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A novel fractional case study of nonlinear dynamics via

analytical approach
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Abstract. The present work describes the fractional view analysis of Newell-Whitehead-Segal

equations, using an innovative technique. The work is carried with the help of the Caputo oper-

ator of fractional derivative. The analytical solutions of some numerical examples are presented

to confirm the reliability of the proposed method. The derived results are very consistent with

the actual solutions to the problems. A graphical representation has been done for the solution

of the problems at various fractional-order derivatives. Moreover, the solution in series form

has the desired rate of convergence and provides the closed-form solutions. It is noted that the

procedure can be modified in other directions for fractional order problems.

§1 Introduction

In recent decades, several authors have found that non-integer-order derivatives and inte-

grals are very useful for describing materials and processes having various important properties.

The greater effect of the fractional derivative is observed when the past history of the results

is required as compared to the classical derivative and therefore the researchers are more inter-

ested in the topic of fractional differential equations (FDEs) [1-9]. Leibniz and L’Hospital were

the first to introduce the idea of fractional calculus but later on, the concept was used by many

researchers and has shown many applications in different research areas [4]. With the imple-

mentation of fractional differential equations [FDEs] to model different physical systems and

processes, FDEs have gained much attention from scientists and provide significant fractional

modeling of various phenomena in nature [10-17]. Many physical problems are governed by

FDEs, and several investigators have been interested in seeking the solution to these equations.

In various physical and engineering processes, FDEs have shown fundamental importance over

the last few decades. It has been investigated that fractional nonlinear FDEs are intensively

used in natural phenomena in various branches of applied natural sciences [18-29].
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It is almost very difficult to find the exact solutions to nonlinear FPDEs, so it is a research

field of greater importance and motivation. The nonlinear wave phenomena such as viscoelas-

ticity chemical processes, acoustics, electrochemistry, electromagnetic, material science, biology,

engineering and physics [30-38] are considered for its numerical and analytical investigations.

More effective procedures and techniques are needed for the solution of mathematical models

that can best analyze the real-world phenomena.

In this regard, several methods have been used to obtain the explicit solutions for the

nonlinear equations of integer order. However, very limited approaches are applied to solve F-

PDEs. such as Laplace Transform method (LTM) [39], Adomian Decomposition method (ADM)

[40], Elzaki Transform Decomposition method (ETDM) [41], Reduced Differential Transform

method (RDTM) [42], Natural Transform Decomposition method (NTDM) [43-44], Iterative

Laplace Transform method (ILTM) [45], Fourier Transform method (FTM) [46], solution by

ADM and Variational iteration method (VIM) with Shehu transformation is presented in [47]

Approximate-analytical method (AAM) [48], Homotopy Perturbation method(HAM) [49], and

Perturbation Iteration transform method (PITM) [50].

In the present research work, our focus point is to discuss the fractional view Newell-

Whitehead-Segal equation, using the coupling of Shehu transformation with Homotopy per-

turbation method (HPM). This new hybrid technique is known as the homotopy perturbation

transform method (HPTM). The HPTM solutions are calculated for some numerical examples

related to the problem of NWSEs. The series form solution with a higher rate of convergence

is seen by using HPTM. The nonlinearity of the problem is handled by using the present tech-

nique and we obtain the solutions in a sophisticated manner. Using the HPM, four case study

problems are solved of non-linear Newell-Whitehead-Segel equations. As compared to the exact

solution, the rapid convergence towards the exact solution is seen.

The Newell-Whitehead-Segel equation model is the relationship of the diffusion term effect

with the reaction term nonlinear effect.

The Newell-Whitehead-Segel equation is written as:

Dβ
τ ψ = kψµµ + aψ − bψ(q) (1)

where k > 0 and is real whereas ψ represents the unknown functions in variables µ and τ such

that τ > 0. Also a, b are real numbers and q is a positive integer. The unknown function ψ

either denotes the distribution of temperature along the infinite thin tube or the fluid velocity

along the small diameter pipe with infinite length. The fractional derivative in equation (1)

is represented by the Caputo derivative operator and on the right-hand side, the second term

aψ − bψ(q) defines the source term.

