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Existence and numerical approximation of a solution to

frictional contact problem for electro-elastic materials

Othman Baiz1 EL-Hassan Benkhira2 Rachid Fakhar3

Abstract. In this paper, a frictional contact problem between an electro-elastic body and an

electrically conductive foundation is studied. The contact is modeled by normal compliance with

finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction

depends on the slip. In addition, the effects of the electrical conductivity of the foundation are

taken into account. This model leads to a coupled system of the quasi-variational inequality

of the elliptic type for the displacement and the nonlinear variational equation for the electric

potential. The existence of a weak solution is proved by using an abstract result for elliptic

variational inequalities and a fixed point argument. Then, a finite element approximation of the

problem is presented. Under some regularity conditions, an optimal order error estimate of the

approximate solution is derived. Finally, a successive iteration technique is used to solve the

problem numerically and a convergence result is established.

§1 Introduction

The study of piezoelectric materials remains an active research area and success of adaptive

devices has attracted the attention of industry and engineering researchers. Due to the in-

trinsic coupling between mechanical and electrical energy, these materials can serve as sensors,

actuators or transducers. This ability is widely used in various technical devices as ultrason-

ic medical equipment, fuel injection pistons or smart composites with integrated piezoelectric

layers. For this reason, considerable progress has been made with the modelling and analysis

of contact problems, and the engineering literature concerning this topic is rather extensive.

Different models have been developed to describe the interaction between the electrical and

mechanical fields which can be found in [18,16] and the references therein. A static friction-

al contact problem for electro-elastic materials was considered in [14,17] under the assumption
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that the foundation is insulated, and [4,16,17] under the assumption that the foundation is elec-

trically conductive. Some comprehensive references on analysis and numerical approximation of

variational inequalities arising from contact problems with or without friction for piezoelectric

materials include [10,11,9] and, more recently, [1,5,20,21].

The present paper is devoted to variational and numerical analysis of a problem of frictional

contact under a small deformation hypothesis. The process is static and the friction is described

by a slip dependent friction coefficient and a nonlocal regularized contact stress. The material’s

behavior is described by a linear electro-elastic constitutive law and the contact is modeled with

a normal compliance condition of such a type that the penetration is limited with unilateral

constraint and a regularized electrical conductivity condition. The resulting variational formu-

lation of the problem is different from that in [4] and represents a new mathematical model,

which is in a form of a system coupling a nonlinear variational inequality for the displacement

field and a nonlinear variational equation for the electric potential. We show the existence of

a unique weak solution for the model. Then, we perform a numerical analysis of the problem

and derive error estimates for the numerical approximations based on discrete schemes.

The rest of the paper is structured as follows. In Section 2, we introduce some notation and

preliminary and present a model for the process of frictional contact between the electro-elastic

body and the conductive foundation. In Section 3, we list assumptions on the data, derive a

variational formulation of the model and state our main result, the existence of a unique weak

solution of the problem in Theorem 3.1. The proof of the theorem is given in Section 4, where it

is carried out in several steps and is based on arguments of elliptic variational inequalities and

the Schauder fixed point theorem. In Section 5, we introduce a finite element approximation

for the variational inequality problem and we present the results of some error estimates for

the numerical approximation. Finally, in Section 6, we propose an iterative solution scheme to

solve the problem numerically and we prove its convergence.

§2 Problem statement

We consider a piezoelectric body occupying, in its reference configuration, a bounded do-

main Ω ⊂ Rd, d = 2, 3 with a sufficiently regular boundary Γ, partitioned into three disjoint

measurable parts Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. A volume force of density f0 and

volume electric charges of density q0 act in Ω. The body is clamped on Γ1 and a surface traction

of density f2 acts on Γ2. To describe the electric constraints of the body, we consider a partition

of Γ1 ∪ Γ2 into two disjoint parts Γa and Γb, such that meas(Γa) > 0. We assume that the

electrical potential vanishes on Γa and a surface electrical charge of density q2 is prescribed on

Γb. In the initial configuration, the body may come in contact over Γ3 with a rigid foundation.

To simplify the notation, we do not indicate explicitly the dependence of various functions on

the spatial variable x ∈ Ω. The indices i, j, k, l run between 1 and d, the summation convention

over repeated indices is used and the index that follows a comma indicates the partial derivative

with respect to the corresponding component of the independent variable, e.g. ui,j =
∂ui

∂xj
. We
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denote by Sd the linear space of second order symmetric tensors on Rd. The inner products

and the corresponding norms on Rd and Sd are given by

u · v = uivi , ∥v∥ = (v · v) 1
2 , ∀u, v ∈ Rd, σ · τ = σijτij , ∥τ∥ = (τ · τ) 1

2 ,∀σ, τ ∈ Sd.

Throughout the paper, we adopt the following notation u = (ui) : Ω → Rd for the dis-

placement field, σ = (σij) : Ω → Sd for the stress tensor, D = (Di) : Ω → Rd for the electric

displacement field and E(φ) = (Ei(φ)) = −∇φ for the electric vector field, where φ : Ω → R

is an electric potential. Moreover, ε(u) = (εij(u)) where εij(u) = 1
2 (ui,j + uj,i) denotes the

linearized strain tensor, and “Div ”, “ div ” are the divergence operators for tensor and vector

valued functions. Let ν be the unit outward normal vector on Γ, then the normal and tangential

components of the displacement field and stress tensor are given by

vν = v · ν , vτ = v − vνν , σν = σν · ν , στ = σν − σνν.

The governing equations consist of the equilibrium equations, constitutive relations, strain-

displacement and electric field-potential relations. The equilibrium equations are given by

Div σ + f0 = 0, divD = q0 in Ω. (1)

The linear constitutive equations that couple the mechanical and electrical quantities in the

piezoelectric materials can be written in the following form

σ = Fε(u)− E∗E(φ), D = Eε(u) + βE(φ) in Ω, (2)

where F = (fijkl) : Ω×Sd → Sd is a linear elasticity operator, in which the elasticity coefficients

f(x) = (fijkl(x)) may be function of position in a non-homogeneous materials, E = (eijk) :

Ω × Sd → Rd is a linear piezoelectric operator, β = (βij) : Ω × Rd → Rd is a linear electric

permittivity operator. We use E∗ to denote the transpose tensor of E given by

Eσ · v = σ · E∗v, ∀σ ∈ Sd, v ∈ Rd. (3)

The elastic strain-displacement and electric field-potential relations are given by

ε(u) =
1

2
(∇u+ (∇u)⊥), E(φ) = −∇φ in Ω. (4)

where (∇u)⊥ = (uj,i) is the transpose of ∇u. Next, we prescribe the boundary conditions by

u = 0 on Γ1, σν = f2 on Γ2, (5)

φ = 0 on Γa, D · ν = q2 on Γb. (6)

