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Locally and globally uniform approximations for ruin

probabilities of a nonstandard bidimensional risk model

with subexponential claims

LIU Zai-ming1 GENG Bing-zhen1,2 WANG Shi-jie2,∗

Abstract. Consider a nonstandard continuous-time bidimensional risk model with constant

force of interest, in which the two classes of claims with subexponential distributions satisfy a

general dependence structure and each pair of the claim-inter-arrival times is arbitrarily depen-

dent. Under some mild conditions, we achieve a locally uniform approximation of the finite-time

ruin probability for all time horizon within a finite interval. If we further assume that each pair

of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims

are consistently-varying-tailed, it shows that the above obtained approximation is also globally

uniform for all time horizon within an infinite interval.

§1 Introduction

Consider a continuous-time nonstandard bidimensional risk model with constant force of

interest, in which an insurance company launches two classes of insurance business simultane-

ously. The surplus process is described as(
U1(x1, t)

U2(x2, t)

)
= ert

(
x1
x2

)
+

( ∫ t

0− e
r(t−s)C1(ds)∫ t

0− e
r(t−s)C2(ds)

)
−

( ∑N1(t)
i=1 X

(1)
i er(t−τ

(1)
i )∑N2(t)

j=1 X
(2)
j er(t−τ

(2)
j )

)
, (1)

where {
(
U1(x1, t), U2(x2, t)

)⊤
; t ≥ 0} denotes the bidimensional surplus processes, (x1, x2)

⊤

the vector of initial surpluses, r ≥ 0 the constant force of interest, {
(
C1(t), C2(t)

)⊤
; t ≥

0} the bidimensional premium processes, {(X(1)
i , X

(2)
j )⊤; i, j ≥ 1} the sequence of claim size

vectors and {(τ (1)i , τ
(2)
j )⊤; i, j ≥ 1

}
the sequence of claim arrival-time vectors which drive the

corresponding bidimensional renewal counting processes
{
(N1(t), N2(t))

⊤; t ≥ 0
}
.
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Throughout this paper, for each k = 1, 2, assume that the claim sizes from the k-th line

{X(k)
i , i ≥ 1} constitute a sequence of identically distributed, but not necessarily independent,

nonnegative random variables (r.v.s) with a common distribution Fk; the claim arrival-times

{(τ (k)i , i ≥ 1
}
form another sequence of nonnegative r.v.s with τ

(k)
i =

∑i
j=1 θ

(k)
j , i ≥ 1, where

the claim inter-arrival-times {(θ(1), θ(2)), (θ(1)j , θ
(2)
j ), j ≥ 1} are independent and identically

distributed (i.i.d.) nonnegative random vectors, but the two components of each vector are

arbitrarily dependent; the premium process {
(
Ck(t), t ≥ 0} is a nonnegative and nondecreasing

stochastic process with Ck(0) = 0 and Ck(t) < ∞ almost surely for every t ≥ 0. To avoid

triviality, we assume that either P (θ
(1)
1 > 0) > 0 or P (θ

(2)
1 > 0) > 0 holds. As we know, the

renewal counting process {Nk(t), t ≥ 0} forms a nonnegative, nondecreasing, right continuous,

and integer-valued stochastic process with mean function ENk(t) <∞. Define

Λk = {t > 0, ENk(t) > 0} = {t > 0, P (τ
(k)
1 ≤ t) > 0}

for later use and write Λ =
∩2

k=1 Λk. Moreover, suppose that {X(1)
i , i ≥ 1}, {X(2)

i , i ≥ 1},
{N1(t), N2(t); t ≥ 0} and {C1(t), C2(t); t ≥ 0} are mutually independent.

For the above continuous-time bidimensional renewal risk model, denote by

τmax = inf{t > 0 : max{U1(x1, t), U2(x2, t)} < 0}
the first time when both U1(x1, t) and U2(x2, t) become negative. Then the corresponding

finite-time ruin probability ψmax(x1, x2; t) is defined as

P
(
τmax(x1, x2) ≤ t|(U1(x1, 0), U2(x2, 0))

⊤ = (x1, x2)
⊤)

and further the infinite-time ruin probability is defined as

ψmax(x1, x2) = lim
t→∞

ψmax(x1, x2; t) = P
(
τmax <∞|(U1(x1, 0), U2(x2, 0))

⊤ = (x1, x2)
⊤).