In 1998, He introduced the homotopy perturbation technique [49-54]. Later, the nonlinear

non-homogeneous partial differential equations are solved using the HPM, which is a semi-

analytical technique [49-54]. The solution is assumed to be the sum of an infinite sequence

that converges rapidly to the exact results. This approach was used to solve both linear and

nonlinear equations. In the present research article, we proposed a new approximate analytical



278 Appl. Math. J. Chinese Univ. Vol. 39, No. 2

technique which is known as (HPSTM). The newly developed technique is the mixed form of

Shehu transform and HPM. It is investigated that the present technique is very effective in

finding the analytical solution of fractional NWSEs. The HPSTM results are very convincing

with the exact solutions to the targeted problems. The fractional problem results by using the

current method are also devoted to the fractional view analysis of the problems. It supports the

improved physical analysis of the models in terms of their experimental data. It is suggested

that the current technique can be modified to solve other fractional PDEs and their systems.

The rest of the article is structured as follows: In Section 2, we recall several basic properties

and define the Shehu transform and fractional calculus. In Section 3, the idea of Homotopy

Perturbation Shehu Transform Method is discussed. In Section 4, we explain many problems

to maintain the accuracy and efficiency of the proposed method, and Section 5 is devoted to

the conclusion.

§2 Preliminaries

This section is related to some important definitions regarding fractional calculus and about

some of the Shehu theory. These preliminary concepts are mandatory to complete the present

research work.

2.1 Definition

The Rieman-Liouville fractional integral is defined by [6-8]

Iβ0 h(τ) =
1

Γ(β)

∫ τ

0

(τ − s)β−1h(s)ds,

showing that the integral on the right side converges.

2.2 Definition

Fractional derivative in Caputo’s sense is given as [6-8]

Dβ
τ ψ(τ) =

In−βfn, n− 1 < β ≤ n,n ∈ N
dn

dτn
ψ(τ), β = n, n ∈ N.

(2)

2.3 Definition

Mittag Leffler function having two-parameter is defined as [6-8]:

Eα,β(τ) =
∞∑
k=0

τk

Γ(kα+ β)
. (3)

For α = β = 1, E1,1(τ) = eτ and E1,1(−τ) = e−τ
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2.4 Definition

The Shehu transformation which is defined by S(.) for a function ν(τ) is expressed as [55-57]

S{ν (τ)} = V (s, u) =

∫ ∞

0

ν(τ)e(
−sτ
u )(τ)dτ, τ > 0 s > 0. (4)

The Shehu transformation of a function ν(τ) is V(s,u): then ν(τ) is called the inverse of V(s,u)

which is defined as S−1{V (s, u)} = ν(τ), for τ ≥ 0, S−1 is inverse Shehu transformation.

2.5 Definition

Shehu transform for fractional order derivatives [55-57]. The Shehu transformation for the

fractional order derivatives is expressed as

S
{
ν(β)(τ)

}
=
sβ

uβ
V (s, u)−

n−1∑
k=0

( s
u

)β−k−1

ν(k)(0), n− 1 < β ≤ n, (5)

§3 Homotopy Perturbation Shehu Transform Method

To explain the basic ideas of this approach, the following equation is considered [49-54]:

Dβ
τ ψ(µ, τ) +M [µ]ψ(µ, τ) +N [µ]ψ(µ, τ) = h(µ, τ), τ > 0, 0 < β ≤ 1,

ψ(µ, 0) = g(µ), µ ∈ ℜ.
(6)

Where Dβ
τ = ∂β

∂τβ Caputo’s derivative, M [µ], N [µ] are the linear and nonlinear operators

respectively and h(µ, τ) is source function.

Using Shehu transformation [55-57] to (6), we have

S[Dβ
τ ψ(µ, τ) +M [µ]ψ(µ, τ) +N [µ]ψ(µ, τ)] = S[h(µ, τ)], τ > 0, 0 < β ≤ 1,

R(µ, s, u) =
g(µ)

s
+
uβ

sβ
S[h(µ, τ)]− uβ

sβ
S[M [µ]ψ(µ, τ) +N [µ]ψ(µ, τ)].