We model the frictional contact on Γ3 with

uν ≤ g, σν + hν(φ− φF )pν(uν) ≤ 0,

(uν − g)(σν + hν(φ− φν)pν(uν)) = 0,

 on Γ3, (7)

∥στ∥ ≤ µ(∥uτ∥)|Rσν(u, φ)|

∥στ∥ < µ(∥uτ∥)|Rσν(u, φ)| ⇒ uτ = 0

∥στ∥ = µ(∥uτ∥)|Rσν(u, φ)| ⇒ ∃λ ∈ R+, στ = −λuτ

 on Γ3, (8)

D · ν = pe(uν)he(φ− φF ) on Γ3. (9)



204 Appl. Math. J. Chinese Univ. Vol. 39, No. 2

In conditions (7), the function g represents the maximum interpenetration of body’s and

foundations asperities and φF denotes the electric potential of the foundation. This condition

(7) introduced in [3], represents the normal compliance contact condition with finite penetration

in which pν is a prescribed nonnegative function depending on the difference between the

potential of the foundation and the body’s surface and which vanishes when its argument is

negative and hν is a positive function. We note that (7) shows that when there is no contact (i.e.

uν < 0), the reaction of the foundation vanishes and, therefore, σν = 0. When 0 ≤ uν < g, then

we have −σν = hν(φ − φν)pν(uν), which means that the reaction of the foundation depends

on the normal displacement and the difference between the potential of the foundation and the

body’s surface. When uν = g, then −σν ≥ hν(φ − φν)pν(g). We note that if pν = 0, the

condition (7) becomes the classical Signorini’s conditions with a gap g, i.e.,

uν ≤ g, σν ≤ 0, σν(uν − g) = 0.

Relations (8) represent the Coulomb’s friction law in which µ is the coefficient of friction

and R is a regularization operator. The introduction of the nonlocal smoothing operator R is

used for technical reasons, since the trace of the stress tensor on the boundary is too rough.

We note that the coefficient of friction µ is assumed to dependi on the slip ∥uτ∥, which leads

to a nonstandard frictional contact problem.

Finally, (9) is a regularized electrical contact condition (see [12]) where pe represents the

electrical conductivity coefficient, which vanishes when its argument is nonnegative, and he is

a given function depending on the difference of the electric potential of the body’s surface and

the foundation.

This condition shows that when there is no contact at a point on the surface (i.e., uν < 0),

then the normal component of the electric displacement field vanishes, and when there is contact

(i.e., uν ≥ 0) then there may be electrical charges which depend on the potential difference

between the foundation and the contact surface.

Now, we collect all the above conditions to obtain the following mathematical model,

Problem (P ). Find a displacement field u : Ω → Rd and an electric potential φ : Ω → R such

that (1)-(9) hold.

The variational analysis of the frictional contact Problem (P ) will be presented in the next

sections, where we give our main existence and uniqueness result of the weak solution of (P ).

§3 Variational formulation and main result

In this section, we state the hypotheses and derive the weak formulation of Problem (P ).

First, we introduce the following functional spaces

H = {u = (ui) |ui ∈ L2(Ω)}, H = {σ = (σij) |σij = σji ∈ L2(Ω)},
H1 = {u = (ui) |ui ∈ H1(Ω)}, H1 = {σ ∈ H | Div σ ∈ H}.

These are real Hilbert spaces endowed with the inner products

(u, v)H =

∫
Ω

uivi dx, (σ, τ)H =

∫
Ω

σijτij dx,
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(u, v)H1 = (u, v)H + (ε(u), ε(v))H, (σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H ,

and their associated Euclidean norms ∥ · ∥H , ∥ · ∥H, ∥ · ∥H1 and ∥ · ∥H1 .

Let HΓ = (H
1
2

Γ )
d and let γ : H1 → HΓ be the trace map. For every element v ∈ H1, we also

use the notation v to denote the trace γv of v on Γ. Let H
′

Γ be the dual of HΓ and let ⟨·, ·⟩Γ
denote the duality pairing between H

′

Γ and HΓ. For every σ ∈ H1, σν can be defined as the

element of H
′

Γ which satisfies the Green formula

⟨σν, γv⟩Γ = (σ, ε(v))H + (Div σ, v)H for all v ∈ H1.

Moreover, if σ is continuously differentiable on Ω, then

⟨σν, γv⟩ =
∫
Γ

σν · v da.

Let us also introduce H
1
2

Γ3
⊂ L2(Γ3), the space of normal traces on Γ3 given by

H
1
2

Γ3
= {vν ∈ L2(Γ3) ; (∃ v ∈ H1), vν = γv · ν}. (10)

The spaces H
1
2

Γ3
and its dual H

− 1
2

Γ3
can be endowed with the following norms

∥vν∥
H

1
2
Γ3

= inf
v∈H1

{∥v∥H1 , vν = γv · ν} for all vν ∈ H
1
2

Γ3
, (11)

∥σν∥
H

− 1
2

Γ3

= sup

vν∈H
1
2
Γ3

⟨σν , vν⟩Γ3

∥vν∥
H

1
2
Γ3

for all vν ∈ H
1
2

Γ3
and σν ∈ H

− 1
2

Γ3
, (12)

where ⟨·, ·⟩Γ3 denotes the duality pairing between H
− 1

2

Γ3
and H

1
2

Γ3
. Recalling the condition (5),

we introduce the following subspaces of H1 given by

V = {v ∈ H1; v = 0 on Γ1},
and the set K of admissible displacements

K = {v ∈ V ; vν − g ≤ 0 on Γ3}.

Since meas(Γ1) > 0, it follows from the Korn’s inequality that there exists a constant ck > 0

depending only on Ω and Γ1 such that

∥ε(v)∥H ≥ ck∥v∥H1 ∀ v ∈ V. (13)

Over the space V , we consider the following inner product and associated norm

(u, v)V = (ε(u), ε(v))H, ∥u∥V = ∥ε(v)∥H = (u, u)
1
2

V . (14)

From (13) it follows that ∥ · ∥H1 and ∥ · ∥V are equivalent on V . Therefore (V, ∥ · ∥V ) is a

Hilbert space. Moreover, by the Sobolev trace theorem, (13) and (14), there exists a constant

c0 > 0 depending only on Ω, Γ3 and Γ1 such that

∥v∥L2(Γ)d ≤ c0∥v∥V for all v ∈ V. (15)

For the electric unknowns of the contact problem, we introduce the spaces

W = {ψ ∈ H1(Ω)/ ψ = 0 on Γa},

W = {D = (Di) ∈ H1(Ω)d/ (Di) ∈ L2(Ω)d, divD ∈ L2(Ω)}.
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These are real Hilbert spaces with the inner products

(φ,ψ)W = (φ,ψ)H1(Ω), (D,E)W = (D,E)L2(Ω)d + (divD, divE)L2(Ω).

