (1) Taking g = g1 in (3), we have

σ = g1(σ) = ¬σ → g1(0) = ¬σ → 0 = ¬¬σ,

which implies σ = ¬¬σ for any σ ∈ L.
Remark 4.13. Theorem 4.12 shows that every implicative derivation g is completely determined

by the element g(0) on the regular bounded semihoops. However, it does not hold in bounded

semihoops in general, see Example 4.10.

We also focus on algebraic structure of the set of all implicative derivations.

Theorem 4.14. Let L be a bounded prelinear semihoop. Then (G(L),∩,∪, g1, 1g) is a bounded

distributive lattice, where

(gi ∩ gj)(σ) = gi(σ) ∧ gj(σ),
(gi ∪ gj)(σ) = gi(σ) ∨ gj(σ).

for any gi, gj ∈ G(L), and σ ∈ L.

Proof. For any gi, gj ∈ G(L) and σ ∈ L, by Propositions 2.12(1) and Theorem 2.13(2), we have

(gi ∩ gj)(σ → δ) = gi(σ → δ) ∧ gj(σ → δ)

= (σ → gi(δ)) ∧ (σ → gj(δ))

= σ → (gi(δ) ∧ gj(δ))
= σ → (gi ∩ gj)(δ),

and

(gi ∪ gj)(σ → δ) = gi(σ → δ) ∨ gj(σ → δ)

= (σ → gi(δ)) ∨ (σ → gj(δ))

= σ → (gi(δ) ∨ gj(δ))
= σ → (gi ∪ gj)(δ),

which implies gi ∩ gj , gi ∪ gj ∈ G(L).
Also, for any gi ∈ G(L) and σ ∈ L, we have

(gi ∩ 1g)(σ) = gi(σ) ∧ 1g(σ) = gi(σ) ∧ 1 = gi(σ),

(gi ∪ 1g)(σ) = gi(σ) ∨ 1g(σ) = gi(σ) ∨ 1 = 1g(σ)

which implies gi ∩ 1g = gi, gi ∪ 1g = 1g.

It is easily verified that (G(L),∩,∪, g1, 1g) is a bounded distributive lattice by Proposition

2.14.

Theorem 4.15. Let (L,∧,⊙,→, 0, 1) be a bounded idempotent prelinear semihoop. Then

(G(L),∩,∪,⇒, g1, 1g) is also a bounded idempotent prelinear semihoop, where

(gi ∩ gj)(σ) = gi(σ) ∧ gj(σ),
(gi ∪ gj)(σ) = gi(σ) ∨ gj(σ),
(gi ⇒ gj)(σ) = gi(σ) → gj(σ).

for any gi, gj ∈ G(L), and σ ∈ L.
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Proof. Theorem 4.14 shows that (G(L),∩,∪, g1, 1g) is a bounded distributive lattice if L is a

bounded prelinear semihoop. Now, we prove that (G(L),∩,∪,⇒, g1, 1g) is a bounded idem-

potent prelinear semihoop if L is a bounded idempotent prelinear semihoop. Indeed, for any

gi, gj ∈ G(L) and σ ∈ L, by Proposition 2.4(15)(ii), we have

(gi ⇒ gj)(σ → δ) = gi(σ → δ) → gj(σ → δ)

= (σ → gi(δ)) → (σ → gj(δ))

= σ → (gi(δ) → gj(δ))

= σ → (gi ⇒ gj)(δ),

which implies gi ⇒ gj ∈ G(L).
Therefore (G(L),∩,∪,⇒, g1, 1g) is a bounded idempotent prelinear semihoop.

Inspired by Theorem 4.15, it is natural to ask that whether there exists a function such

that bounded idempotent prelinear semihoops (L,∧,∨,→, 0, 1) and (G(L),∩,∪,⇒, g1, 1g) are

isomorphism. For this question, we give the positive answer under certain conditions in Boolean

algebras.

Theorem 4.16. Let (L,∧,∨,¬, 0, 1) be a Boolean algebra. Then Boolean algebras (L,∧,∨,
¬, 0, 1) and (G(L),∩,∪, ⋆, g1, 1g) are isomorphism, where (gi)

⋆(σ) = (gi ⇒ g1)(σ) for any

gi ∈ G(L) and σ ∈ L.

Proof. Notice that each Boolean algebra is a bounded idempotent prelinear semihoop. Then

it follows from Theorem 4.15 that (G(L),∩,∪,⇒, g1, 1g) is a bounded idempotent prelinear

semihoop, and hence is a bounded distributive lattice. Now, we further prove that is a Boolean

algebra. Indeed, for any gi ∈ G(L), and σ ∈ L, we have

(gi ∩ (gi)
⋆)(σ) = gi(σ) ∧ (gi(σ))

⋆ = gi(σ) ∧ (gi(σ) → g1(σ)) = gi(σ) ∧ g1(σ) = g1(σ),

(gi ∪ (gi)
⋆)(σ) = gi(σ) ∨ (gi(σ) → g1(σ)) = gi(σ) ∨ (gi(σ))

⋆ ∨ g1(σ) = 1 ∨ g1(σ) = 1 = 1g(σ),

which implies gi ∩ (gi)
⋆ = g1 and gi ∪ (gi)

⋆ = 1g.