(7)

Now, by taking inverse Shehu transform [55-57], we get

ψ(µ, τ) = F (µ, τ)− S−1

(
uβ

sβ
S[M [µ]ψ(µ, τ) +N [µ]ψ(µ, τ)]

)
, (8)

where

F (µ, τ) = S−1[
g(µ)

s
+
uβ

sβ
S[h(µ, τ)]] = g(µ) + S−1

[
uβ

sβ
S[h(µ, τ)]

]
. (9)

Now, perturbation technique having parameter ϵ is given as

ψ(µ, τ) =
∞∑
k=0

ϵkψk(µ, τ), (10)

where ϵ is perturbation parameter and ϵ ∈ [0, 1].

The nonlinear term can be decomposed as

Nψ(µ, τ) =
∞∑
k=0

ϵkHn(ψ), (11)
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where Hn are He’s polynomials of the form ψ0, ψ1, ψ2 · · · , ψn, and can be determined as

Hn(ψ0, ψ1, ..., ψn) =
1

γ(n+ 1)
Dk

ϵ

[
N

( ∞∑
k=0

ϵiψi

)]
ϵ=0

, (12)

where Dk
ϵ = ∂k

∂ϵk
. Using relation (10) and (11) in (7) and constructing the Homotopy , we get

∞∑
k=0

ϵkψk(µ, τ) = F (µ, τ)− ϵ×

(
S−1

[
uβ

sβ
S{M

∞∑
k=0

ϵkψk(µ, τ) +
∞∑
k=0

ϵkHk(ψ)}

])
. (13)

On comparing coefficient of ϵ on both sides, we obtain

ϵ0 : ψ0(µ, τ) = F (µ, τ),

ϵ1 : ψ1(µ, τ) = S−1

[
uβ

sβ
S(M [µ]ψ0(µ, τ) +H0(ψ))

]
,

ϵ2 : ψ2(µ, τ) = S−1

[
uβ

sβ
S(M [µ]ψ1(µ, τ) +H1(ψ))

]
,

...

ϵk : ψn(µ, τ) = S−1

[
uβ

sβ
S(M [µ]ψk−1(µ, τ) +Hk−1(ψ))

]
,

k > 0, k ∈ N.

(14)

The component ψk(µ, τ) can be calculated easily, which leads us to the convergent series

rapidly. By taking ϵ→ 1, we obtain

ψ(µ, τ) = lim
M→∞

M∑
k=1

ψk(µ, τ). (15)

The obtained result is in series form and converges quickly to the exact solution of the

problem.

§4 Test Problems

Four cases of nonlinear diffusion equations are presented to demonstrate the capability and

the reliability of the suggested technique.

4.1 Case: I

The Newell-Whitehead-Segel equation for a = 2, b = 3, k = 1 and q = 2 becomes:

Dβ
τ ψ = ψµµ + 2ψ − 3ψ2, 0 < β ≤ 1, (16)

with initial conditions

ψ(µ, 0) = λ. (17)

Taking Shehu Transform of (16), we have

sβ

uβ
S[ψ(µ, τ)] = ψ(0)(µ, 0)

sβ−1

uβ
+ S

(
ψµµ + 2ψ − 3ψ2

)
. (18)

S[ψ(µ, τ)] =
1

s
λ+

uβ

sβ
[
S
(
ψµµ + 2ψ − 3ψ2

)]
. (19)
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Figure 1. Graph of exact and approximate solutions of Problem 3.4.

Figure 2. The solution graph of example 1, (a) Exact solution and (b) HPSTM solution at
β = 1.