The associated norms are ∥ · ∥W and ∥ · ∥W , respectively. Since meas(Γa) > 0, the following

Friedrichs-Poincaré inequality holds

∥∇ψ∥W ≥ cF ∥ψ∥W for all ψ ∈W. (16)

where cF > 0 is a constant which depends only on Ω and Γa. Moreover, by the Sobolev trace

theorem, there exists a constant c1 > 0 depending only on Ω, Γa and Γ3, such that

∥ξ∥L2(Γ3) ≤ c1∥ξ∥W for all ξ ∈W. (17)

When D ∈ W is a sufficiently regular function, the following Green’s type formula holds,

(D,∇ξ)L2(Ω)d + (divD, ξ)L2(Ω) =

∫
Γ

D · ν ξ da for all ξ ∈ H1(Ω).

To study Problem (P ), we need the following assumptions on the data’s problem.

(h1) The elasticity operator F = (fijkl) : Ω × Sd → Sd, the electric permittivity tensor

β = (βij) : Ω×Rd → Rd satisfy the usual properties of symmetry and ellipticity

fijkl = fjikl = flkij ∈ L∞(Ω) , MF = sup
i,j,k,l

∥fijkl∥L∞(Ω),

βij = βji ∈ L∞(Ω) , Mβ = sup
i,j

∥βij∥L∞(Ω),

and there exists mF,mβ such that for all ξ ∈ Sd, ζ ∈ Rd

fijkl(x) ξijξkl ≥ mF ∥ξ∥2 , βij(x) ζiζj ≥ mβ ∥ζ∥2, a.e. x ∈ Ω.

(h2) The piezoelectric tensor E = (eijk) : Ω× Sd → Rd, satisfies

eijk = eikj ∈ L∞(Ω) , ME = supi,j,k ∥eijk∥L∞(Ω).

(h3) The function pr : Γ3 ×R → R+, (r = e, ν) satisfies the following hypothesis

(a) there exists Mpr > 0 such that |pr(x, u)| ≤Mpr for all u ∈ R, a.e. x ∈ Γ3,

(b) x 7→ pr(x, u) is measurable on Γ3 for all u ∈ R and is zero for all u ≤ 0.

(h4) The function hr : Γ3 ×R → R, (r = e, ν) satisfies the following hypothesis

(a) there exists Mhe > 0 such that |he(x, φ)| ≤Mhe for all φ ∈ R, a.e. x ∈ Γ3,

(b) there exists Mhν > 0 such that 0 ≤ hν(x, φ) ≤Mhν for all φ ∈ R, a.e. x ∈ Γ3,

(c) x 7→ hr(x, φ) is measurable on Γ3 for all φ ∈ R.

(h5)The coefficient of friction µ : Γ3 × R+ → R+ satisfies

(a) there exists µ∗ > 0 such that 0 ≤ µ(x, u) ≤ µ∗ for all u ∈ R+, a.e. x ∈ Γ3,

(b) the function x 7→ µ(x, u) is measurable on Γ3 for all u ∈ R.

(h6) We assume that pr, hr and µ are lipschitz continuous functions in the following sense
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(a) ∃Lpr > 0, |pr(x, u1)− pr(x, u2)| ≤ Lpr |u1 − u2| for all u1, u2 ∈ R, a.e. x ∈ Γ3,

(b) ∃Lhr > 0, |hr(x, φ1)− hr(x, φ2)| ≤ Lhr |φ1 − φ2| for all φ1, φ2 ∈ R, a.e. x ∈ Γ3,

(c) ∃Lµ > 0, |µ(x, u)− µ(x, v)| ≤ Lµ|u− v| for all u, v ∈ R+, a.e. x ∈ Γ3.

(h7) We suppose that R : H
− 1

2

Γ3
→ L∞(Γ3) is a linear and continuous. We denote ∥R∥ = cR.

(h8) The forces, the traction, the volume and surface charge densities satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)
d, q0 ∈ L2(Ω), q2 ∈ L2(Γb).

(h9) The potential of the contact surface and the gap satisfy

φF ∈ L2(Γ3), g ∈ L2(Γ3).

Elements f ∈ V and qe ∈W are defined as

(f, v)V =

∫
Ω

f0 · v dx+

∫
Γ2

f2 · v da for all v ∈ V, (18)

(qe, ξ)W =

∫
Ω

q0ξ dx−
∫
Γb

q2ξ da for all ξ ∈W. (19)

We define the following R-valued mappings j1, j2 and j defined on V ×W × V by

j1(u, φ, v) =

∫
Γ3

µ(∥uτ∥) |Rσν(u, φ)| ∥vτ∥ da, (20)

j2(u, φ, v) =

∫
Γ3

hν(φ− φF )pν(uν) vν da, (21)

j(u, φ, v) = j1(u, φ, v) + j2(u, φ, v), (22)

and the mapping j3 : V ×W ×W → R given by

j3(u, φ, ξ) =

∫
Γ3

pe(uν)he(φ− φF ) ξ da. (23)

Keeping in mind (h8)-(h9) and (h3)-(h5), it follows that the integrals in (18)-(23) are well-

defined. Under these notations, the Green formula implies that if (u, σ, ϕ,D) are sufficiently

regular functions satisfying (1)-(9), then we obtain the variational formulation of Problem (P ).

Problem (PV ). Find a displacement field u ∈ K and the electric potential φ ∈W such that :

(Fε(u), ε(v)− ε(u))H + (E∗∇φ, ε(v)− ε(u))L2(Ω)d + j(u, φ, v)− j(u, φ, u)

≥ (f, v − u)V for all v ∈ K,
(24)

(β∇φ,∇ξ)L2(Ω)d − (Eε(u),∇ξ)L2(Ω)d + j3(u, φ, ξ) = (qe, ξ)W for all ξ ∈W. (25)

Now, we are able to state our main result that we will prove in the next section.

