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Navigation Finsler metrics on a gradient Ricci soliton

LI Ying1 MO Xiao-huan2,∗ WANG Xiao-yang3

Abstract. In this paper, we study a class of Finsler metrics defined by a vector field on a

gradient Ricci soliton. We obtain a necessary and sufficient condition for these Finsler metrics

on a compact gradient Ricci soliton to be of isotropic S-curvature by establishing a new integral

inequality. Then we determine the Ricci curvature of navigation Finsler metrics of isotropic

S-curvature on a gradient Ricci soliton generalizing result only known in the case when such

soliton is of Einstein type. As its application, we obtain the Ricci curvature of all navigation

Finsler metrics of isotropic S-curvature on Gaussian shrinking soliton.

§1 Introduction

An important approach in studying Finsler geometry is the navigation problem. Let (Mn, Φ)

be an n-dimensional Finsler manifold and V be a vector field on Mn with Φ(x, Vx) < 1, ∀x ∈
Mn. Let F = F (x, y) denote the Finsler metric on Mn defined by

Φ(x,
y

F
+ Vx) = 1.

We say F is a navigation Finsler metric with respect to V on (Mn, Φ).

Recently, the study of navigation Finsler metrics has attracted a lot of attention. Huang-Mo

showed that the flag curvature of navigation Finsler metrics is non-increasing by homothetic

navigation problem [12]. Furthermore, they gave a geometric description of the geodesics of

such navigation Finsler metric [8]. Shen-Xia and Xia determined the flag curvature of the

navigation Finsler metrics on a Randers manifold with some special curvature properties by

the conformal navigation problem [19, 22]. Later on, Huang-Mo determined the flag curvature

of the navigation Finsler metrics on any Finsler manifold in terms of conformal navigation

problem and therefore they provided a unifying frame work for results due to Bao-Robles-Shen,

Cheng-Shen, Foulon and Mo-Huang [9].

In Finsler geometry, there are several important non-Riemannian quantities, such as the

distortion τ , the mean Carton torsion I and the S-curvature, etc. They all vanish for Rie-

mannian metrics, hence they said to be non-Riemannian. These quantities interact with the
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Riemann curvature in a delicate way. The S-curvature (mean covariation in an alternative

terminology in [16]) be introduced in [17]. Z. Shen proved that the S-curvature and the Ricci

curvature determine the local behavior for the Busemann-Hausdorff measure of small metric

balls around a point [18]. An n-dimensional Finsler metric is said to have isotropic S-curvature

if S(x, y) = (n+ 1)c(x)F (x, y), where c is a scalar function on M .

Recently, great progress has been made in discussing Finsler metrics of isotropic S-curvature.

In 2009, Cheng-Shen characterized (α, β)-metrics with isotropic S-curvature [5]. Lately, Zhou

found an equation that characterizes spherically symmetric Finsler metrics of isotropic S-

curvature [23]. Mo-Yang gave an explicit construction of a 3-parameter family of non-locally

projectively flat Finsler metrics of non-constant isotropic S-curvature [13].

In this paper, we obtain a necessary and sufficient condition for navigation Finsler metrics on

a compact Ricci soliton to be of isotropic S-curvature by establishing a new integral inequality.

We have the following:

Theorem 1.1. Let (Mn, h, f, ρ) be a compact gradient Ricci soliton, and let V be a vector

field on M . Let F be the navigation Finsler metric with respect to (h, V ). Then∫
M

[
ρh(x, V )2 − |∇V |2 − n− 2

n
(divV )2 + ⟨∇f,∇V V + (divV )V ⟩h

]
dv ≤ 0, (1)

and the equality holds if and only if F has isotropic S-curvature, S = (n + 1)cF , where c is a

scalar function on M . In this case, we have the following∫
M

[1 + h(x, V )]2
[
Ric(x, V )− (n− 1)

(
3cxiV i

F (x, V )
− c2 + 2cxiV i

)
F (x, V )2

]
dv ≥ 0, (2)

where cxi = ∂c
∂xi and V = V i ∂

∂xi .

Recall that a Riemannian manifold (M, h) is called a gradient Ricci soliton if the equation

Ricf = ρh2 holds for some function f and constant ρ where

Ricf := hRic + Hess(f) (3)

is the Bakry-Émery curvature where hRic denotes the Ricci curvature of (M, h) and Hess(f)

the Hessian of f . The function f is called a potential function. Gradient Ricci solitons play an

important role in Hamilton’s Ricci flow as they correspond to self-similar solitons, and often

arise as singularity models.