Historically, bidimensional risk models have been widely investigated by many authors. In

general, some of them studied ruin probabilities of bidimensional risk models without constant

force of interest. See, for example, Chen et al. (2003), Yuen et al. (2006), Li et al. (2007),

Chen et al. (2011), Lu and Zhang (2016), Chen and Yu (2017) and so on. Whereas, others

investigated ruin probabilities for bidimensional risk models with constant force of interest or

stochastic investments driven by Lévy process. Besides, for the potential practicability of the

results, some dependence structures were also imposed among the claim sizes at the same time

in some recent papers. For instance, Chen et al. (2013), Gao and Yang (2014), Yang and Li

(2014), Yang and Yuen (2016), Li (2018), Chen et al.(2019), Yang et al. (2018, 2019) and

references therein.

However, to the best of our knowledge, most of the above-mentioned papers restricted the

claims belonging to some smaller heavy-tailed subclass (mainly belonging to the consistently-

varying-tailed class or the intersection of dominatedly-varying-tailed class and long-tailed class)

when studying ruin probabilities. Also, few works were devoted to investigating the uniformity

of asymptotics for both finite-time and infinite-time ruin probabilities. Based on these two

considerations, this paper aims to do some jobs on both objects simultaneously. Firstly, after

assuming that the claims from the same lines satisfy a general dependence structure and each

pair of the inter-arrival times are arbitrarily dependent, we achieve a locally uniform approx-

imation of the finite-time ruin probability for all time horizon within a finite interval. But

more than that, if we suppose that the two classes of claims are consistently-varying-tailed, this
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approximation can be extended to the infinite-time case. Finally, if we further assume that

each pair of the inter-arrival times are negative quadrant dependent (NQD), it shows that the

above obtained approximation is also globally uniform for all time horizon within an infinite

interval. Our obtained results coincide with and substantially extend some existing ones in the

literature.

At the end of this section, let us recall two dependence structures which will be used in this

paper. The first was proposed in Ko and Tang (2008) and then extended to infinite sequences by

Zhang and Cheng (2016); see also Yang et al. (2012) or Gong et al. (2020). Moreover, a weighted

version of this dependent structure can be found in Cheng and Cheng (2018), where they called

it conditionally linearly wide dependence. It is worth mentioning that Asimit and Jones (2008)

first introduced a well-known bivariate dependence structure through copula function. Even as

for the bivariate case, the following Assumption 1 obviously covers the dependence structure in

Asimit and Jones (2008) when the measurable function g in Assumption 2 of Asimit and Jones

(2008) is assumed to be bounded. One can also refer to Remark 2.3 of Ko and Tang (2008) for

more details. The second dependent structure named NQD was initiated by Lehmann (1966).

Assumption 1. Let {Xk, k ≥ 1} be a sequence of nonnegative r.v.s. There exist some large

x0 > 0, irrespective of n, and a sequence of nondecreasing constants {mk, k ≥ 1}, such that,

for all x ≥ x0 and every n ≥ 2, the relation

P
( n−1∑

i=1

Xi > x− y
∣∣∣Xn = y

)
≤ mn−1P

( n−1∑
i=1

Xi > x− y
)

holds uniformly for all y ∈ [x0, x− x0].

Definition 1.1 Two r.v.s ξ1 and ξ2 are said to be NQD, if for any x1, x2 ∈ R,
P (ξ1 > x1, ξ2 > x2) ≤ P (ξ1 > x1)P (ξ2 > x2).

The rest of this paper consists of five sections. Section 2 prepares some preliminaries on

heavy-tailed distributions. Section 3 gives our main results and their proofs are presented in

Sections 4, 5 and 6, respectively.

§2 Preliminaries

Throughout this paper, all limit relationships are according to x1, x2 → ∞ unless stated

otherwise. For two positive functions f(·) and g(·), assume that

a = lim inf
f(·)
g(·)

≤ lim sup
f(·)
g(·)

= b.

Write f(x) & g(x) if a ≥ 1; write f(x) . g(x) if b ≤ 1; write f(x) ≍ g(x) if 0 < a ≤ b < ∞;

write f(x) ∼ g(x) if a = b = 1; write f(x) = o(g(x)) if b = 0; write f(x) = O(g(x)) if

b < ∞. Furthermore, for two positive trivariate functions a(·, ·, ·) and b(·, ·, ·), we say that the

asymptotic relation a(x1, x2, t) ∼ b(x1, x2, t) holds uniformly over all t in a nonempty set ∆ if

lim
(x1,x2)→(∞,∞)

sup
t∈∆

∣∣∣a(x1, x2, t)
b(x1, x2, t)

− 1
∣∣∣ = 0.

As usual, for a r.v. X, we write X+ = max{X, 0}; for two constants a and b, write a ∨ b =

max{a, b} and a ∧ b = min{a, b}.The indicator function of an event A is denoted by IA. For
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any distribution function F , denote its tail by F (x) = 1− F (x).