Theorem 3.1. Assume that (h1)-(h5) and (h7)-(h9) hold. Then

1. Problem (PV ) has at least one solution (u, φ) ∈ K ×W .

2. Under assumptions (h6), there exists L∗ > 0 such that if

MhνLpν +MpνLhν +MheLpe +MpeLhe + µ∗ + Lµ < L∗,

then, Problem (PV ) has a unique solution.
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§4 Proof of Theorem 3.1

In this section, we assume that assumptions (h1)-(h9) hold. The proof is based on fixed

point arguments, similar to those used in [4,9], but with a different choice of the operators, and

it will be carried out in several steps. First, we consider the product spaces X = V ×W and

Y = L2(Γ3)
3 endowed with the following inner products(

x, y
)
X

= (u, v)V + (φ, ξ)W ,
(
η, α

)
Y
=

i=3∑
i=1

(ηi, αi)L2(Γ3), (26)

for all x = (u, φ), y = (v, ξ) ∈ X, η = (η1, η2, η3), α = (α1, α2, α3) ∈ Y and associated Euclidean

norms ∥.∥X and ∥.∥Y . Let U = K ×W be nonempty closed convex subset of X. We define the

operator A : X → X, the function J : X ×X → R and the element F of X by

(Ax, y)X = (Fε(u), ε(v))H + (E∗∇φ, ε(v))L2(Ω)d + (β∇φ,∇ξ))L2(Ω)d

− (Eε(u),∇ξ)L2(Ω)d , ∀x = (u, φ), y = (v, ξ) ∈ X, (27)

(F, y)X = (f, v)V + (qe, ξ)W , ∀ y = (v, ξ) ∈ X, (28)

J(x, y) = j1(u, φ, v) + j2(u, φ, v) + j3(u, φ, ξ) , ∀x = (u, φ), y = (v, ξ) ∈ X. (29)

Then, we have the following equivalence result,

Lemma 4.1. The couple x = (u, φ) is solution of Problem (PV ) if and only if

(Ax, y − x)X + J(x, y)− J(x, x) ≥ (F, y − x)X , ∀ y ∈ U. (30)

Proof. Let x = (u, φ) ∈ X a solution of (24)-(25), and y = (v, ξ) ∈ U . We replace ξ in (25) by

ξ − φ, add the corresponding inequality to (24), and use (27)-(29) to obtain (30). Conversely,

let x = (u, φ) be a solution to the quasivariational inequality (30). For any v ∈ K, we take

y = (v, φ) in (30), to obtain (24). Then for any ξ ∈W , we take successively y = (u, φ− ξ) and

y = (u, φ+ ξ) in (30) to obtain (25). This completes the proof of Lemma 4.1.

Next, let η = (η1, η2, η3) ∈ Y be given, we define the following closed convex sets of L2(Γ3)

K1 = {η1 ∈ L2(Γ3) ; η1 ≥ 0 and ∥η1∥L2(Γ3) ≤ k1} , K2 = {η2 ∈ L2(Γ3) ; ∥η2∥L2(Γ3) ≤ k2},

K3 = {η3 ∈ L2(Γ3) ; ∥η3∥L2(Γ3) ≤ k3},
where constants k1, k2 and k3 will be specified later. We also define onX the R-valued functions

Jη
1 (y) =

∫
Γ3

η1 ∥vτ∥ da for all y = (v, ξ) ∈ X, (31)

Jη
2 (y) =

∫
Γ3

η2 vν da for all y = (v, ξ) ∈ X, (32)

Jη
3 (y) =

∫
Γ3

η3 ξ da for all y = (v, ξ) ∈ X, (33)

and the element F η of X given by

(F η, y)X = (F, y)X − Jη
2 (y)− Jη

3 (y) for all y = (v, ξ) ∈ X. (34)

Using these notations, we construct the following intermediate problem.

Problem (PV η). Let η = (η1, η2, η3) ∈ K1 ×K2 ×K3. Find xη = (uη, φη) ∈ U such that

(Axη, y − xη)X + Jη
1 (y)− Jη

1 (xη) ≥ (F η, y − xη)X for all y ∈ U. (35)
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The unique solvability of Problem (PV η) follows from the following lemma.

Lemma 4.2. For any η ∈ K1 ×K2 ×K3 assumed to be known, we have

1. Under (h1)-(h2) and (h8)-(h9), Problem (PV η) has unique solution xη = (uη, φη) ∈ U .

2. The solution xη = (uη, φη) of Problem (PV η) depends Lipschitz continuously on η.

3. There exists a constant c2 > 0 such that the solution of Problem (PV η) satisfies

∥xη∥x ≤ c2(∥F∥X + ∥η∥Y ). (36)

Proof. 1. We consider two elements x1 = (u1, φ1) and x2 = (u2, φ2) of X. Using (27), (3), (17)

and (h1), there exists mA = min(mF,mβ) > 0 such that

(Ax1 −Ax2, x1 − x2)X ≥ mA∥x1 − x2∥2X . (37)

In the same way, using (h1)-(h3), there exists a constant MA = 2max(MF,Mβ ,ME) such that

∥Ax1 −Ax2∥X ≤MA∥x1 − x2∥X . (38)

Then, by combining (37) and (38), we get that the operator A : X → X is strongly monotone

and Lipschitz continuous. Moreover, it follows from (31) and (26) that the function Jη
1 is

convex and Lipschitz continuous and then Jη
1 is a fortiori lower semicontinuous. From the

definitions (28) and (32) it is easy to see that the function F η defined by (34) is an element of X.

Recalling that U is a closed convex nonempty subset of X, it follows from standard arguments

on variational inequalities that there exists a unique solution xη = (uη, φη) of Problem (PV η).

2. Let η1 = (η11 , η
1
2 , η

1
3), η

2 = (η21 , η
2
2 , η

2
3) ∈ Y . It follows from (35) that

(Ax1, y − x1)X + Jη1

1 (y)− Jη1

1 (x1) ≥ (F η1 , y − x1)X for all y ∈ U,

(Ax2, y − x2)X + Jη2

1 (y)− Jη2

1 (x2) ≥ (F η2 , y − x2)X for all y ∈ U.

Taking y = x2 in the first inequality and y = x1 in the second inequality, we obtain

(Ax1 −Ax2, x1 − x2)X

≤ Jη1

1 (x2)− Jη1

1 (x1) + Jη2

1 (x1)− Jη2

1 (x2) + Jη2−η1

2 (x1 − x2) + Jη2−η1

3 (x1 − x2)

≤
∫
Γ3

(
η11 − η21

) (
|u1τ | − |u2τ |

)
da+

∫
Γ3

(
η12 − η22

) (
u1ν − u2ν

)
da

+

∫
Γ3

(
η13 − η23

) (
φ1 − φ2

)
da

≤ ∥η11 − η21∥L2(Γ3)∥u1 − u2∥L2(Γ3)d + ∥η12 − η22∥L2(Γ3)∥u1 − u2∥L2(Γ3)d

+∥η13 − η23∥L2(Γ3)∥φ1 − φ2∥L2(Γ3).

Using (37), (15), (17) and (26) we find that

∥x1 − x2∥X ≤
√
6max(c0, c1)

mA
∥η1 − η2∥Y . (39)

From the previous inequality the second part of Lemma 4.2 is proved.