For the proof of Theorem 1.1, see the proof of Theorem 4.2 below. We mention that there

are many compact gradient Ricci solitons. One obtains, besides Einstein metrics, the example

of Koiso, Cao and Wang etc. on compact n(≥ 4)-dimensional gradient shrinking Ricci solitons

that are not Einstein [1, 10, 21].

Theorem 1.1 tells us that for navigation Finsler metrics with respect to (h, V ) of isotropic S-

curvature on a compact gradient Ricci solution (Mn, h, f, ρ), its Ricci curvature in the direction

V has restriction (2). In fact, we determine Ricci curvature in each direction of all navigation

Finsler metrics of isotropic S-curvature on a gradient Ricci solution.
Theorem 1.2. Let (Mn, h, f, ρ) be a gradient Ricci soliton, and let V be a vector field on Mn.

Let F be the navigation Finsler metric with respect to (h, V ). Assume that F has isotropic S-

curvature, S = (n+ 1)cF . Then the Ricci curvature of F satisfies

Ric(x, y) = (n− 1)

[
ρ

n− 1
+

3cxiyi

F
− c2 + 2cxiV i

]
F (x, y)2 −Hess(f) (ξ, ξ) (4)
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where ξ = y + F (x, y)V .

Gradient Ricci solitons contain both Einstein Riemannian manifolds when the potential

functions f are constant functions and Gaussian shrinking soliton, namely, the flat Euclidean

space (Rn, g0) with the potential function f = |x|2
4 . In Theorem 4.2 in [4], Cheng-Shen showed

an expression of Ricci curvature for navigation Finsler metrics of isotropic S-curvature on a

Einstein Riemannian manifold. It follows that Theorem 1.2 extends Cheng-Shen’s expression

(4.2) in [4]. As an application of Theorem 1.2, we obtain the Ricci curvature of all navigation

Finsler metrics of isotropic S-curvature on a Gaussian shrinking soliton (see Example 5.2 below).

§2 Preliminaries

Let (M, h) be a Riemannian manifold. It is known that a navigation Finsler metric F on

(M, h) can be expressed in the following form:

F =

√
h(x, y)2 − [h(x, Vx)2h(x, y)2 − ⟨y, Vx⟩2h]

1− h(x, Vx)2
+

⟨y, Vx⟩h
1− h(x, Vx)2

, (5)

where V is a vector field on Mn with h(x, Vx) < 1 for all x ∈ M and ⟨ , ⟩h denotes the inner

product defined by h. We have the following

Lemma 2.1. Let (M,h) be an n-dimensional Riemannian manifold, and let V be a vector field

on M . Then V is conformal if and only if the navigation Finsler metric with respect to (h, V )

has isotropic S-curvature.

Recall that a vector field V on an n-dimensional Riemannian manifold (M,h) is conformal

with dilation σ if the Lie derivative of the metric with respect to V satisfies

LV h
2 = 2σ(x)h2,

where σ : M → R. This is equivalent to the fact the one-parameter group of diffeomorphisms

generated by V consists of conformal transformations.

Let (M, h) be a Riemannian manifold, V a smooth vector field and ρ a constant. The

system (M, h, V, ρ) is said to be a Ricci soliton if

2Ric + LV h
2 = 2ρh2 (6)

where L denotes the Lie-derivative operator and Ric the Ricci tensor of h [2]. Thus a Ricci

soliton is a generalization of an Einstein metric for which V = 0 or V is a Killing field. If the

vector field X is the gradient of a smooth function f , i.e V = ∇f , then (M, h, f, ρ) is called a

gradient Ricci soliton, in which case, the Equation (6) becomes

Ric + Hess(f) = ρh2 (7)

where Hess denotes the Hessian operator with respect to h. An important result of Perelman

tells us that a compact Ricci soliton is gradient [15].