Taking Inverse Shehu Transform, we obtain

ψ(µ, τ) = λ+ S−1

[
uβ

sβ
{
S
(
ψµµ + 2ψ − 3ψ2

)}]
. (20)

Now, applying the above-mentioned homotopy perturbation technique as in (13), we get
∞∑
k=0

ϵkψk(µ, τ) (21)

= λ+ ϵ

(
S−1

[
uβ

sβ
S

[
(

∞∑
k=0

ϵkψk(µ, τ))µµ + 2
∞∑
k=0

ϵkψk(µ, τ)− 3(
∞∑
k=0

ϵkψk(µ, τ))
2

]])
. (22)

Comparing the same power coefficient of ϵ, we get

ϵ0 : ψ0(µ, τ) = λ,

ϵ1 : ψ1(µ, τ) = S−1

(
uβ

sβ
S[ψ0µµ + ψ0 − ψ2

0 ]

)
= λ(2− 3λ)

τβ

Γ(β + 1)
,

ϵ2 : ψ2(µ, τ) = S−1

(
uβ

sβ
S[ψ1µµ + ψ1 − 2ψ0ψ1]

)
= 2λ(2− 3λ)(1− 3λ)

τ2β

Γ(2β + 1)
,

...

(23)

Now, by taking ϵ→ 1 we obtain convergent series form solution as

ψ(µ, τ) = ψ0 + ψ1 + ψ2 + · · ·
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= λ+ λ(2− 3λ)
τβ

Γ(β + 1)
+ 2λ(2− 3λ)(1− 3λ)

τ2β

Γ(2β + 1)
+ · · · . (24)

Particularly, putting β = 1, we get the exact solution

ψ(µ, τ) =
−2
3 λ exp

2τ

−2
3 + λ− λ exp2τ

. (25)

4.2 Case: II

The Newell-Whitehead-Segel equation for a = 1, b = 1, k = 1 and q = 2 becomes:

Dβ
τ ψ = ψµµ + ψ(1− ψ), 0 < β ≤ 1, (26)

with initial conditions

ψ(µ, 0) =
1

(1 + exp
µ√
6 )2

. (27)

Taking Shehu Transform of (25), we have

sβ

uβ
S[ψ(µ, τ)] = ψ(0)(µ, 0)

sβ−1

uβ
+ S (ψµµ + ψ(1− ψ)) . (28)

S[ψ(µ, τ)] =
1

s

1

(1 + exp
µ√
6 )2

+
uβ

sβ
[S (ψµµ + ψ(1− ψ))] . (29)

Taking Inverse Shehu Transform, we obtain

ψ(µ, τ) =
1

(1 + exp
µ√
6 )2

+ S−1

[
uβ

sβ
{S (ψµµ + ψ(1− ψ))}

]
. (30)

Now, applying the above-mentioned homotopy perturbation technique as in (13), we get
∞∑
k=0

ϵkψk(µ, τ) (31)

=
1

(1 + exp
µ√
6 )2

+ ϵ

(
S−1

[
uβ

sβ
S

[
(

∞∑
k=0

ϵkψk(µ, τ))µµ +
∞∑
k=0

ϵkψk(µ, τ)(1−
∞∑
k=0

ϵkψk(µ, τ))

]])
.

(32)

Comparing the same power coefficient of ϵ, we get

ϵ0 : ψ0(µ, τ) =
1

(1 + exp
µ√
6 )2

,

ϵ1 : ψ1(µ, τ) = S−1

(
uβ

sβ
S[ψ0µµ + ψ0 − ψ2

0 ]

)
=

5

3

exp
µ√
6

(1 + exp
µ√
6 )3

τβ

Γ(β + 1)
,

ϵ2 : ψ2(µ, τ) = S−1

(
uβ

sβ
S[ψ1µµ + ψ1 − 2ψ0ψ1]

)
=

25

18

(
exp

µ√
6 (−1 + 2 exp

µ√
6 )

(1 + exp
µ√
6 )4

)
τ2β

Γ(2β + 1)
,

...