3. For all η = (η1, η2, η3) ∈ K1 × K2 × K3, we denote by xη = (uη, φη) the corresponding

solution of Problem (PV η). Then we have

(Axη, y − xη)X + Jη
1 (y)− Jη

1 (xη) ≥ (F η, y − xη)X ∀ y ∈ U.
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Taking y = 0 in the above inequality, we obtain

(Axη, xη)X + Jη
1 (xη) ≤ (F η, xη)X . (40)

As η1 ≥ 0, then Jη
1 (xη) ≥ 0. it follows from (40), (37), (26), (16), (17) and (34) that

∥xη∥X ≤ c2(∥F∥X + ∥η2∥L2(Γ3) + ∥η3∥L2(Γ3)), (41)

where c2 = max(1,c0,c1)
mA

and it comes from this inequality that

∥xη∥X ≤ c′2(∥F∥X + ∥η∥Y ),
with c′2 = max(1,2max(c0,c1))

mA
, which concludes the proof of Lemma 4.2.

In this step, we consider the operator Λ : Y → Y defined by

Λ η = (µ(∥uητ∥)|Rσν(uη, φη)| , hν(φη − φF )pν(uην) , pe(uην)he(φη − φF )), (42)

where (uη, φη) is the unique solution of (PV η) corresponding to η. Using assumptions (h3)−(h5)

and (h7), we can easily see that operator Λ is well defined. Next, we will prove that the operator

Λ has fixed point and to this end, we need the following result:

Lemma 4.3. Let xη be a solution of (PV η), the mapping η 7→ xη is weakly continuous on Y .

Proof. Let (ηn) = (η1n, η2n, η3n) be a subsequence of Y converging weakly to η = (η1, η2, η3).

We denote by xηn = (uηn , φηn) ∈ U the solution of (PV η) corresponding to ηn. Then we have

(Axηn , y − xηn)X + Jηn

1 (y)− Jηn

1 (xηn) ≥ (F ηn , y − xηn)X for all y ∈ U. (43)

Taking y = 0 in inequality (43) and using (31), we deduce

(Axη, xη)X + Jη
1 (xη) ≤ (F η, xη)X . (44)

Using Jη
1 (xη) ≥ 0 and the strong monotonicity of A, it follows from (31), (32) and (26) that

∥xηn∥X ≤ c2(∥F∥X + ∥ηn∥Y ).
Then, we deduce that the sequence (xηn) is bounded in X. Hence, there exists x̃ = (ũ, φ̃) ∈ X

and a subsequence, denote again (xηn), such that (xηn) converges weakly to x̃, i.e.,

uηn ⇀ ũ in V and φηn ⇀ φ̃ in W.

Since U is closed convex set in a real Hilbert space X, it is weakly closed set and then x̃ ∈ U .

We next prove that x̃ is a solution of (PV η). First, we need to prove that

(F ηn , y − xηn)X → (F η, y − x̃)X . (45)

Indeed, we have

|Jηn

2 (v − ũ)− Jηn

2 (v − uηn)|+ |Jηn

3 (ξ − φ̃)− Jηn

3 (ξ − φηn)|

≤ ∥ηn∥Y︸ ︷︷ ︸
bounded

(
∥uηn − ũ∥L2(Γ3)d + ∥φηn − φ̃∥L2(Γ3)

)
.

Since the trace map γ1 : V → L2(Γ3)
d is compact operator, the weak convergence uηn ⇀ ũ

in V leads to the strong convergence uηn → ũ in L2(Γ3)
d. Similarly, since the trace map γ2 :

W → L2(Γ3) is compact, the weak convergence φηn ⇀ φ̃ in W implies the strong convergence

φηn → φ̃ in L2(Γ3) and hence, we get (45). Now, it follows from (43) that

(Axηn , y − xηn)X ≥ (F ηn , y − xηn)X −
(
Jηn

1 (y)− Jηn

1 (x̃)
)
−
(
Jηn

1 (x̃)− Jηn

1 (xηn)
)
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for all y = (v, ξ) ∈ U and by using (31) and (26), we can see that

|Jηn

1 (x̃)− Jηn

1 (xηn)| ≤ ∥ηn∥Y ∥ũ− uηn∥L2(Γ3)d

≤ ∥ηn∥Y︸ ︷︷ ︸
bounded

∥x̃− xηn∥L2(Γ3)d×L2(Γ3).

We recall that (η1n, η2n, η3n) is said to be weakly convergent to (η1, η2, η3) in Y if

(η1n, a1)L2(Γ3) → (η1, a1)L2(Γ3), (η2n, a2)L2(Γ3) → (η2, a2)L2(Γ3), (η3n, a3)L2(Γ3) → (η3, a3)L2(Γ3),

for all (a1, a2, a3) ∈ Y .

Let y = (v, ξ) ∈ X and Taking a1 = ∥vτ∥, then,
(η1n, ∥vτ∥)L2(Γ3) → (η1, ∥vτ∥)L2(Γ3).

Using (31), we find

Jηn

1 (y) =

∫
Γ3

η1n ∥vτ∥da = (η1n, ∥vτ∥)L2(Γ3) → Jη
1 (y) =

∫
Γ3

η1 ∥vτ∥da = (η1, ∥vτ∥)L2(Γ3),

which prove that the convergence ”Jηn

1 (y) → Jη
1 (y)” holds.

Then, we conclude

lim sup
n→+∞

(Axηn , xηn − y)X ≤ (F η, x̃− y)X +
(
Jη
1 (y)

)
− Jη

1 (x̃)
)
, ∀ y ∈ U. (46)

Moreover, we obtain from (46) that

lim sup
n→+∞

(Axηn , xηn − x̃)X

≤ lim sup
n→+∞

{(Axηn , xηn − y)X + ∥Axηn∥X∥y − x̃∥X}

≤ (F η, x̃− y)X + (Jη
1 (y))− Jη

1 (x̃)) + lim sup
n→+∞

∥Axηn∥X∥y − x̃∥X ,

for all y ∈ U . Since ∥Axηn∥X is bounded, we take y = x̃ in the previous inequality to get

lim sup
n→+∞

(Axηn , xηn − x̃)X ≤ 0. Using the pseudomonocity of the operator A, we deduce

(Ax̃, x̃− y)X ≤ lim inf
n→+∞

(Axηn , xηn − y)X for all y ∈ U. (47)

Combining now (43), (45) and (47), we deduce{
x̃ ∈ U

(Ax̃, y − x̃)X + Jη
1 (y)− Jη

1 (x̃) ≥ (F η, y − x̃)X , ∀ y = (v, ξ) ∈ U.
(48)

From (48), we find that x̃ is a solution of Problem (PV η) and from the uniqueness of the

solution of the variational inequality (48), we obtain x̃ = xη. Since xη is the unique weak limit

of any subsequence of (xηn
), we get that the whole sequence (xηn

) is weakly convergent to xη

in X and that ensures the weak continuous of the mapping η 7→ xη from Y to X.
Lemma 4.4. Λ is an operator of K = K1×K2×K3 into itself and has at least one fixed point.