Let χ : L → G(L) be defined by

χ(a)(σ) = a ∨ σ,

for a given a ∈ L and any σ ∈ L. Then it follows from Theorem 4.12 (1) ⇔ (3) that χ is well

defined.

(1) If χ(a) = χ(b), then χ(a)(σ) = χ(b)(σ), and hence a ∨ σ = b ∨ σ for all σ ∈ L. Now,

if σ = a, then a = a ∨ a = a ∨ b, that is, b ≤ a. If σ = b, then a ∨ b = b ∨ b = b, and hence

a ∨ b = b, that is, a ≤ b. So a = b, which shows that χ is an injective function.

(2) For any g ∈ G(L), there exists a g(0) ∈ L such that g = χ(g(0)), which implies that χ

is a surjective function. Indeed, by Theorem 4.12(3), we have

g(σ) = ¬σ → g(0) = σ ⊕ g(0) = σ ∨ g(0) = χ(g(0))(σ)

for any σ ∈ L.
(3) For any a, b ∈ L, we have

χ(a ∧ b)(σ) = (a ∧ b) ∨ σ = (a ∨ σ) ∧ (b ∨ σ) = (χ(a) ⊓ χ(b))(σ),
χ(a ∨ b)(σ) = (a ∨ b) ∨ σ = (a ∨ σ) ∨ (b ∨ σ) = (χ(a) ⊔ χ(b))(σ),

χ(¬a)(σ) = ¬a ∨ σ = a→ σ = (a→ σ) ∧ (σ → σ) = (a ∨ σ) → σ = (χ(a)(σ))⋆.
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which implies that χ is a homomorphism.

Therefore (L,∧,∨,¬, 0, 1) is isomorphic to (G(L),∩,∪, ⋆, g1, 1g).

Then, we discuss the relations between D(L) and G(L).

Let φ : D(L) → G(L) be the map such that

φ(d)(σ) = ¬(d(¬σ))

for any d ∈ D(L) and σ ∈ L, and ψ : G(L) → D(L) be the map such that

ψ(g)(σ) = ¬(g(¬σ))

for any g ∈ G(L), and σ ∈ L.

Theorem 4.17. Let L be a regular bounded semihoop. Then φ and ψ form an isotone Galois

connection between D(L) and G(L). Namely,

d ≤ ψ(g) if and only if g ≤ φ(d)

for any d ∈ D(L) and g ∈ G(L).

Proof. (1) It follows from Propositions 3.5(5) and 4.11(2) that φ and ψ are isotone.

(2) If d ≤ ψ(g), then d(σ) ≤ ψ(g)(σ) = ¬(g(¬σ)), and hence g(¬σ) ≤ ¬(d(σ)) for any

σ ∈ L. So g(σ) ≤ ¬(d(¬σ)), which implies g(σ) ≤ φ(d)(σ) for any σ ∈ L. Thus g ≤ φ(d).

Conversely, if g ≤ φ(d), then g(σ) ≤ φ(d)(σ) = ¬(d(¬σ)), and hence d(¬σ) ≤ ¬(g(σ)), which
implies d(σ) ≤ ¬(g(¬σ)) = ψ(g)(σ) for any σ ∈ L. Thus d ≤ ψ(g).

Theorem 4.18. Let L be a bounded regular idempotent semihoop. Then there exists a one to

one correspondence between G(L) and D(L). Namely,

(1) if d ∈ D(L), then φ(d) ∈ G(L),
(2) if g ∈ G(L), then ψ(g) ∈ D(L),
(3) ψφ(d) = d and φψ(g) = g.

Proof. If d is a multiplicative derivation on L, then
φ(d)(σ → δ) = ¬(d¬(σ → δ))

= ¬(d(σ ⊙ ¬δ))
= ¬(σ ⊙ d(¬δ))
= σ → φ(d)(δ),

for any σ, δ ∈ L, which implies that φ(d) is an implicative derivation on L.
Conversely, if g is an implicative derivation on L, then

ψ(g)(σ ⊙ δ) = ¬(g(¬(σ ⊙ δ)))

= ¬(g(σ → ¬δ))
= ¬(σ → g(¬δ))
= σ ⊙ ¬(g(¬δ))
= σ ⊙ ψ(g)(δ),

for any σ, δ ∈ L, which implies that ψ(g) is a multiplicative derivation on L.
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Moreover, we have

ψφ(d)(σ) = d(¬(d(¬σ)))
= d(1)⊙ ((d(1)) → σ)

= d(1)⊙ σ

= d(σ)

for any σ ∈ L, and so ψφ(d) = d. Similarly, we also have

φψ(g)(σ) = g(¬(g(¬σ)))
= g(¬(σ → g(0)))

= (σ → g(0)) → g(0)

= g(σ)

for any σ ∈ L, and so φψ(g) = g.

§5 Conclusions

The notion of derivations is helpful for studying structures and properties in algebraic sys-

tems. In this paper, we study some particular derivations on semihoops and give some charac-

terizations of them. We also characterize Heyting algebras and Boolean algebras by derivations

and show that the relations between derivations and Galois connection on semihoops. But there

are still some issues to consider. For example, for any bounded idempotent prelinear semihoop

(L,∧,∨,→, 0, 1), whether there exists a function such that bounded idempotent prelinear semi-

hoops (L,∧,∨,→, 0, 1) and (G(L),∩,∪,⇒, g1, 1g) are isomorphism. In our future work, we will

consider these problems.
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