(33)

Now, by taking ϵ→ 1 we obtain convergent series form solution as

ψ(µ, τ) = ψ0 + ψ1 + ψ2 + · · ·

=
1

(1 + exp
µ√
6 )2

+
5

3

exp
µ√
6

(1 + exp
µ√
6 )3

τβ

Γ(β + 1)
+

25

18

(
exp

µ√
6 (−1 + 2 exp

µ√
6 )

(1 + exp
µ√
6 )4

)
τ2β

Γ(2β + 1)
+ · · ·

(34)
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Figure 3. The (a) Exact solution and (b) HPSTM solution (c)Different fractional order (d)y =
0.5 solution graph of example 2 at β = 1.

Figure 4. The (a)Exact solution and (b) HPSTM solution (c)Different fractional order (d)y =
0.5 solution graph of example 3 at β = 1.

Particularly, putting β = 1, we get the exact solution

ψ(µ, τ) =

(
1

1 + exp
µ√
6
− 5

6 τ

)2

. (35)

4.3 Case: III

The Newell-Whitehead-Segel equation for a = 1, b = 1, k = 1 and q = 4 becomes:

Dβ
τ ψ = ψµµ + ψ − ψ4, 0 < β ≤ 1, (36)

with initial conditions

ψ(µ, 0) =
1

(1 + exp
3µ√
10 )

2
3

. (37)
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Taking Shehu Transform of (34), we have

sβ

uβ
S[ψ(µ, τ)] = ψ(0)(µ, 0)

sβ−1

uβ
+ S

(
ψµµ + ψ − ψ4

)
. (38)

S[ψ(µ, τ)] =
1

s

1

(1 + exp
3µ√
10 )

2
3

+
uβ

sβ
[
S
(
ψµµ + ψ − ψ4

)]
. (39)

Taking Inverse Shehu Transform, we get

ψ(µ, τ) =
1

(1 + exp
3µ√
10 )

2
3

+ S−1

[
uβ

sβ
{
S
(
ψµµ + ψ − ψ4

)}]
. (40)

Now, applying the above-mentioned homotopy perturbation technique as in (13), we get
∞∑
k=0

ϵkψk(µ, τ) (41)

=
1

(1 + exp
3µ√
10 )

2
3

+ ϵ

(
S−1

[
uβ

sβ
S

[
(

∞∑
k=0

ϵkψk(µ, τ))µµ +

∞∑
k=0

ϵkψk(µ, τ)− (

∞∑
k=0

ϵkψk(µ, τ))
4

]])
.

(42)

Comparing the same power coefficient of ϵ, we get

ϵ0 : ψ0(µ, τ) =
1

(1 + exp
3µ√
10 )

2
3

,

ϵ1 : ψ1(µ, τ) = S−1

(
uβ

sβ
S[ψ0µµ + ψ0 − ψ4

0 ]

)
=

7

5

exp
3√
10

µ

(1 + exp
3µ√
10 )

5
3

τβ

Γ(β + 1)
,

ϵ2 : ψ2(µ, τ) = S−1

(
uβ

sβ
S[ψ1µµ + ψ1 − 4ψ3

0ψ1]

)
=

49

50

(2 exp
3√
10

µ −3) exp
3√
10

µ

(1 + exp
3µ√
10 )

8
3

τ2β

Γ(2β + 1)
.

...

(43)

Now, by taking ϵ→ 1 we obtain convergent series form solution as

ψ(µ, τ) = ψ0 + ψ1 + ψ2 + · · ·

=
1

(1 + exp
3µ√
10 )

2
3

+
7

5

exp
3√
10

µ

(1 + exp
3µ√
10 )

5
3

τβ

Γ(β + 1)
+

49

50

(2 exp
3√
10

µ −3) exp
3√
10

µ

(1 + exp
3µ√
10 )

8
3

τ2β

Γ(2β + 1)
+ · · · .