Proof. Let be η = (η1, η2, η3) ∈ K = K1 ×K2 ×K3. Then, we have

∥η1∥L2(Γ3) ≤ k1 , ∥η2∥L2(Γ3) ≤ k2 and ∥η3∥L2(Γ3) ≤ k3,

which implies that ∥η∥Y ≤ k1 + k2 + k3. From (42), it follows that

∥Λ(η)∥Y ≤ ∥µ(∥uητ∥)|Rσν(uη, φη)|∥L2(Γ3) + ∥hν(φη − φF )pν(uην)∥L2(Γ3)
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+ ∥pe(uην)he(φη − φF )∥L2(Γ3).

Moreover, from assumptions (h3) and (h4), we obtain

∥hν(φη − φF )pν(uην)∥L2(Γ3) ≤MhνMpνmeas(Γ3)
1
2 = k2, (49)

∥pe(uην)he(φη − φF )∥L2(Γ3) ≤MheMpemeas(Γ3)
1
2 = k3. (50)

For all uη ∈ K, φη ∈ W satisfying (1), (4), (5) and (h8), the element σν(uη, φη) of H
− 1

2

Γ3
is

defined, for all v ∈ V with vτ = 0 on Γ3, as follows (see [2,7]),

⟨σν(uη, φη), vν⟩Γ3
= (Fε(uη) + E∗∇φη, ε(v))H − (f, v)V . (51)

Using (12), (51) and the trace theorem (see [11]), there exists cF > 0 such that

∥σν(uη, φη)∥
H

− 1
2

Γ3

= sup

v∈H
1
2
Γ3

⟨σν(uη, φη), vν⟩Γ3

∥vν∥
H

1
2
Γ3

≤ cF
(
∥uη∥V + ∥φη∥W + ∥f∥V

)
. (52)

Moreover, it follows from (h5), (h7), (36), (52) and (41) that

∥µ(∥uτ∥)|Rσν(uη, φη)|∥L2(Γ3) ≤ µ∗meas(Γ3)
1
2 cRcF

(√
2∥xη∥X + ∥f∥V

)
≤ µ∗meas(Γ3)

1
2 cRcF

[
c2
√
2
(
∥η2∥L2(Γ3) + ∥η3∥L2(Γ3) + ∥F∥X

)
+ ∥f∥V

]
≤ µ∗meas(Γ3)

1
2 cRcF

[
c2
√
2
(
k2 + k3 + ∥F∥X

)
+ ∥f∥V

]
= k1. (53)

Combining (53), (49) and (50), we get

∥Λ(η)∥Y ≤ k1 + k2 + k3.

Hence, Λ is an operator from K = K1 ×K2 ×K3 into itself. Note that K is a nonempty convex

and closed subset of the reflexive space Y . Then, K is weakly compact. Using the proprieties of

pe, he, µ, hν , pν and R, we can deduce that Λ is weakly continuous and then, by the Schauder

fixed point theorem, the operator Λ has at least one fixed point.

In the last step, we have all the ingredients to provide the proof of Theorem (3.1). For

the existence part, let η∗ be the fixed point of Λ. We denote by x∗ = (u∗, φ∗), the solution of

Problem (PV η) for η = η∗. The definition of Λ and (PV η) imply that x∗ is a solution of (PV )

and that leads to the existence part of Theorem (3.1). For the uniqueness part, let x1 = (u1, φ1)

and x2 = (u2, φ2) denote two solutions of Problem (PV ). It comes from (30) that

(Ax1, y − x1)X + J(x1, y)− J(x1, x1) ≥ (F, y − x1)X for all y ∈ U,

(Ax2, y − x2)X + J(x2, y)− J(x2, x2) ≥ (F, y − x2)X for all y ∈ U.

Taking y = x2 in the first inequality, y = x1 in the second, we add obtained inequalities to get

(Ax1 −Ax2, x2 − x1)X ≤ J(x1, x2)− J(x1, x1) + J(x2, x1)− J(x2, x2). (54)

By using (29), we obtain

(Ax1 −Ax2, x2 − x1)X ≤ G1 +G2 +G3, (55)

where

G1 = j1(u1, φ1, u2)− j1(u1, φ1, u1) + j1(u2, φ2, u1)− j1(u2, φ2, u2),

G2 = j2(u1, φ1, u2)− j2(u1, φ1, u1) + j2(u2, φ2, u1)− j2(u2, φ2, u2),

G3 = j3(u1, φ1, φ2)− j3(u1, φ1, φ1) + j3(u2, φ2, φ1)− j3(u2, φ2, φ2).
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From (20), we deduce

G1 =

∫
Γ3

µ(∥u1τ∥){|Rσν(u1, φ1)| − |Rσν(u2, φ2)|} (∥u1τ∥ − ∥u2τ∥) da

+

∫
Γ3

|Rσν(u2, φ2)| {µ(∥u1τ∥)− µ(∥u2τ∥)} (∥u1τ∥ − ∥u2τ∥) da. (56)

Using (h5), (h6)(c), (15) and (26), we obtain, after some algebraic manipulations that

G1 ≤ µ∗cRcF (∥φ1 − φ2∥W + ∥u1 − u2∥V ) ∥u1 − u2∥L2(Γ3)d

+ ∥Rσν(u2, φ2)∥L∞(Γ3)Lµ∥u1 − u2∥L2(Γ3)d∥u1 − u2∥L2(Γ3)d

≤ {2µ∗cRcF c0 + Lµc
2
0∥Rσν(u2, φ2)∥L∞(Γ3)} ∥x1 − x2∥2X . (57)

Next, it follows from (21) that

G2 =

∫
Γ3

hν(φ1 − φF ){pν(u1ν)− pν(u2ν)} (u1ν − u2ν) da

+

∫
Γ3

pν(u2ν){hν(φ1 − φF )− hν(φ2 − φF )} (u1ν − u2ν) da. (58)

Keeping in mind (h3)-(h4) and (h6)(b), it follows from (15), (17) and (26) that

G2 ≤ MhνLpν∥u1 − u2∥L2(Γ3)d∥u1 − u2∥L2(Γ3)d

+ MpνLhν∥φ1 − φ2∥L2(Γ3)∥u1 − u2∥L2(Γ3)d

≤ {MhνLpνc
2
0 +MpνLhνc0c1} ∥x1 − x2∥2X . (59)

Moreover, it follows from (23) that

G3 =

∫
Γ3

pe(u1ν){he(φ1 − φF )− he(φ2 − φF )} (φ1 − φ2) da

+

∫
Γ3

he(φ2 − φF ){pe(u1ν)− pe(u2ν)} (φ1 − φ2) da. (60)

Recalling (h3)-(h4) and (h6)(a), it comes from (15), (17) and (26) that

G3 ≤ MheLpe∥u1 − u2∥L2(Γ3)d∥φ1 − φ2∥L2(Γ3)

+ MpeLhe∥φ1 − φ2∥L2(Γ3)∥φ1 − φ2∥L2(Γ3)

≤ {MheLpec1c0 +MpeLhec
2
1} ∥x1 − x2∥2X . (61)

Combining (54)-(61), (53) and using (37), then there exists a constant MJ > 0, such that

∥x1 − x2∥2X ≤ MJ

mA
{µ∗ + Lµ +MhνLpν +MpνLhν +MheLpe +MpeLhe}∥x1 − x2∥2X .

