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On traceable iterated line graph and hamiltonian path

index

NIU Zhao-hong1,∗ XIONG Li-ming2 YANG Wei-hua3

Abstract. Xiong and Liu [21] gave a characterization of the graphs G for which the n-iterated

line graph Ln(G) is hamiltonian, for n ≥ 2. In this paper, we study the existence of a hamiltonian

path in Ln(G), and give a characterization of G for which Ln(G) has a hamiltonian path. As

applications, we use this characterization to give several upper bounds on the hamiltonian path

index of a graph.

§1 Introduction

Graphs considered in this paper are finite, undirected and loopless. Undefined notations

and terminologies will follow [2].

Let G be a graph, then V (G) and E(G) denote the sets of vertices and edges of G, respec-

tively. Define Vi(G) = {v ∈ V (G) : dG(v) = i} and W (G) = V (G)\V2(G). A branch in G is a

nontrivial path with ends in W (G) and with internal vertices, if any, of degree 2. We denote

by B(G) the set of branches of G. Define B1(G) = {b ∈ B(G) : V (b) ∩ V1(G) ̸= ∅}. The

distance between two subgraphs H1 and H2 of G, denoted by dG(H1,H2), is min{dG(v1, v2) :
v1 ∈ V (H1) and v2 ∈ V (H2)}. For a subgraph H ⊆ G, we denote by G − V (H), or briefly,

G−H, the graph obtained from G by deleting all the vertices of H together with all the edges

incident with the vertices of H.

The line graph L(G) of a graph G has E(G) as its vertex set and two vertices are adjacent

in L(G) if and only if they are adjacent as edges in G. A trail T of G is dominated if each edge

of G is incident with at least one vertex of T . Harary and Nash-Williams characterized those

graphs G (especially, non-hamiltonian graphs) for which L(G) is hamiltonian.
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Theorem 1. (Harary and Nash-Williams, [10]) Let G be a connected graph with at least three

edges. Then L(G) is hamiltonian if and only if G has a dominating closed trail.

The n-iterated line graph of a graph G is Ln(G) = L(Ln−1(G)), where L1(G) denotes the

line graph L(G) of G, and Ln−1(G) is assumed to have a nonempty edge set. Chartrand [3]

considered the hamiltonianity of Ln(G), and introduced the hamiltonian index of a graph,

denoted by h(G), i.e., the minimum number n such that Ln(G) is hamiltonian. Since then,

many results of h(G) for special graphs have been proved, such as Chartrand and Wall [4] for

trees (other than paths) and connected graphs G with δ(G) ≥ 3, Han et al. [8] for 2-connected

graph with κ(G) ≥ α(G)− t (where t is a nonnegative integer). Ryjáček et al. [18] showed that

the problem to decide whether the hamiltonian index of a given graph is less than or equal to a

given constant is NP-complete. The following theorem characterized those graphs G for which

Ln(G) is hamiltonian.

Theorem 2. (Xiong and Liu, [21]) Let G be a connected graph with at least three edges and

n ≥ 2. Then Ln(G) is hamiltonian if and only if EUn(G) ̸= ∅, where EUn(G) denotes the set

of those subgraphs H of G that satisfy the following conditions:

(I) dH(x) ≡ 0 (mod 2) for every x ∈ V (H);

(II) V0(H) ⊆
∪∆(G)

i=3 Vi(G) ⊆ V (H);

(III) dG(H1,H −H1) ≤ n− 1 for every subgraph H1 of H;

(IV) |E(b)| ≤ n+ 1 for every branch b ∈ B(G) with E(b) ∩ E(H) = ∅;

(V) |E(b)| ≤ n for every branch b ∈ B1(G).

With the help of Theorem 2, one can deduce h(G) ≤ n if it is convenient to check that

EUn(G) is nonempty. For more results of h(G), see [12-14,19].

As a weakening of hamiltonianity, the existence of hamiltonian paths of a graph G or a line

graph L(G) has also got a lot of attention. A graph G is traceable if it has a hamiltonian path.

Let σ2(G)min{dG(u) + dG(v) |uv /∈ E(G)}. Momège [17] showed that a connected graph G

of order n with σ2(G) ≥ 2n/3 and K1,4-free is traceable. He and Yang [11] proved that there

exist at least max{1, ⌊ 1
8 δ(G)⌋ − 1} edge-disjoint hamiltonian paths between any two vertices

in a hamiltonian-connected line graph L(G). For more results on the traceability of graphs or

line graphs, see [6,15,22]. The following, which characterized the traceability of line graphs, is

a similar result as Theorem 1.