For convenience of later use, let us recall some definitions and properties of heavy-tailed

distribution classes which have been widely applied in many fields such as insurance, financial

mathematics, queueing theory and so on. We say that a r.v. X (or its distribution F ) is

heavy-tailed if it has no finite exponential moments. In the following, we list some important

heavy-tailed classes.

We say a distribution function F on [0,∞) belongs to the subexponential class, denoted by

F ∈ S , if limx→∞ F ∗n(x)/F (x) = n holds for all n ≥ 2, where F ∗n is the n-fold convolution of

F ; belongs to the long-tailed class, written as F ∈ L , if limx→∞ F (x−y)/F (x) = 1 for all y ∈ R;
belongs to the dominatedly-varying-tailed class, written as F ∈ D , if limx→∞ F (xy)/F (x) <

∞ for some 0 < y < 1; belongs to the consistently-varying-tailed class, written as F ∈ C ,

if limy↓1 lim infx→∞ F (xy)/F (x) = 1 (or, equivalently, limy↑1 lim supx→∞ F (xy)/F (x) = 1);

belongs to the extended regularly-varying-tailed class, written as F ∈ ERV(−α,−β) for some

0 ≤ α ≤ β < ∞, if y−β ≤ lim infx→∞ F (xy)/F (x) ≤ lim supx→∞ F (xy)/F (x) ≤ y−α, for any

y > 1. Among the heavy-tailed subclasses mentioned above, by Embrechts et al.(1997), the

following inclusion relationships are well-known:

ERV ⊂ C ⊂ D ∩ L ⊂ S ⊂ L .

Moreover, the long-tailed distribution class has some elementary properties. It was proved that

if F ∈ L , then the function class

H (F ) =
{
l(·) on [0,∞) : l(x) ↑ ∞, l(x) ≤ x/2, l(x)/x ↓ 0 and F (x− l(x)) ∼ F (x)

}
is not empty; see for instance Cline and Samorodnitsky (1994) or Foss et al. (2013). Clearly,

for any l(x) ∈ H (F ), F (x−Kl(x)) ∼ F (x) for any constant K > 0.

Furthermore, for a distribution function F with an ultimate right tail, define

J+
F = inf

{
− logF ∗(y)

log y
: y > 1

}
and J−

F = sup

{
− logF

∗
(y)

log y
: y > 1

}
with

F ∗(y) = lim inf
x→∞

F (xy)

F (x)
and F

∗
(y) = lim sup

x→∞

F (xy)

F (x)
.

Following the terminology of Tang and Tsitsiashvili (2003a), J+
F and J−

F are called the upper

and lower Matuszewska index of F , respectively. It is known that F ∈ D is equivalent to

J+
F < ∞; see Embrechts et al.(1997). Moreover, from Proposition 2.2.1 of Bingham et al.

(1987), for any p1 < J−
F and p2 > J+

F , there exist positive and sufficiently large constants C,D

such that

C−1
(x
y

)p1

≤ F (y)

F (x)
≤ C

(x
y

)p2

for all x ≥ y ≥ D. (2)

§3 Main results

In this section, let us present our main results. Theorem 3.1 gives a locally uniform asymp-

totic for the finite-time ruin probability of bidimensional renewal risk models for all time horizon

within a finite interval. Under some stronger conditions, Theorem 3.2 derives an asymptotic

formula for the infinite-time ruin probability of bidimensional renewal risk models.
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Theorem 3.1. Consider the bidimensional renewal risk model introduced in Section 1 with

r ≥ 0, in which, for k = 1, 2, the claims {X(k)
i ; i ≥ 1} with common distribution Fk ∈ S satisfy

Assumption 1. Assume that the claim inter-arrival-times {(θ(1), θ(2)), (θ(1)j , θ
(2)
j ), j ≥ 1} are

i.i.d. nonnegative random vectors, but the two components of each vector are arbitrarily depen-

dent and further {X(1)
i , i ≥ 1}, {X(2)

i , i ≥ 1}, {(N1(t), N2(t)); t ≥ 0} and {(C1(t), C2(t)); t ≥ 0}
are mutually independent. If there exists a constant M such that mn ≤M for all n ≥ 1, then,

for any fixed T ∈ Λ, it holds uniformly for all t ∈ ΛT =: Λ ∩ [0, T ] that

ψmax(x1, x2; t) ∼
∫ t

0−

∫ t

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]. (3)

Theorem 3.2. Suppose that all the same conditions in Theorem 3.1 hold. Additionally, if

for k = 1, 2, Fk ∈ C , k = 1, 2 with J−
Fk
> 0, then the relation (3) also holds for t = ∞, i.e.