Suppose that ω1, · · · , ωn is an orthonormal coframe of (M,h). Hence we have

h2 = ω2
1 + · · ·+ ω2

n,

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0 (8)
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(the first structure equation) and

dωij = −
∑
k

ωik ∧ ωkj +Ωij , Ωij =
1

2

∑
k,l

Rijklωk ∧ ωl (9)

(the second structure equation). The Ricci curvature of (M, h) is defined by

Ric =
∑
i,j

Rikjkωi ⊗ ωj . (10)

Consider a 1-form θ :=
∑

θiωi. By (8), we obtain

dθ =
∑
i

Dθi ∧ ωi, (11)

where

Dθi := dθi −
∑
j

θjωji =:
∑
j

θijωj . (12)

Differentiating (12) and using (8) and (9), one deduces∑
j

Dθij ∧ ωj =
∑
j

θjΩji, (13)

where

Dθij := dθij −
∑
k

θikωkj −
∑
k

θkjωki =:
∑
k

θijkωk. (14)

Plugging (14) and (9) into (13), we have

θijk = θikj −
∑
l

θlRlikj . (15)

§3 Some lemmas

Recall that a metric measure space (M,h, e−fdv) is a Riemannian manifold (M,h) together

with a weighted volume form e−fdv on M , where f is a scalar function on M and dv the

volume element induced by the metric h. A gradient Ricci soliton is just right a metric measure

space satisfying Ricf = ρh2 for some constant ρ. The Bakry-Émery curvature Ricf associated

to smooth metric measure space (M,h, e−fdv) is defined in (3) where Ric denotes the Ricci

curvature of (M,h), Hess(f) the Hessian of f and dv the volume element induced by the metric

h. We know that

Hess(f) =
∑
i,j

fijωi ⊗ ωj (16)

where ω1, · · · , ωn is an orthonormal coframe of (M, g) and∑
j

fijωj = dfi −
∑
j

fjωji,
∑
i

fiωi = df. (17)

We have the following result (see [11]):

Lemma 3.1. Let (M,h) be an n-dimensional Riemannian manifold, and let V be a vector field

on M . Then V is conformal if and only if V =
∑n

i=1 Viei satisfies the following:

Vij + Vji =
2

n
(divV )δij (18)

for i, j = 1, · · · , n where e1, · · · , en is the dual frame of ω1, · · · , ωn and∑
j

Vijωj = dVi −
∑
j

Vjωji. (19)
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Lemma 3.2. Let (M,h, e−fdv) be a metric measure space, and let V be a vector field on M .

Take

Ṽ := ∇V V + (⟨∇f, V ⟩h − divV )V (20)

where ∇ denotes the Levi-Civita connection of h and div is the divergence with respect to h.

Then the divergence of Ṽ is given by

divṼ = Ricf (V, V )− (divV )2 +
∑
i,j

VijVji + ⟨∇f,∇V V + (divV )V ⟩h (21)

where Ricf denotes the Bakry-Émery curvature.

Proof In fact,

∇V =
∑
i

∇(Viei)

=
∑
i

dVi ⊗ ei +
∑
i

Vi∇ei

=
∑
i

(dVi −
∑
j

Vjωji)⊗ ei =
∑
ij

Vijωj ⊗ ei

(22)

where we have used the fact

∇ei = −
∑
j

ωjiej . (23)

It follows that

∇V V =
∑
i,j

Vijωj(V )ei =
∑
i,j

VjVijei. (24)

Note that

divV =
∑
i

Vii, ⟨∇f, V ⟩h =
∑
i

fiVi. (25)

Plugging (24) and (25) into (20) yields

Ṽ =
∑
i,j

(ViVji − ViiVj + fiViVj)ej

It follows that

divṼ =
∑
i,j

[
ViVji + (fiVi − Vii)Vj

]
j
=

∑
i,j

VijVji + (I)− (II)−
∑
i,j

ViijVj (26)

where

(II) :=
∑
i

Vii

∑
j

Vjj = (divV )2 (27)

(I) :=
∑
i,j

(fiViVj)j +
∑
i,j

ViVjij

=
∑
i,j

fijViVj +
∑
i,j

fiVijVj +
∑
i,j

fiViVjj +
∑
i,j

Vi(Vjji −
∑
k

VkRkjji)

= Hess(f)(V, V ) + ⟨∇f,∇V V ⟩h + ⟨∇f, V ⟩hdivV +
∑
i,j

VjViij

+
∑
i,j,k

ViVkRkjij
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= Hess(f)(V, V ) + ⟨∇f,∇V V + (divV )V ⟩h +
∑
i,j

ViijVj +Ric(V, V )

= Ricf (V, V ) +
∑
i,j

ViijVj + ⟨∇f,∇V V + (divV )V ⟩h
(28)

where we have used (26), (16), (25), (3) and the following Ricci identity

Vijk = Vikj −
∑

VlRlikj

where Vijk is defined by ∑
k

Vijkωk = dVij −
∑
k

Vikωkj −
∑
k

Vkjωki.