Theorem 3. (Lai, Shao and Zhan, [15], Xiong and Zong, [22]) Let G be a connected graph

with at least three edges. Then the line graph L(G) is traceable if and only if G has a dominating

trail.

In 1983, Clark and Wormald [7] extended the idea of the hamiltonian index and introduced

the hamiltonian-connected index, which is the least integer n such that the iterated line graph
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Ln(G) is hamilton-connected. Since then, several hamiltonian-like indices were proposed. For

more results on the hamiltonian-like indices, see [5,7] for the hamilton-connected index, [23] for

the s-hamiltonian index, [16] for the panconnected index, [24] for the s-vertex pancyclic index,

and [20] for the s-fully cycle extendable index.

The current research is motivated by the results above. In this paper, we study the existence

of a hamiltonian path in the n-iterated line graph Ln(G), i.e., the traceability of Ln(G).

We present a few needed notations. For a graph G, we use O(G) to denote the set of odd

degree vertices of G. In the definition of EUn(G), (I) guarantees that each vertex in V (H)

has even degree, i.e., O(H) = ∅. When concerning about the traceability of Ln(G), we can

allow that H has at most two odd degree vertices. Moreover, by the fact that H may contain

a branch b ∈ B1(G) or a part of b, we just need (V) holds for every branch b ∈ B1(G) with

E(b) ∩ E(H) = ∅.
Let EUPn(G) denote the set of subgraphs H of a graph G that satisfy the following condi-

tions (I)′ and (V)′, and (II)-(IV) in the definition of EUn(G).

(I)′ |O(H)| ≤ 2;

(V)′ |E(b)| ≤ n for every branch b ∈ B1(G) with E(b) ∩ E(H) = ∅.

Obviously, EUn(G) ⊆ EUPn(G). Now we are ready to present the main result.

Theorem 4. Let G be a connected graph with at least three edges and n ≥ 2. Then Ln(G) is

traceable if and only if EUPn(G) ̸= ∅.

Moreover, as applications of Theorem 4, we also examine the hamiltonian path index (which

is proposed as a new hamiltonian-like index) of a graph G, denoted by hp(G), i.e., the minimum

number n such that Ln(G) is traceable. Regard hp(G) = 0 if G is traceable.

In Section 2, we will present some auxiliary results, which will be used to prove Theorem 4

in Section 3. As applications, we will give some upper bounds of the hamiltonian path index

hp(G) in the last section.

§2 Preliminaries and auxiliary results

In this section, we present several auxiliary results, which will be used in the proof of

Theorem 4.

The multi-graph of order 2 with two edges will be called 2-cycle. Let G be a graph and H

a subgraph of G, then Ē(H) denotes the set of all edges of G that are incident with vertices of

H. If u ∈ V (H), then EH(u) denotes the set of all edges of H that are incident with u, and

dH(u) = |EH(u)|. A graph is called a circuit (or equivalently, eulerian graph) if it is connected

and every vertex has an even degree. Regard K1 as a circuit.

For any subgraph C of L(G), by S(G,C) we denote the collection of circuits H of G, such

that L(G[Ē(H)]) contains C, and C contains all edges of E(H). Here and throughout, G[S]

denotes the subgraph of G induced by S, where S ⊆ V (G) or S ⊆ E(G).
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Lemma 5. (Xiong and Liu, [21]) Each of the following holds.

(1) If C is a cycle of L(G) with |E(C)| ≥ 3, then S(G,C) is nonempty.

(2) If G has a circuit H such that Ē(H) has at least three edges, then L(G) has a cycle C

with V (C) = Ē(H).

Beineke [1] characterized line graphs in terms of nine forbidden induced subgraphs, one of

which is K1,3.

Lemma 6. (Beineke, [1]) K1,3 is not an induced subgraph of the line graph of any graph.

The following lemma indicates the relationship between a branch of G and the corresponding

branch of L(G).

Lemma 7. (Xiong and Liu, [21]) Let b = u1u2 · · ·us (s ≥ 3) be a path of G and ei = uiui+1.

Then b ∈ B(G) if and only if b′ = e1e2 · · · es−1 ∈ B(L(G)).

Lemma 8. Let H be a subgraph of G in EUPn(G) with a minimum number of components.

Then there exists no multiple edges in Ē(H1) ∩ Ē(H2) for any two components H1 and H2 of

H.
A similar result as Lemma 8 was proved for H ∈ EUn(G) in [21]. Then arguing similarly,

one can obtain Lemma 8. Hence, we omit the details here. An eulerian subgraph of G is a

circuit which contains at least one cycle of length at least 3.