ψmax(x1, x2) ∼
∫ ∞

0−

∫ ∞

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)].

In particular, next we intend to verify the global uniformity of the relation (3) for all t ∈ Λ.

However, it is mathematically difficult under the assumption that θ(1) and θ(2) are arbitrarily

dependent. Fortunately, if we further assume that θ(1) and θ(2) are NQD, then the global

uniformity result of the relation (3) is achieved in the following Theorem 3.3.

Theorem 3.3. Suppose that all the same conditions in Theorem 3.2 hold. Moreover, if each

pair of the claim-inter-arrival times is NQD and {(θ(1), θ(2))⊤, (θ(1)i , θ
(2)
i )⊤, i ≥ 1} is a sequence

of i.i.d. nonnegative random vectors, then the relation (3) holds uniformly for all t ∈ Λ.

§4 Proof of Theorem 3.1

In order to prove Theorem 3.1, we need to prepare some lemmas. Lemma 4.1 below is

due to Ko and Tang (2008). Lemma 4.2 is a special case of Theorem 2.1 of Gong and Yang

(2020). Lemma 4.3 is an asymptotic formula of weighted sums of r.v.s satisfying Assumption

1 which plays a key role for proving the next Lemma 4.4. Certainly, Lemma 4.3 has its own

interest since it derives some type of asymptotic formula for weighted sums under Assumption

1. An independent randomly weighted sum version of this result was proposed in Tang and

Tsitsiashvili (2003b) and more recently a dependent version can be also found in Proposition 1

of Yang et al. (2020) where the dependence structure used is different from ours. Lemma 4.4

is an analogue of Lemma 4.4 in Yang and Li (2017) which is essentially important for proving

Theorem 3.1.

Lemma 4.1. Let {Xi, i ≥ 1} be a sequence of nonnegative r.v.s satisfying Assumption 1

with a common distribution F ∈ S , then, for any fixed n ≥ 1, it holds that

P
( n∑

i=1

Xi > x
)
∼

n∑
i=1

P (Xi > x).

Lemma 4.2. Let {Xi, i ≥ 1} be a sequence of nonnegative r.v.s satisfying Assumption

1 with common distribution F ∈ S . If there exists a constant M such that mn ≤ M for all

n ≥ 1, then, for any fixed n ≥ 1 and ε > 0, there exist some sufficiently large x0 > 0 and some
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constant K = K(ε,M, x0) > 0 such that for all x > x0,

P
( n∑

i=1

Xi > x
)
≤ K(1 + ε)nF (x).

Lemma 4.3. Let {Xi, i ≥ 1} be a sequence of nonnegative r.v.s satisfying Assumption 1

with a common distribution F ∈ S , then, for any fixed n ≥ 1 and any cosntants 0 < a ≤ b <∞,

the relation

P
( n∑

i=1

ciXi > x
)
∼

n∑
i=1

P (ciXi > x), (4)

holds uniformly for all (c1, . . . , cn) ∈ [a, b]n.

Proof. For simplicity, in what follows, denote by c(n) =: max1≤i≤n ci. First, we proceed

to use the induction method to prove the asymptotic upper bound of (4). Clearly, this case

n = 1 is trivial. Suppose that (4) holds for any fixed positive integer n − 1, we aim to show

that (4) also holds for n. To do so, we arbitrarily choose some l(x) ∈ H (F ) and divide the

probability P
(∑n

i=1 ciXi > x
)
as the following three parts:

P
( n∑

i=1

ciXi > x, cnXn ≤ l(x)
)
+ P

( n∑
i=1

ciXi > x, cnXn > x− l(x)
)

+P
( n∑

i=1

ciXi > x, l(x) < cnXn ≤ x− l(x)
)

:= I1(x) + I2(x) + I3(x). (5)

For any ε > 0 and some sufficiently large x1 > 0, by induction hypothesis and F ∈ S ⊂ L , it

holds for all x ≥ x1 and uniformly for all (c1, . . . , cn) ∈ [a, b]n that

I1(x) ≤ (1 + ε)

n−1∑
i=1

P (ciXi > x− l(x)) ≤ (1 + ε)2
n−1∑
i=1

P (ciXi > x) (6)

and

I2(x) ≤ P (cnXn > x− l(x)) ≤ (1 + ε)P (cnXn > x). (7)

For I3(x), let X
∗
1 , X

∗
n be two independent copies of X1. By Assumption 1 and Lemma 4.1,

there exits some some sufficiently large x2 > x1 such that for all x > x2 and uniformly for all

(c1, . . . , cn) ∈ [a, b]n,

I3(x) ≤
∫ x−l(x)

cn

l(x)
cn

P
( n−1∑

i=1

Xi >
x− cnt

c(n−1)