Plugging (27) and (28) into (26) yields (22). �
We mention that Lemma 3.2 refines Lemma 2.2 in [11] when the potential functions f is a

constant.

§4 Integral inequalities and their applications

In this section, first we are going to show a generalization of Theorem 1.1. Let V be a vector

field on a Riemannian manifold (M, h). We define the square of the length of ∇V by

|∇V |2 =
∑
i,j

V 2
ij . (29)

Theorem 4.1. Let (M,h, e−fdv) be an n-dimensional compact metric measure space, and let

V be a vector field on M . Then we have∫
M

[
Ricf (V, V )− |∇V |2 − n− 2

n
(divV )2 + ⟨∇f,∇V V + (divV )V ⟩h

]
dv ≤ 0 (30)

and the equality holds if and only if the navigation Finsler metric on (M, h) with respect to V

has isotropic S-curvature.

Proof By using (21) and (29), we have

0 =

∫
M

(divṼ )dv

=

∫
M

[
Ricf (V, V )− (divV )2 +

∑
i,j

VijVji + g(∇f,∇V V + (divV )V )
]
dv

=

∫
M

[
Ricf (V, V )− (divV )2 +

∑
i,j

VijVji +
1

2

∑
i,j

V 2
ij +

1

2

∑
i,j

V 2
ji −

∑
i,j

V 2
ij

+ ⟨∇f,∇V V + (divV )V ⟩h
]
dv

=

∫
M

[
Ricf (V, V )− (divV )2 +

1

2

∑
i,j

(Vij + Vji)
2 − |∇V |2

+ ⟨∇f,∇V V + (divV )V ⟩h
]
dv

=

∫
M

[
Ricf (V, V )− |∇V |2 − n− 2

n
(divV )2 + ⟨∇f,∇V V + (divV )V ⟩h

]
dv

+
1

2

∫
M

{∑
i,j

[
Vij + Vji −

2

n
δij(divV )

]2}
dv.
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It follows that∫
M

[
Ricf (V, V )− |∇V |2 − n− 2

n
(divV )2 + ⟨∇f,∇V V + (divV )V ⟩h

]
dv

= −1

2

∫
M

{∑
i,j

[
Vij + Vji −

2

n
δij(divV )

]2}
dv ≤ 0.

(31)

It implies (30).

If the equality holds in (30), then the equality in (31) must hold. Thus we must have (18)

for i, j = 1, · · · , n; that is, V is conformal. According to Lemma 2.1, the navigation Finsler

metric F with respect to V on (M, h) has isotropic S-curvature. �
We mention that when the potential function f is vanishing, Theorem 4.1 had been studied

in [11].

For a compact Ricci soliton, we have the following:

Theorem 4.2. Let (Mn, h, X, ρ) be a compact Ricci soliton, and let V be a vector field on

M . Then ∫
M

[
ρh(x, V )2 − |∇V |2 − n− 2

n
(divV )2 + ⟨X,∇V V + (divV )V ⟩h

]
dv ≤ 0, (32)

where X = ∇f and the equality holds if and only if the navigation Finsler metric on (M, h)

with respect to V has isotropic S-curvature. In this case, we have (2) holds.

Proof By Perelman’s result, there is a smooth function f , such that

X = ∇f. (33)

It follows that (7) holds. Substituting (7) and (33) into (30) yields (32). By using Theorem 1.1

in [14], we have (2) holds. �
We mention that there are many compact (gradient) Ricci solitons. One obtains, besides E-

instein metrics, the examples of nontrivial compact gradient shrinking (Ricci) solitons [1, 10, 21].

Below are two important examples.

(a) For real dimension 4, the first example of a compact shrinking Ricci soliton was

constructed in the early 90’s by Cao and Koiso independently on compact complex surface

CP2♯(−CP2), where (−CP2) denotes the complex projective plane with the opposite orienta-

tion [1, 10]. It has U(2) symmetry and positive Ricci curvature. More generally, they found

U(n)-invariant Kähler-Ricci solitons on twisted projective line bundle over CPn−1 for n ≥ 2

[10].