Lemma 9. (Xiong and Liu, [21]) Let G be a connected graph and C be an eulerian subgraph

of the line graph L(G). Then there exists a subgraph H of G with

(1) dH(x) ≡ 0 (mod 2) for every x ∈ V (H);

(2) dG(x) ≥ 3 for every x ∈ V (H) with dH(x) = 0;

(3) for any two components H0,H00 of H, there exists a sequence of components H0 =

H1,H2, . . . , Hs = H00 of H such that dG(Hi,Hi+1) ≤ 1 for i ∈ {1, 2, . . . , s− 1};

(4) L(G[Ē(H)]) contains C, and C contains all edges of E(H).

Lemma 10. Each of the following holds.

(1) If P is a non-trivial path of L(G), then G has a trail T ′, such that L(G[Ē(T ′)]) contains

P , and P contains all edges of E(T ′).

(2) If G has a connected subgraph H such that |O(H)| = 2, then L(G) has a path P with

V (P ) = Ē(H).

Proof. (1) The proof just needs a slight modification of the proof of Theorem 1 in [10]. So we

omit the details here.

(2) Suppose O(H) = {u, v}. If |Ē(H)| = 1, then G ∼= H ∼= K2, (2) holds trivially. So

we may assume that Ē(H) has at least two edges. Let e∗ = uv be a new edge, which doesn’t
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belong to E(G). Note that if uv ∈ E(G), then e∗ and uv (∈ E(G)) are multiple edges in G+e∗.

Hence, H + e∗ is a circuit of G+ e∗ such that Ē(H + e∗) has at least three edges. By Lemma 5

(2), L(G+ e∗) has a cycle C with V (C) = Ē(H + e∗). Let P = C − ve∗ , where ve∗ is the vertex

in L(G+ e∗) corresponding to the edge e∗ in G. Note that Ē(H) ∪ {e∗} = Ē(H + e∗). P is a

path of L(G) with V (P ) = Ē(H).

So Lemma 10 holds.

Theorem 2 was derived from the following result, which indicates a close relationship between

EUn(L(G)) and EUn+1(G).

Theorem 11. (Xiong and Liu, [21]) Let G be a connected graph and k ≥ 1 be an integer. Then

EUn(L(G)) ̸= ∅ if and only if EUn+1(G) ̸= ∅.

§3 Proof of Theorem 4

In this section, we will prove Theorem 4, which is a direct consequence of the following two

theorems. The symmetric difference of two non-empty sets A and B, denoted by A∆B, is the

set (A ∪B)\(A ∩B).

Theorem 12. Let G be a connected graph and k ≥ 1 be an integer. Then EUPk(L(G)) ̸= ∅ if

and only if EUPk+1(G) ̸= ∅.

Proof. Sufficiency. Suppose that EUPk+1(G) ̸= ∅. Note that if EUk+1(G) ̸= ∅, then by The-

orem 11, EUk(L(G)) ̸= ∅, and hence, EUPk(L(G)) ̸= ∅ by the fact that EUk(G) ⊆ EUPk(G).

So we may assume that EUk+1(G) = ∅, which implies that each subgraph of G in EUPk+1(G)

contains exactly two odd vertices.

Now letH ∈ EUPk+1(G) with a minimum number of components denoted by C1, C2, . . . , Ct.

If H is connected, then H ∼= C1. Without loss of generality, we let |O(C1)| = 2, and then Ci is

a circuit for 2 ≤ i ≤ t.

Since |O(C1)| = 2 and G is connected, we have |Ē(C1)| ≥ 2: for otherwise, |V (G)| =

|V (C1)| = 2, Theorem 12 holds obviously. Hence, by Lemma 10 (2), L(G) has a nontrivial path

P with V (P ) = Ē(C1). Now we claim that |Ē(Ci)| ≥ 3 for 2 ≤ i ≤ t: if Ci is nontrivial, then

we are done; if Ci is an isolated vertex, then by the definition of EUPn(G), dG(Ci) ≥ 3, our

claim holds. By Lemma 5 (2), we can find a cycle C ′
i in L(G) with V (C ′

i) = Ē(Ci) (2 ≤ i ≤ t).

Let

H ′ = P ∪
( t∪
i=2

C ′
i

)
.

We will prove that H ′ ∈ EUPk(L(G)).