Let L∗ = mA

MJ
, then if we have

µ∗ + Lµ +MhνLpν +MpνLhν +MheLpe +MpeLhe < L∗,

we get x1 = x2.

§5 Numerical approximation

Now, we introduce a finite element approximation of (PV ) and we derive, under some reg-

ularity assumptions, an optimal error estimate. Let h > 0 be a discretization parameter, we

consider the following finite-dimensional spaces V h and Wh approximating V and W , respec-
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tively, given

V h = {vh ∈ C(Ω)d, vh|Tr ∈ P1(Tr), T r ∈ τh, vh = 0 on Γ1} ⊂ V,

Wh = {φh ∈ C(Ω), φh
|Tr ∈ P1(Tr), T r ∈ τh, φh = 0 on Γa} ⊂W,

where Ω is assumed to be a polygonal domain, τh denotes a regular family of triangular finite

element partitions of Ω, and P1(Tr) represents the space of polynomials of global degree less or

equal to one in an element Tr of the triangulation. We consider the nonempty finite-dimensional

closed convex sets of admissible displacements with V h, defined by

Kh = K ∩ V h = {vh ∈ V h, vhν ≤ 0 on Γ3}.
Then, we introduce the following finite element approximation of Problem (PV ).

Problem (PV h). Find a displacement uh ∈ Kh and the electric potential φh ∈Wh such that

(Fε(uh), ε(vh)− ε(uh))H + (E∗∇φh, ε(vh)− ε(uh))L2(Ω)d + j(uh, φh, vh)

− j(uh, φh, uh) ≥ (f, vh − uh)V , ∀ vh ∈ Kh, (62)

(β∇φh,∇ξh)L2(Ω)d − (Eε(uh),∇ξh)L2(Ω)d + j3(u
h, φh, ξh) = (qe, ξ

h)W , ∀ ξh ∈Wh. (63)

The unique solvability of the Problem (PV h) follows from arguments similar to those used

in the proof of Theorem 3.1. Our main purpose here is to estimate the numerical errors u− uh

and φ − φh. Therefore, for the sake of simplicity, everywhere in the sequel C will denote a

positive constant which may depend on the data but independent of h and whose value may

change from place to place. Moreover, we derive the following error estimate result.

Theorem 5.1. Assume the conditions of Theorem 3.1 hold. Let (u, φ) and (uh, φh) denote the

solutions of (PV ) and (PV h), respectively. We have the following error estimate :

∥u−uh∥2V + ∥φ−φh∥2W ≤ C {∥u− vh∥2V + ∥u− vh∥L2(Γ)d + ∥φ− ξh∥2W + ∥φ− ξh∥L2(Γ)}, (64)
for all (vh, ξh) ∈ Kh ×Wh, where C is linearly depending on ∥u∥V and ∥φ∥W .

Proof. Let Uh = Kh ×Wh ⊂ U . Using Lemma 4.1, it is easy to see that xh = (uh, φh) is a

solution of Problem (PV h) if and only if

(Axh, yh − xh)X + J(xh, yh)− J(xh, xh) ≥ (F, yh − xh)X for all yh ∈ Uh. (65)

We take y = xh in (30) and we combine the obtained inequality with (65) to get

(Ax−Axh, x− xh)X ≤ (Axh, yh − x)X + (F, x− yh)X +G for all yh ∈ Uh, (66)

where

G = J(xh, yh)− J(xh, xh) + J(x, xh)− J(x, x)

= {J(x, yh)− J(x, x)}+ {J(xh, yh)− J(xh, x) + J(x, x)− J(x, yh)}

+ {J(xh, x)− J(xh, xh) + J(x, xh)− J(x, x)}.
Using (37), (29) and the above inequality, we obtain

mA∥x− xh∥2X ≤ S1 + S2 + S3 + S4, (67)

where

S1 = (Axh, yh − x)X + (F, x− yh)X ,
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S2 = j1(u, φ, v
h)− j1(u, φ, u) + j2(u, φ, v

h)− j2(u, φ, u)

+ j3(u, φ, ξ
h)− j3(u, φ, φ),

S3 = j1(u
h, φh, vh)− j1(u

h, φh, u) + j1(u, φ, u)− j1(u, φ, v
h)

+ j2(u
h, φh, vh)− j2(u

h, φh, u) + j2(u, φ, u)− j2(u, φ, v
h)

+ j3(u
h, φh, ξh)− j3(u

h, φh, φ) + j3(u, φ, φ)− j3(u, φ, φ
h),

S4 = j1(u
h, φh, u)− j1(u

h, φh, uh) + j1(u, φ, u
h)− j1(u, φ, u)

+ j2(u
h, φh, u)− j2(u

h, φh,h ) + j2(u, φ, u
h)− j2(u, φ, u)

+ j3(u
h, φh, φ)− j3(u

h, φh, φh) + j3(u, φ, φ
h)− j3(u, φ, φ).

Now, by using property (38) of the operator A, we have

S1 = (Axh −Ax, yh − x)X + (Ax, yh − x)X + (F, x− yh)X

≤MA∥xh − x∥X∥yh − x∥X +MA∥x∥X∥yh − x∥X + ∥F∥X∥x− yh∥X . (68)

From (20)-(23) and (h3)-(h7) we obtain

S2 =

∫
Γ3

µ(∥uτ∥)|Rσν(u, φ)|
(
|vhτ | − |uτ |

)
da+

∫
Γ3

hν(φ− φF )pν(uν)
(
vhν − uν

)
+

∫
Γ3

pe(uν)he(φ− φF )
(
ξh − φ

)
da (69)

≤ µ∗∥Rσν(u, φ)∥L∞(Γ3)meas(Γ3)
1
2 ∥vh − u∥L2(Γ3)d

+MhνMpνmeas(Γ3)
1
2 ∥vh − u∥L2(Γ3)d +MpeMhemeas(Γ3)

1
2 ∥ξh − φ∥L2(Γ3).

We proceed now estimate S3. First, we use (20) to see that

j1(u
h, φh, vh)− j1(u

h, φh, u) + j1(u, φ, u)− j1(u, φ, v
h)

=

∫
Γ3

|Rσν(u, φ)|{µ(∥uhτ∥)− µ(∥uτ∥)} {∥vhτ ∥ − ∥uτ∥}da

+

∫
Γ3

µ(∥uhτ∥){|Rσν(uh, φh)| − |Rσν(u, φh)|} {∥vhτ ∥ − ∥uτ∥}da.