∣∣∣Xn = t
)
P (Xn ∈ dt)

≤ mn−1

∫ x−l(x)
cn

l(x)
cn

P
( n−1∑

i=1

Xi >
x− cnt

c(n−1)

)
P (Xn ∈ dt)

≤ (1 + ε)mn−1

n−1∑
i=1

∫ x−l(x)
cn

l(x)
cn

P
(
Xi >

x− cnt

c(n−1)

)
P (Xn ∈ dt)

= (1 + ε)mn−1(n− 1)P
(
c(n−1)X

∗
1 + cnX

∗
n > x, l(x) < cnX

∗
n ≤ x− l(x)

)
≤ ε(1 + ε)mn−1(n− 1)(P (c(n−1)X

∗
1 > x) + P (cnX

∗
n > x))
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≤ ε(1 + ε)mn−1(n− 1)
( n−1∑

i=1

P (ciXi > x) + P (cnXn > x)
)

= ε(1 + ε)mn−1(n− 1)
n∑

i=1

P (ciXi > x), (8)

where in the fifth step we used Lemma 3.2 in Gong et al. (2020). Plugging (6)-(8) into (5) and

letting ε ↓ 0, the asymptotic upper bound of (4) is derived.

Next, we turn to verity the asymptotic lower bound of (4). Indeed, since the nonnegativity

of X1, . . . , Xn, it holds that

P
( n∑

i=1

ciXi > x
)
≥

n∑
i=1

P (ciXi > x)−
∑

1≤i<j≤n

P (ciXi > x, cjXj > x). (9)

By applying Assumption 1 and Lemma 4.1, there exists some sufficiently large x3 such that for

all x > x3,

P (ciXi > x, cjXj > x)

≤
∫ ∞

x
cj

P
( j−1∑

i=1

Xi >
x

c(j−1)

∣∣∣Xj = t
)
P (Xj ∈ dt)

≤ P
( j−1∑

i=1

Xi >
x

c(j−1)

)
P (cjXj > x) sup

t>x/cj

P
(∑j−1

i=1 Xi >
x

c(j−1)
+ t− t

∣∣∣Xj = t
)

P
(∑j−1

i=1 Xi >
x

c(j−1)
+ t− t

)
≤ MP

( j−1∑
i=1

Xi >
x

c(j−1)

)
P (cjXj > x)

≤ (1 + ε)M

j−1∑
i=1

P
(
Xi >

x

(j − 1)c(j−1)

)
P (cjXj > x)

= o(1)P (cjXj > x). (10)

Thus, letting ε ↓ 0, (10) together with (9) yields the desired asymptotic lower bound of (4) and

this ends the proof.

Lemma 4.4. Under the conditions of Theorem 3.1, it holds uniformly for t ∈ ΛT that

P
(N1(t)∑

i=1

X
(1)
i e−rτ

(1)
i > x1,

N2(t)∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
∼
∫ t

0−

∫ t

0−
F 1(x1e

rs1)F 2(x2e
rs2)dE[N1(s1)N2(s2)].

Proof. Following the same method used as in Lemma 4.4 in Yang and Li (2017) by Lemmas

4.2 and 4.3 instead of Lemmas 4.1 and 4.2 in their paper, one can easily derive this lemma. To

save space, we omit it here.

Proof of Theorem 3.1. Following the proof method of Theorem 2.1 in Yang and Li (2014),

Theorem 3.1 can be easily achieved according to Lemma 4.4. For simplicity, we also omit it

here.
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§5 Proof of Theorem 3.2

In this section, we also present some lemmas for proving Theorem 3.2. Lemmas 5.1 and 5.2

are similar results as Lemma 5.2 in Yang and Li (2017), but it is worth mentioning that the

dependence structure appeared in their paper is quite different from ours. Hence the treatment

should be adjusted.

Lemma 5.1. Under the conditions of Theorem 3.2, it holds that

lim
N→∞

lim sup
(x1,x2)→(∞,∞)

P
(∑∞

i=N X
(1)
i e−rτ

(1)
i > x1,

∑∞
j=1X

(2)
j e−rτ

(2)
j > x2

)
F1(x1)F2(x2)

= 0, (11)

and

lim
N→∞

lim sup
(x1,x2)→(∞,∞)

P
(∑∞

i=1X
(1)
i e−rτ

(1)
i > x1,

∑∞
j=N X

(2)
j e−rτ

(2)
j > x2

)
F1(x1)F2(x2)

= 0. (12)