(44)

Particularly, putting β = 1, we get the exact solution

ψ(µ, τ) =

(
1

2
tanh

(
− 3

2
√
10

(
µ− 7√

10
τ

)))
. (45)

4.4 Case:IV

The Newell-Whitehead-Segel equation for a = 3, b = 4, k = 1 and q = 3 becomes:

Dβ
τ ψ = ψµµ + 3ψ − 4ψ3, 0 < β ≤ 1, (46)

with initial conditions

ψ(µ, 0) =

√
3

4

exp
√
6µ

exp
√
6µ +exp

√
6

2 µ
. (47)
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Taking Shehu Transform of (43), we have

sβ

uβ
S[ψ(µ, τ)] = ψ(0)(µ, 0)

sβ−1

uβ
+ S

(
ψµµ + 3ψ − 4ψ3

)
. (48)

S[ψ(µ, τ)] =
1

s

√
3

4

exp
√
6µ

exp
√
6µ +exp

√
6

2 µ
+
uβ

sβ
[
S
(
ψµµ + 3ψ − 4ψ3

)]
. (49)

Taking Inverse Shehu Transform, we get

ψ(µ, τ) =

√
3

4

exp
√
6µ

exp
√
6µ +exp

√
6

2 µ
+ S−1

[
uβ

sβ
{
S
(
ψµµ + 3ψ − 4ψ3

)}]
. (50)

Now, applying the above-mentioned homotopy perturbation technique as in (13), we get
∞∑
k=0

ϵkψk(µ, τ) =

√
3

4

exp
√
6µ

exp
√
6µ +exp

√
6

2 µ
+ ϵ

(
S−1

[
uβ

sβ
S

[
(

∞∑
k=0

ϵkψk(µ, τ))µµ + 3
∞∑
k=0

ϵkψk(µ, τ)

−4(
∞∑
k=0

ϵkψk(µ, τ))
3

]])
.

(51)

Comparing the same power coefficient of ϵ, we get

ϵ0 : ψ0(µ, τ) =

√
3

4

exp
√
6µ

exp
√
6µ +exp

√
6

2 µ
,

ϵ1 : ψ1(µ, τ) = S−1

(
uβ

sβ
S[ψ0µµ + ψ0 − ψ4

0 ]

)
=

9

2

√
3

4

exp
√
6µ exp

√
6

2 µ

(exp
√
6µ +exp

√
6

2 µ)2

τβ

Γ(β + 1)
,

ϵ2 : ψ2(µ, τ) = S−1

(
uβ

sβ
S[ψ1µµ + ψ1 − 4ψ3

0ψ1]

)
(52)

=
81

4

√
3

4

exp
√
6µ exp

√
6

2 µ(− exp
√
6µ +exp

√
6

2 µ)

(exp
√
6µ +exp

√
6

2 µ)3

τ2β

Γ(2β + 1)
.

...

(53)

Figure 5. The (a)Exact solution and (b) HPSTM solution (c)Error graph of example 4 at β = 1.
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Now, by taking ϵ→ 1 we obtain convergent series form solution as

ψ(µ, τ) = ψ0 + ψ1 + ψ2 + · · · .

=

√
3

4

exp
√
6µ

exp
√
6µ +exp

√
6

2 µ
+

9

2

√
3

4

exp
√
6µ exp

√
6

2 µ

(exp
√
6µ +exp

√
6

2 µ)2

τβ

Γ(β + 1)

+
81

4

√
3

4

exp
√
6µ exp

√
6

2 µ(− exp
√
6µ +exp

√
6

2 µ)

(exp
√
6µ +exp

√
6

2 µ)3

τ2β

Γ(2β + 1)
+ · · · .

(54)

Particularly, putting β = 1, we get the exact solution

ψ(µ, τ) =

√
3

4

exp
√
6µ

exp
√
6µ +exp(

√
6

2 µ− 9
2 τ)

. (55)

§5 Conclusion

The analytical view of fractional Newell-Whitehead-Segel is done via the Homotopy pertur-

bation transform method. The closed contact between the exact and obtained solution is shown

by its graphical representation. The plot of fractional order problem solutions has confirmed

the convergence of fractional solutions towards a solution at integer order of the targeted prob-

lems. The higher accuracy is achieved with a small number of calculations. The effective and

straightforward implementation attracts the researchers to analyze the fractional view of other

problems in different areas of applied science.
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