By Lemma 8 and the minimality of t, E(P ) ∩ E(C ′
i) = ∅ and E(C ′

i) ∩ E(C ′
j) = ∅ for

2 ≤ i, j ≤ t with i ̸= j, which implies that |O(H ′)| = 2. (I)′ holds.

Since P is nontrivial, and V (C ′
i) = Ē(Ci) ≥ 3 (2 ≤ i ≤ t), H ′ contains no isolated vertex.

Note that
∪∆(G)

i=3 Vi(G) ⊆ V (H) and V (H ′) =
∪t

i=1 Ē(Ci). We have

∆(L(G))∪
i=3

Vi(L(G)) ⊆ V (H ′).
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Hence, H ′ satisfies (II).

The details of H ′ satisfying (III), (IV) and (V)′ are almost the same as the proof of Theorem

11 in [21], so we omit them here.

It follows that H ′ ∈ EUPk(L(G)).

Necessity. Suppose that EUPk(L(G)) ̸= ∅. Note that if EUk(L(G)) ̸= ∅, then by Theorem

11, EUk+1(G) ̸= ∅, and hence, EUPk+1(G) ̸= ∅. So we may assume that EUk(L(G)) = ∅,
which implies that each subgraph of L(G) in EUPk(L(G)) contains exactly two odd vertices.

Let H be a subgraph of L(G) in EUPk(L(G)) with a minimum number of isolated vertices.

Then H contains no isolated vertices. For otherwise, suppose C1 = {e0} is an isolated vertex

of H, then by (II), dL(G)(e0) ≥ 3. By Lemma 6, there exist e1, e2 ∈ NL(G)(e0) such that

e1e2 ∈ E(L(G)). Now we construct a subgraph H0 of L(G) as follows.

H0 =

{
H + {e0e1, e1e2, e2e0} if e1e2 /∈ E(H),

H + {e0e1, e2e0} − {e1e2} if e1e2 ∈ E(H).

Obviously H0 ∈ EUPk(L(G)) has fewer isolated vertices than H has, a contradiction.

Let H1,H2, . . . , Hm be the components of H, and without loss of generality, let |O(H1)| = 2.

SinceH has no isolated vertices, Hi is an eulerian subgraph of L(G) for 2 ≤ i ≤ m. ThenH1 can

be decomposed into a nontrivial path P and several eulerian subgraphs. Let P,H1
1 ,H

2
1 , . . . , H

q
1

be such a decomposition with q minimized. Then V (Hi
1) ∩ V (Hj

1) = ∅ for {i, j} ⊆ {1, 2, . . . , q}
with i ̸= j.

For the path P , by Lemma 10 (1), G has a trail T ′, such that L(G[Ē(T ′)]) contains P , and P

contains all edges of E(T ′). For any eulerian subgraph Hj
1 (1 ≤ j ≤ q) or Hi (i ∈ {2, 3, . . . ,m}),

by Lemma 9, there exists a subgraph Cj
1 or Ci of G, respectively, satisfying (1) to (4) of Lemma

9. Let

C ′ =
(
T∆

( q∪
j=1

Cj
1

))
∪
( m∪
i=2

Ci

)
,

where T∆(
∪q

j=1 C
j
1) is the subgraph of G with vertex set V (T ∪ (

∪q
j=1 C

j
1)) and edge set

E(T )∆E(
∪q

j=1 C
j
1). We construct a subgraph C of G from C ′as follows:

V (C) =
(∆(G)∪

i=3

Vi(G)
)
∪ V (C ′), and E(C) = E(C ′).

We will prove that C ∈ EUPk+1(G).

Since V (Hi)∩V (Hj) = ∅ for {i, j} ⊆ {1, 2, . . . ,m} with i ̸= j, V (Hj
1) ⊆ V (H1) (1 ≤ j ≤ q),

and V (Hi
1) ∩ V (Hj

1) = ∅ for {i, j} ⊆ {1, 2, . . . , q} with i ̸= j, we have E(Ci) ∩ E(Cj) = ∅,
E(Ci

1) ∩ E(Cj
1) = ∅, and E(Ci) ∩ E(Cj

1) = ∅. It follows that dC(x) ≡ 0 (mod 2) for every

x ∈ V (C) excepting the end-vertices of the path T , which implies that C satisfies (I)′. Since Ci

and Cj
1 satisfy Lemma 9 (2), dG(x) ≥ 3 for every x ∈ V (C) with dC(x) = 0. Thus, (II) holds.

Arguing similarly as the proof of Theorem 11, we can prove that C satisfies (III), (IV) and

(V)′.