(b) In [21], Wang etc. found a gradient Ricci soliton on CP2♯2(−CP2) which has U(1)×U(1)

symmetry. More generally, they proved the existence of gradient Kähler-Ricci solitons on all

Fano toric varieties of complex dimension n ≥ 2 with non-vanishing Futaki invariant.

§5 Ricci curvature of navigation Finsler metrics

In this section, we are going to determine Ricci curvature in each direction of all navigation

Finsler metrics of isotropic S-curvature on a gradient Ricci solution. As its application, we

obtain the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on Gaussian

shrinking soliton.
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Proof of Theorem 1.2 Note that h is a Riemannian metric. Hence its navigation Finsler

metric F is a Randers metric by (5). By using [9] or (3.7) in [14], we have

hRic(ξ, ξ) = Ric(x, y)− (n− 1)

{
3cxiyi

F
− c2 + 2cxiV i

}
F 2(x, y), (34)

where ξ := y + F (x, y)V satisfies

h(x, ξ) = F (x, y). (35)

For gradient Ricci soliton (M,h, f, ρ), we have the following

hRic+Hess(f) = ρh2

from (3) where hRic denotes the Ricci tensor of h. Plugging this into (34) and using (35), we

get

R(x, y) = hRic(ξ, ξ) + (n− 1)

{
3cxiyi

F
− c2 + 2cxiV i

}
F 2(x, y)

= ρh(x, ξ)2 −Hess(f)(ξ, ξ) + (n− 1)

{
3cxiyi

F
− c2 + 2cxiV i

}
F 2(x, y)

= ρF (x, y)2 + (n− 1)

{
3cxiyi

F
− c2 + 2cxiV i

}
F 2(x, y)−Hess(f)(ξ, ξ)

= (n− 1)

{
ρ

n− 1
+

3cxiyi

F
− c2 + 2cxiV i

}
F 2(x, y)−Hess(f)(ξ, ξ).

Thus we obtain (4). �

Example 5.2 Consider the following Gaussian shrinker, namely, the flat Euclidean space

(Rn, h0) with the potential function |x|2
4 . Then [7]

Hess

(
|x|2

4

)
=

1

2
h2
0, Ric |x|2

4

=
1

2
h2
0. (36)

We obtain the gradient Ricci soliton (Rn, h0,
|x|2
4 , 1

2 ) [3, 7]. Let F be the navigation Finsler

metric with respect to V on (Rn, h0) where V is a vector field on Rn. Assume n ≥ 3. Then F

has isotropic S-curvature, that is, S = (n+ 1)cF for some scalar function c, if and only if,

c = δ + ⟨a, x⟩ (37)

where δ is a constant and a = (ai) ∈ Rn is a constant vector, and V is given by

V = −2

[
(δ + ⟨a, x⟩)x− |x|2

2
a

]
+ xQ+ b (38)

where Q is a fixed anti-symmetric matrix and b is a constant vector [6]. Now we are going

to calculate the Ricci curvature of all navigation Finsler metrics of isotropic S-curvature on

Gaussian shrinking soliton (Rn, h0,
|x|2
4 , 1

2 ) by using (4). From (35) and the first equation of

(36), we have

Hess

(
|x|2

4

)
(ξ, ξ) =

1

2
h2
0(x, ξ) =

1

2
F 2(x, y). (39)

By (37),

cxj = aj . (40)

It follows that

cxjyj = ⟨a, y⟩. (41)
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Using (38) and (40), we have,

cxjV j = −2

[
(δ + ⟨a, x⟩)⟨a, x⟩ − |x|2

2
|a|2

]
+ ⟨xQ, a⟩+ ⟨a, b⟩. (42)

Substituting (41), (37), (39) and (42) into (4), we get

Ric(x, y) = (n− 1)

{
1

2(n− 1)
+

3⟨a, y⟩
F

− (δ + ⟨a, x⟩)2 + 2
[
− 2(δ + ⟨a, x⟩)⟨a, x⟩

+ |a|2|x|2 + ⟨xQ, a⟩+ ⟨a, b⟩
]}

F 2(x, y)− 1

2
F 2(x, y)

= (n− 1)

[
3⟨a, y⟩
F

− (δ + ⟨a, x⟩)2 − 4(δ + ⟨a, x⟩)⟨a, x⟩

− 2(|a|2|x|2 + ⟨xQ, a⟩+ ⟨a, b⟩)
]
F 2(x, y).

It follows that navigation Finsler metric F is of Einstein type if and only if F has constant

S-curvature, S = (n+ 1)δF .
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