Proof. The proof idea of this lemma is due to Lemma 5.2 in Yang and Li (2017). It suffices

to prove (11) since the proof of (12) is fully similar. Firstly, arbitrarily choose some large M

such that
∑∞

i=1 1/i
2 < M . Moreover, noting that F1, F2 ∈ C ⊂ D , thus, we can two positive

constant p1 and p2 satisfying 0 < p1 < J−
F1

∧ J−
F2

≤ J+
F1

∨ J+
F2
< p2 <∞. It is obvious that

P
( ∞∑

i=N

X
(1)
i e−rτ

(1)
i > x1,

∞∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
≤ P

( ∞∑
i=N

X
(1)
i e−rτ

(1)
i >

∞∑
i=N

x1
i2M

,
∞∑
j=1

X
(2)
j e−rτ

(2)
j >

∞∑
j=1

x2
j2M

)
≤ P

( ∞∪
i=N

{
X

(1)
i e−rτ

(1)
i >

x1
i2M

}
,

∞∪
j=1

{
X

(2)
j e−rτ

(2)
j >

x2
j2M

})
≤

∞∑
i=N

∞∑
j=1

P
(
X

(1)
i e−rτ

(1)
i >

x1
i2M

,X
(2)
j e−rτ

(2)
j >

x2
j2M

)
=

∞∑
i=N

∞∑
j=1

(∫ i2M

1

∫ j2M

1

+

∫ ∞

i2M

∫ j2M

1

+

∫ i2M

1

∫ ∞

j2M

+

∫ ∞

i2M

∫ ∞

j2M

)
×F1

( x1u
i2M

)
F2

( x2v
j2M

)
P (erτ

(1)
i ∈ du, erτ

(2)
j ∈ dv)

:= I1(x1, x2, N) + I2(x1, x2, N) + I3(x1, x2, N) + I4(x1, x2, N). (13)

For I1(x1, x2, N), noting that Fi ∈ C ⊂ D , i = 1, 2, by the second inequality in (2), for

sufficiently large x1, x2, the quantity I1(x1, x2, N) is not large than
∞∑

i=N

∞∑
j=1

C2F1(x1)F2(x2)

∫ i2M

1

∫ j2M

1

( i2M
u

j2M

v

)p2

P (erτ
(1)
i ∈ du, erτ

(2)
j ∈ dv)

≤ C2M2p2F1(x1)F2(x2)
∞∑

i=N

∞∑
j=1

i2p2j2p2E(e−rp2τ
(1)
i e−rp2τ

(2)
j )

≤ C2M2p2F1(x1)F2(x2)
∞∑

i=N

i2p2{E(e−2rp2τ
(1)
1 )}i/2

∞∑
j=1

j2p2{E(e−2rp2τ
(2)
1 )}j/2,
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where the last step holds due to the Hölder’s inequality. Noting the convergence of the series

appearing in the above relation, we have

lim
N→∞

lim sup
(x1,x2)→(∞,∞)

I1(x1, x2, N)

F1(x1)F2(x2)
= 0. (14)

By the same arguments as above and applying the first inequality in (2), one can also obtain

lim
N→∞

lim sup
(x1,x2)→(∞,∞)

Ii(x1, x2, N)

F1(x1)F2(x2)
= 0, i = 2, 3, 4.

These together with (13) and (14) yield the desired (11) and this ends the proof.

Lemma 5.2. Under the conditions of Theorem 3.2, it holds that

lim
N→∞

lim sup
(x1,x2)→(∞,∞)

∞∑
i=N

∞∑
j=1

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2)

F1(x1)F2(x2)
= 0, (15)

and

lim
N→∞

lim sup
(x1,x2)→(∞,∞)

∞∑
i=1

∞∑
j=N

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2)

F1(x1)F2(x2)
= 0. (16)

Proof. It suffices to prove (15). Indeed, for sufficiently large x, y, it follows from (2) that

∞∑
i=N

∞∑
j=1

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2)

F1(x1)F2(x2)

≤
∞∑

i=N

∞∑
j=1

∫ ∞

1

∫ ∞

1

F1(x1u)F2(x2v)

F1(x1)F2(x2)
P (erτ

(1)
i ∈ du, erτ

(2)
j ∈ dv)

≤ C2
∞∑

i=N

∞∑
j=1

∫ ∞

1

∫ ∞

1

(uv)−p1P (erτ
(1)
i ∈ du, erτ

(2)
j ∈ dv)

≤ C2
∞∑

i=N

(E(e−2rp1τ
(1)
1 ))i/2

∞∑
j=1

(E(e−2rp1τ
(2)
1 ))j/2,

which implies the desired (15) by letting N ↑ ∞ and this ends the proof.

Proof of Theorem 3.2. It suffices to prove the following fact, then the remained proof

can fully be followed from the method used in Theorem 2.2 in Yang and Li (2017) and Theorem

3.2 can be easily derived.