It follows that C ∈ EUPk+1(G).
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This completes the proof of Theorem 12.

Theorem 13. Let G be a connected graph with at least three edges. Then L2(G) is traceable if

and only if EUP2(G) ̸= ∅.

Proof. Sufficiency. Suppose that EUP2(G) ̸= ∅. Note that if EU2(G) ̸= ∅, then by Theorem

11, L2(G) is hamiltonian, we are done. So we may assume that EU2(G) = ∅, which implies

that each subgraph of G in EUP2(G) contains exactly two odd vertices.

We choose an H ∈ EUP2(G) with a minimum number of components that are denoted by

H1, H2, . . . ,Ht, and assume that |O(H1)| = 2. Since H ∈ EUP2(G) and |E(G)| ≥ 3, we have

|Ē(H1)| ≥ 2, and |Ē(Hi)| ≥ 3 for i ∈ {2, 3, . . . , t}. Then by Lemma 10 (2), we can find a

nontrivial path P of L(G) such that V (P ) = Ē(H1). By Lemma 5 (2), we can find a cycle Ci

of L(G) such that V (Ci) = Ē(Hi), i ∈ {2, 3, . . . , t}. Let

T = P ∪
( t∪
i=2

Ci

)
.

By Lemma 8 and the minimality of t, P,C2, C3, . . . , Ct are edge-disjoint. Hence, T is a subgraph

of L(G) with exactly 2 odd vertices. Since dG(H
′,H −H ′) ≤ 1 for every subgraph H ′ of H, T

is connected.

Note that H satisfies (II), V (P ) = Ē(H1) and V (Ci) = Ē(Hi) for i ∈ {2, 3, . . . , t}. By the

fact that any edge in G, which corresponds to a vertex of degree at least 3 in L(G), must be

incident to a vertex of degree at least 3 in G,
∆(L(G))∪

i=3

Vi(L(G)) ⊆ V (T ).

Since H ∈ EUP2(G), any branch b ∈ B(L(G)) with E(b)∩E(C) = ∅ has length at most 2, and

any branch in B1(L(G)) has length at most 1. Then by Lemma 7, Ē(T ) = E(L(G)), which

implies that T is a dominating trail of L(G). Hence, L2(G) is traceable by Theorem 3.

Necessity. Suppose that L2(G) is traceable. By Theorem 3, L(G) has a dominating trail.

Select a dominating trail T of L(G) with a maximum number of vertices of degree at least 3.

Claim 1.
∪∆(L(G))

i=3 Vi(L(G)) ⊆ V (T ).

The proof of Claim 1 is the same as the proof that H has no isolated vertices in Theorem 12,

so we omit it here.

Then T can be decomposed into a nontrivial path P and several eulerian subgraphs. Let

P,H1,H2, . . . ,Hq be such a decomposition with q minimized. Note that if T is closed, then

T = ∪q
i=1Hi.

For the path P , by Lemma 10 (1), G has a trail T ′, such that L(G[Ē(T ′)]) contains P , and

P contains all edges of E(T ′). For any eulerian subgraph Hi (1 ≤ i ≤ q), by Lemma 9, there

exists a subgraph Ci of G, satisfying (1) to (4).

Set

H ′ = T ′∆
( q∪
i=1

Ci

)
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be the subgraph of G with vertex set V (T ′ ∪ (
∪q

i=1 Ci)) and edge set E(T ′)∆E((
∪q

i=1 Ci)). We

construct a subgraph H of G from H ′as follows:

V (H) =
(∆(G)∪

i=3

Vi(G)
)
∪ V (H ′), and E(H) = E(H ′).

We will prove that H ∈ EUP2(G). Before this, we present the following claim.

Claim 2. dG(x,H) ≤ 1 for any x ∈
∪∆(G)

i=3 Vi(G).

Proof of Claim 2. If G is either a star or a cycle, then the conclusion holds. For otherwise, then

EG(x) ∩ (∪∆(L(G))
i=3 Vi(L(G))) ̸= ∅ for every vertex x in ∪∆(G)

i=3 Vi(G). Hence, by Claim 1, there

exists an edge ex, which is incident to x in G, has an endvertex in H. Claim 2 holds.