Recalling (h5), (h6)(c) and (h7), it comes from (15), (16) and (26) that

j1(u
h, φh, vh)− j1(u

h, φh, u) + j1(u, φ, u)− j1(u, φ, v
h)

≤ C {µ∗ + Lµ∥Rσν(u, φ)∥L∞(Γ3)}∥x− xh∥X∥x− yh∥X . (70)

After easy algebraic manipulations, using (h3),(h4),(h6)(a)(b), (15),(16), and (26) we get

j2(u
h, φh, vh)− j2(u

h, φh, u) + j2(u, φ, u)− j2(u, φ, v
h)

≤ C{Mhν
Lpν

+Mpν
Lhν

}∥x− xh∥X∥x− yh∥X . (71)

Similarly, from (23) and using the assumptions on pe and he, we have
j3(u

h, φh, ξh)−j3(uh, φh, φ) + j3(u, φ, φ)− j3(u, φ, φ
h)

≤ C{MpeLhe +MheLpe}∥x− xh∥X∥x− yh∥X . (72)
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Then, we combine (70), (71) and (72) to obtain

S3 ≤ C{µ∗ + Lµ∥Rσν(u, φ)∥L∞(Γ3) +MhνLpν

+MpνLhν + MpeLhe +MheLpe}∥x− xh∥X∥x− yh∥X . (73)

Proceeding in a similar way, we can obtain the following inequality

S4 ≤ C{µ∗ + Lµ∥Rσν(u, φ)∥L∞(Γ3) +Mhν
Lpν

+MpνLhν + MpeLhe +MheLpe}∥x− xh∥2X . (74)

Finally, by introducing (68)-(79) into (67) and applying Young’s inequality ab ≤ ηa2 + 1
4η b

2 for

a = ∥x− xh∥X , b = ∥x− yh∥X and η > 0, we get after some simplifications that

∥x− xh∥2X ≤ C{∥x− yh∥2X + ∥vh − u∥L2(Γ)d + ∥ξh − φ∥L2(Γ)} , ∀ yh ∈ Uh.

Then, the previous inequality combined with (26) leads to (64).

We notice that the above error estimate is the basis of the convergence order analysis. Moreover,

we assume the following additional regularity conditions

u ∈ H2(Ω)d, u|Γ3
∈ H2(Γ3)

d, φ ∈ H2(Ω), φ|Γ3
∈ H2(Γ3). (75)

Let Πhu ∈ V h and Πhφ ∈Wh be the piecewise linear interpolant of u and φ, respectively. The

standard finite element interpolation theory yields (see [6,p. 133] and [19, p. 54] for details)

∥u−Πhu∥V ≤ c h |u|H2(Ω)d , ∥φ−Πhφ∥W ≤ c h |φ|H2(Ω),

∥u−Πhu∥L2(Γ3)d ≤ c h2 |u|H2(Γ3)d , ∥φ−Πhφ∥L2(Γ3) ≤ c h2 |φ|H2(Γ3).

We state the following result which is a direct consequence of (64).

Theorem 5.2. Assume the conditions of Theorem 3.1 hold. Let (u, φ) and (uh, φh) denote

the solutions of Problem PV and PV h, respectively. Under the regularity assumptions (75), we

have the optimal order error estimate

∥u− uh∥V + ∥φ− φh∥W ≤ C h.

The previous theorem states that, under the regularity conditions (75), the convergence order

for the numerical solution is optimal. Furthermore, if the regularity conditions are different,

the error estimate need to be changed accordingly, but it follows easily from (64).

§6 Iteration Method

In this section, we propose an iterative solution scheme for the finite element system (62)-

(63) which is based on the method of successive approximations by a fixed-point iteration

method. This follows from a discrete analog of the proof of Theorem 3.1. Given an initial guess

(uh0 , φ
h
0 ), we define the sequence (uhn, φ

h
n) ∈ Kh ×Wh as follows:

(Fε(uhn+1), ε(v
h)− ε(uhn+1))H + (E∗∇φh

n+1, ε(v
h)− ε(uhn+1))L2(Ω)d

+ j(uhn, φ
h
n, v

h)− j(uhn, φ
h
n, u

h
n+1) ≥ (f, vh − uhn+1)V for all vh ∈ Kh, (76)

(β∇φh
n+1,∇ξh)L2(Ω)d − (Eε(uhn+1),∇ξh)L2(Ω)d + j3(u

h
n, φ

h
n, ξ

h)

= (qe, ξ
h)W for all ξh ∈Wh. (77)
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The following theorem gives the convergence analysis of the iterative method given by (76)-(77).

Theorem 6.1. Under the assumptions of Theorem 3.1 and the same value of L∗, the iteration

method defined by (76)-(77) converges, i.e.,

∥uhn − uh∥V → 0 , ∥φh
n − φh∥W → 0 as n→ +∞.

Proof. Using Lemma 4.1, we see that xhn = (uhn, φ
h
n) is the solution of the problem (76)-(77) if

(Axhn+1, y
h − xhn+1)X + J(xhn, y

h)− J(xhn, x
h
n+1) ≥ (F, yh − xhn+1)X for all yh ∈ Uh. (78)

Taking yh = xhn+1 in (65), yh = xh in (78) and adding the two obtained inequalities to get

(Axh −Axhn+1, x
h − xhn+1)X ≤ J(xh, xhn+1)− J(xh, xh) + J(xhn, x

h)− J(xhn, x
h
n+1).

Then, as done in the proof of Theorem 3.1, we obtain, after some manipulations, that

J(xh, xhn+1)− J(xh, xh) + J(xhn, x
h)− J(xhn, x

h
n+1)

≤MJ

{
µ∗ + Lµ +MhνLpν +MpνLhν (79)

+MheLpe +MpeLhe

}
∥xh − xhn∥X∥xh − xhn+1∥X .

Thus, we have

∥xh − xhn+1∥X ≤ µ∗ + Lµ +MhνLpν +MpνLhν +MheLpe +MpeLhe

L∗ ∥xh − xhn∥X .

Under the stated assumptions, we have k =
µ∗+Lµ+MhνLpν+MpνLhν+MheLpe+MpeLhe

L∗ < 1. Then

∥xhn − xh∥V ≤ c kn. (80)

Finally, the following convergence result hold,

∥xhn − xh∥V → 0 as n→ +∞.
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2University Moulay Ismäıl, Faculty of Sciences, Laboratory MACS, ESTM, BP 3103, Toulal-Meknès,

Morocco.
3University Sultan Moulay Slimane, Laboratory LS2ME, Polydisciplary Faculty of Khouribga, 25000

Khouribga, Morocco.

E-mail: rachidfakhar@yahoo.fr