P
( ∞∑

i=1

X
(1)
i e−rτ

(1)
i > x1,

∞∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)

∼
∞∑
i=1

∞∑
j=1

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2).

In fact, the proof of this lemma is routine. For any 0 < δ < 1/2 and each fixed m,n ≥ 1, we

first consider the asymptotic upper bound. Note that

P
( ∞∑

i=1

X
(1)
i e−rτ

(1)
i > x1,

∞∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
≤ J1 + J2 + J3 + J4
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with

J1 = P
( n∑

i=1

X
(1)
i e−rτ

(1)
i > (1− δ)x1,

m∑
j=1

X
(2)
j e−rτ

(2)
j > (1− δ)x2

)
,

J2 = P
( n∑

i=1

X
(1)
i e−rτ

(1)
i > (1− δ)x1,

∞∑
j=m+1

X
(2)
j e−rτ

(2)
j > δx2

)
,

J3 = P
( ∞∑

i=n+1

X
(1)
i e−rτ

(1)
i > δx1,

m∑
j=1

X
(2)
j e−rτ

(2)
j > (1− δ)x2

)
,

and

J4 = P
( ∞∑

i=n+1

X
(1)
i e−rτ

(1)
i > δx1,

∞∑
j=m+1

X
(2)
j e−rτ

(2)
j > δx2

)
.

We first estimate J1. For any ε > 0 and sufficiently large x1, x2, it follows from Lemma 4.3 and

(2) that

J1 ≤ (1 + ε)
n∑

i=1

m∑
j=1

P
(
X

(1)
i e−rτ

(1)
i > (1− δ)x1, X

(2)
j e−rτ

(2)
j > (1− δ)x2

)
= (1 + ε)

n∑
i=1

m∑
j=1

∫ ∞

1

∫ ∞

1

F1((1− δ)x1u)F2((1− δ)x2v)P (e
rτ

(1)
i ∈ du, erτ

(2)
j ∈ dv)

≤ (1 + ε) sup
u∈(1,∞)

F1((1− δ)x1u)

F1(x1u)
· sup
v∈(1,∞)

F2((1− δ)x2v)

F2(x2v)

×
n∑

i=1

m∑
j=1

∫ ∞

1

∫ ∞

1

F1(x1u)F2(x2v)P (e
rτ

(1)
i ∈ du, erτ

(2)
j ∈ dv).

Noting that F1, F2 ∈ C and the arbitrariness of ε, we conclude

J1 .
n∑

i=1

m∑
j=1

P
(
X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2

)
.

Next we deal with J2. By Lemmas 5.1 and 4.3 and (2), it holds for large enough x1, x2,m and

n that

J2 ≤ P
( ∞∑

i=1

X
(1)
i e−rτ

(1)
i > (1− δ)x1,

∞∑
j=m+1

X
(2)
j e−rτ

(2)
j > δx2

)
≤ εF1((1− δ)x1)F2(δx2)

≤ ε

1− ε
· F1((1− δ)x1)F2(δx2)∑n

i=1

∑m
j=1 P

(
X

(1)
i e−rτ

(1)
i > (1− δ)x1, X

(2)
j e−rτ

(2)
j > (1− δ)x2

) · J1
≤ ε

1− ε
· F1((1− δ)x1)F2(δx2)

P
(
X

(1)
1 e−rτ

(1)
1 > (1− δ)x1, X

(2)
1 e−rτ

(2)
1 > (1− δ)x2

) · J1
=

ε

1− ε
· F1((1− δ)x1)F2(δx2)∫∞

1

∫∞
1
F1((1− δ)x1u)F2((1− δ)x2v)P (erτ

(1)
1 ∈ du, erτ

(2)
1 ∈ dv)

· J1

≤ ε

1− ε
· 1

C−2
∫∞
1

∫∞
1
u−p2

( (1−δ)v
δ

)−p2
P (erτ

(1)
1 ∈ du, erτ

(2)
1 ∈ dv)

· J1
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=
εC2δp2

(1− ε)(1− δ)p2Ee−rp2(τ
(1)
1 +τ

(2)
1 )

· J1, (17)

this implies J2 = o(J1) due to Ee−rp2(τ
(1)
1 +τ

(2)
1 ) > 0 and the arbitrariness of ε. For J3 and

J4, one can get the similar results by using the same arguments as above. Plugging all these

relations back and letting m,n→ ∞ lead to

P
( ∞∑

i=1

X
(1)
i e−rτ

(1)
i > x1,

∞∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
.

∞∑
i=1

∞∑
j=1

P
(
X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2

)
.