Now we prove H ∈ EUP2(G). Obviously, H satisfies (I)′. Since Ci (1 ≤ i ≤ q) satisfies

(2) of Lemma 9, and by the definition of H, (II) holds. By Claim 2 and (3) of Lemma 9,

dG(H
′,H −H ′) ≤ 1 for every subgraph H ′ of H, thus H satisfies (III). It follows from Lemma

7 and E(L(G)) = Ē(T ) that |E(b)| ≤ 3 for b ∈ B(G) with E(b)∩E(H) = ∅, and |E(b)| ≤ 2 for

b ∈ B1(G) with E(b) ∩ E(H) = ∅. H satisfies (IV) and (V)′. Hence, H ∈ EUP2(G).

This completes the proof of Theorem 13.

Now we prove Theorem 4.

Proof of Theorem 4. We proceed by induction on n. Theorem 13 shows that Theorem 4

holds for n = 2.

Assume, as an inductive hypothesis, that the theorem is true for n = k > 2, i.e., Lk(G)

is traceable if and only if EUPk(G) ̸= ∅. Now let n = k + 1. Then Lk+1(G) = Lk(L(G)) is

traceable if and only if EUPk(L(G)) ̸= ∅. Hence, by Theorem 12, EUPk(L(G)) ̸= ∅ if and only

if EUPk+1(G) ̸= ∅. Theorem 4 holds for n = k + 1. Thus, the induction succeeds.

Theorem 4 doesn’t hold for n = 1. For example, Fig. 1 shows a graph G with EUP1(G) = ∅
while L(G) is traceable. By the definition of EUP1(G), any subgraph H in EUP1(G) should

be connected, V3(G) = {v3, v6, v9, v12} ⊆ V (H), and the 4 branches v1v2v3, v3v4v5v6, v6v7v8v9

and v9v10v11 belong to H. Then |O(H)| ≥ 4, a contradiction to (I)′. Thus, EUP1(G) = ∅, but
L(G) is traceable by the fact that v1v2 · · · v11 is a dominating trail of G and by Theorem 3.

Figure 1. A graph G with EUP1(G) = ∅ while L(G) is traceable.

Note that Theorem 4 doesn’t hold for n = 1 . Hence, when we prove it by induction, the

basis step is n = 2 (Theorem 13).
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§4 Applications of Theorem 4

In this section, inspired by the massive upper bounds of h(G), as applications of Theorem

4, we will present some upper bounds on the hamiltonian path index hp(G) of a graph G. The

main idea is to show that EUPk(G) ̸= ∅, and then by Theorem 4, hp(G) ≤ k.

Note that the hamiltonian index h(G) exists for any connected graph G other than a path

and hp(G) ≤ h(G). The hamiltonian path index hp(G) exists for any connected graph.

Comparing the definition of hamiltonian with traceable, we know that being hamiltonian

is stronger than being traceable. Then one may believe that the former needs more iterated

steps, and hence, hp(G) < h(G). Unfortunately, this is not true by the fact that hp(K1,n−1) =

h(K1,n−1) = 1 (n ≥ 3). Moreover, Fig. 2 shows a graph G with hp(G) = h(G) = k: one can

check that the unique cycle of G is an element in EUk(G), but EUPk−1(G) = ∅ by the fact that

any element in EUPk−1(G) can’t contain all the three pendent paths with length k. Hence,

our trivial bound hp(G) ≤ h(G) is the best possible.

Figure 2. A graph G with hp(G) = h(G) = k.

For a graph G, let MT ∗(G) be a trail of G with the most number of vertices, and in this

sense, with the least number of vertices in
∪∆(G)

i=3 Vi(G). Denote mt∗(G) = |V (MT ∗(G))| and
d∗≥3(G) = |

∪∆(G)
i=3 Vi(G)\V (MT ∗(G))|.

Theorem 14. Let G be a connected graph of order n. Then hp(G) ≤ n−mt∗(G)−d∗≥3(G)+2.

Proof. Since G is connected, Theorem 14 holds for |E(G)| < 3 trivially. So we may assume

that |E(G)| ≥ 3.

Let MT ∗(G) be a trail of G satisfying the hypotheses above. Denote k = n − mt∗(G) −
d∗≥3(G) + 2. Note that k ≥ 2. By Theorem 4, it suffices to prove that EUPk(G) ̸= ∅.

Let H be the subgraph of G with vertex set V (MT ∗(G)) ∪
(∪∆(G)

i=3 Vi(G)
)
and edge set

E(MT ∗(G)). We will prove that H ∈ EUPk(G).

By the definition of H, H satisfies (I)′ and (II). Note that |V (G)|− |V (H)| = n− (mt∗(G)+

d∗≥3(G)) = k− 2. Then dG(H1,H −H1) ≤ k− 1 for every subgraph H1 of H, |E(b)| ≤ k− 1 (<

k + 1) for every branch b ∈ B(G) with E(b) ∩ E(H) = ∅, and |E(b)| ≤ k − 2 (< k) for every
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branch b ∈ B1(G) with E(b) ∩ E(H) = ∅. Hence, H satisfies (III), (IV) and (V)′. Theorem 14

holds.

The bound of hp(G) in Theorem 14 is sharp. Fig. 3 shows a graph G with hp(G) =

n − mt∗(G) − d∗≥3(G) + 2, where s, t are positive integers and t ≥ s + 5 in the figure. Since

t ≥ s+5,MT ∗(G) is the path x1x2 · · ·xtw1yt · · · y2y1, and thenmt∗(G) = 2t+1 and d∗≥3(G) = 4.

Note that n = |V (G)| = 2t + s + 5. On the one hand, by Theorem 14, we have hp(G) ≤
n − mt∗(G) − d∗≥3(G) + 2 = s + 2. On the other hand, we will explain hp(G) ≥ s + 2 in

the following. For k ≤ s + 1, the k-th iterated line graph Lk(G) is also illustrated in Fig.

3, where the gray ellipse and triangle are the nontrivial hamiltonian subgraph S1 and S2 of

Lk(G), respectively. Note that k ≤ s + 1. We have s − k + 2 ≥ 1, which means that either

|V (S1)∩ V (S2)| = 1 (when s− k+ 2 = 1), or dLk(G)(S1, S2) ≥ 1 (when s− k+ 2 ≥ 2). In both

cases, Lk(G) is not traceable. Hence, hp(G) ≥ s+ 2.

Figure 3. A graph G with hp(G) = n−mt∗(G)− d∗≥3(G) + 2 and its iterated line graph Lk(G)
with k ≤ s+ 1.

By Theorem 14, we can obtain the following corollary.

Corollary 15. Let G be a connected graph of order n. Then hp(G) ≤ max{1, n−mt∗(G)}.

Proof. Let MT ∗(G) be a maximum trail of G, and in this sense, with the least number of

vertices in
∪∆(G)

i=3 Vi(G), and let k = n−mt∗(G). If k ≤ 1, then MT ∗(G) is a dominating trail

of G. By Theorem 3, L(G) is traceable. Hence, hp(G) ≤ 1. So we may assume that k ≥ 2.

Now the proof is divided into three cases.

Case 1. d∗≥3(G) = 0.

Let H = MT ∗(G). We will prove that H ∈ EUPk(G), and then hp(G) ≤ k. Obviously,

H satisfies (I)′, (II) and (III). Note that d∗≥3(G) = 0. G − H has exactly k vertices. Then

|E(b)| ≤ k + 1 for every branch b ∈ B(G) with E(b) ∩ E(H) = ∅, and |E(b)| ≤ k for every

branch b ∈ B1(G) with E(b) ∩ E(H) = ∅. Hence, H satisfies (IV) and (V)′.

Case 2. d∗≥3(G) = 1.
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Let v be the vertex of degree at least 3 in
∪∆(G)

i=3 Vi(G)\V (MT ∗(G)). If |NG(v)| = 1, then

by d∗≥3(G) = 1, the neighbour of v belongs to MT ∗(G). Hence, the union of MT ∗(G) + v and

two multiple edges incident to v is a longer trail than MT ∗(G), contrary to the maximality of

MT ∗(G). Then we may assume that |NG(v)| ≥ 2.

Let H = MT ∗(G) + v. We will prove that H ∈ EUPk(G). Obviously, H satisfies (I)′ and

(II). Arguing similarly as the proof of Case 1, H satisfies (IV) and (V)′. It remains to prove

that dG(MT ∗(G), v) ≤ k − 1. This holds by the fact that G − H has exactly k − 1 vertices,

|NG(v)| ≥ 2, and the shortest path between v and MT ∗(G) contains only one neighbour of v.

Case 3. d∗≥3(G) ≥ 2.

By Theorem 14, hp(G) ≤ n − mt∗(G) − d∗≥3(G) + 2. Then by d∗≥3(G) ≥ 2, we have

hp(G) ≤ n−mt∗(G).

This completes the proof of Corollary 15.

By the sharpness of hp(G) ≤ n −mt∗(G) − d∗≥3(G) + 2 and the proof of Corollary 15, we

know that the bound hp(G) ≤ max{1, n−mt∗(G)} is sharp when d∗≥3(G) ≤ 2.

The diameter of a graph G, denoted by diam(G), is the greatest distance between two

vertices of G. Note that diam(G) + 1 ≤ mt∗(G). The following corollary is obvious.

Corollary 16. Let G be a connected graph of order n. Then hp(G) ≤ max{1, n−diam(G)−1}.

For a graph G, let d′G(v) = |NG(v)| and ∆′(G) = max{d′G(v) : v ∈ V (G)}. Note that if G is

simple, then d′G(v) = dG(v) and ∆′(G) = ∆(G). Let d∗∗≥3(G) = max{|(
∪∆(G)

i=3 Vi(G))\NG(v)| :

v ∈ V (G) and |NG(v)| = ∆′(G)}. A cycle C of G is called pendent if |V (C)∩ (
∪∆(G)

i=3 Vi(G))| =
1. See Fig. 4 (a) for illustrations of pendent cycles. Let PC(G) be the set of pendent cycles of

G.

Theorem 17. Let G be a connected graph of order n. Then

hp(G) ≤
⌊
n−∆′(G)− d∗∗≥3(G)

3

⌋
+ 3.

Proof. Let k = ⌊(n−∆′(G)− d∗∗≥3(G))/3⌋+3, and v a vertex of G with |NG(v)| = ∆′(G) and

|(
∪∆(G)

i=3 Vi(G))\NG(v)| maximized. Note that k ≥ 3. By Theorem 4, it suffices to prove that

EUPk(G) ̸= ∅.
If ∆′(G) ≤ 2, then G is traceable. Hence, hp(G) = 0, and the bound holds trivially. Now we

may assume that ∆′(G) ≥ 3. Then B(G), the set of branches of G, has at least two elements.

Let b1 ∈ B(G) be a branch with |V (b1)∩ (V1(G)∪ V2(G))| maximized, and b2 ∈ B(G)\{b1}
a branch with |V (b2) ∩ (V1(G) ∪ V2(G))| maximized. Since G is connected, we can find a trail

T1 (may be trivial) which connects b1 and b2. By the fact that the internal vertices (if any) of

b1 and b2 have degree 2 in G, T = T1 ∪ b1 ∪ b2 is a trail of G.

Let Let H be the subgraph of G with vertex set
(∪∆(G)

i=3 Vi(G)
)
∪ V (T ) ∪ V (PC(G)) and

edge set E(T ) ∪ E(PC(G)). We will prove that H ∈ EUPk(G).

Obviously, H satisfies (I)′ and (II). By the choice of b1 and b2, each of the other branches

of G has at most ⌊(n − ∆′(G) − d∗∗≥3(G))/3⌋ + 1 vertices in V1(G) ∪ V2(G), where the +1 is
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necessary since each branch may have at most one neighbour of v. Then |E(b)| ≤ ⌊(n−∆′(G)−
d∗∗≥3(G))/3⌋ + 2 = k − 1 for every branch b ∈ B(G)\{b1, b2}, and hence, (III), (IV) and (V)′

hold.

This completes the proof of Theorem 17.

The bound of hp(G) in Theorem 17 is sharp. Fig. 4 (b) shows a graph G with n = 3s+16,

∆′(G) = 6 and d∗∗≥3(G) = 13, where s is a positive integer and the three gray cycles are induced

K4. Then by Theorem 17, hp(G) ≤ ⌊(n −∆′(G) − d∗∗≥3(G))/3⌋ + 3 = s + 2. Note that G has

3 branches of length s + 1. Lk(G) is not traceable when k < s + 2. Then hp(G) ≥ s + 2, and

hence, hp(G) = s+ 2, which implies the sharpness of the upper bound in Theorem 17.

If G is a connected simple graph of order n, then Theorem 17 implies that hp(G) ≤ ⌊(n −
∆(G)− d∗∗≥3(G))/3⌋+ 3.

Figure 4. (a) A graph with 2 pendent cycles; and (b) A graph G with hp(G) = ⌊(n−∆′(G)−
d∗∗≥3(G))/3⌋+ 3.

In [19], Saraz̆in proved the following upper bound of h(G).

Theorem 18. (Saraz̆in, [19]) Let G be a connected simple graph of order n. If ∆(G) ≥ 3, then

h(G) ≤ n−∆(G).

The following corollary, obtained by Theorem 17 immediately, implies that when considering

hp(G), the upper bound in Theorem 18 can be improved evidently.

Corollary 19. Let G be a connected simple graph of order n. Then

hp(G) ≤
⌊
n−∆(G)

3

⌋
+ 3.
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