This ends the proof of asymptotic upper bound. Now we turn to the proof of asymptotic lower

bound. Indeed, by Lemma 4.3, it holds that

P
( ∞∑

i=1

X
(1)
i e−rτ

(1)
i > x1,

∞∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
≥ P

( n∑
i=1

X
(1)
i e−rτ

(1)
i > x1,

m∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
∼

n∑
i=1

m∑
j=1

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2)

=
[ ∞∑

i=1

∞∑
j=1

−
( ∞∑
i=1

∞∑
j=1

−
n∑

i=1

m∑
j=1

)]
P (X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2

)
. (18)

Since ( ∞∑
i=1

∞∑
j=1

−
n∑

i=1

m∑
j=1

)
P (X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2

)
≤

( ∞∑
i=1

∞∑
j=m+1

+
∞∑

i=n+1

∞∑
j=1

)
P (X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2

)
=: L1 + L2,

applying Lemma 5.2 and using the same treatment as in (17) yield that as x1, x2,m, n→ ∞,

Lk = o(1)F1(x1)F2(y) = o(1)
n∑

i=1

m∑
j=1

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2), k = 1, 2. (19)

(18) and (19) imply that

P
( ∞∑

i=1

X
(1)
i e−rτ

(1)
i > x1,

∞∑
j=1

X
(2)
j e−rτ

(2)
j > x2

)
&

∞∑
i=1

∞∑
j=1

P (X
(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2

)
.

Thus, the proof is now completed.
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§6 Proof of Theorem 3.3

In this section, we aim to prove Theorem 3.3. Let us prepare two lemmas for later use.

Lemma 6.1 is a property of renewal process. Lemma 6.2 plays a key role in proving Theorem

3.3.

Lemma 6.1. Let {(θ(1), θ(2)), (θ(1)i , θ
(2)
i ), i ≥ 1} be a sequence of i.i.d. nonnegative random

vectors. For k = 1, 2, suppose that {θ(k)i , i ≥ 1} drive a renewal process {Nk(t), t ≥ 0}. If θ(1)

and θ(2) are NQD, then, for all t ∈ Λ, it holds that

E[N1(t)N2(t)] ≤ EN1(t)EN2(t).

Proof. For k = 1, 2, let {θ∗(k)i , i ≥ 1} be independent copies of {θ(k)i , i ≥ 1} and satisfy

{θ∗(1)i , i ≥ 1} and {θ∗(2)i , i ≥ 1} are independent. Note that

E[N1(t)N2(t)] =

∞∑
n=1

∞∑
m=1

P (τ (1)n ≤ t, τ (2)m ≤ t)

=
( ∞∑

n=1

n∑
m=1

+
∞∑

n=1

∞∑
m=n+1

)
P
( n∑

i=1

θ
(1)
i ≤ t,

m∑
j=1

θ
(2)
j ≤ t

)
:= Q1(t) +Q2(t). (20)

Since θ(1) and θ(2) are NQD, it is equivalent to P (θ(1) ≤ x, θ(2) ≤ y) ≤ P (θ(1) ≤ x)P (θ(2) ≤ y)

for any x, y ∈ R. Thus, for Q1(t), we have

Q1(t) =

∞∑
n=1

n∑
m=1

∫ t

0−

∫ t

0−
P
(
θ
(1)
1 ≤ t− s(1), θ

(2)
1 ≤ t− s(2)

)
×P
( n∑

i=2

θ
(1)
i ∈ ds(1),

m∑
j=2

θ
(2)
j ∈ ds(2)

)
≤

∞∑
n=1

n∑
m=1

∫ t

0−

∫ t

0−
P (θ

(1)
1 ≤ t− s(1))P (θ

(2)
1 ≤ t− s(2))

×P
( n∑

i=2

θ
(1)
i ∈ ds(1),

m∑
j=2

θ
(2)
j ∈ ds(2)

)
≤

∞∑
n=1

n∑
m=1

P
(
θ
∗(1)
1 +

n∑
i=2

θ
(1)
i ≤ t, θ

∗(2)
1 +

m∑
j=2

θ
(2)
j ≤ t

)
.

Repeating the above steps for a limited number of times leads to

Q1(t) ≤
∞∑

n=1

n∑
m=1

P
( m∑

i=1

θ
∗(1)
i +

n∑
i=m+1

θ
(1)
i ≤ t

)
P
( m∑

j=1

θ
∗(2)
j ≤ t

)
=

∞∑
n=1

n∑
m=1

P
( n∑

i=1

θ
∗(1)
i ≤ t

)
P
( m∑

j=1

θ
∗(2)
j ≤ t

)
. (21)

The same treatment applying to Q2(t) also yields that

Q2(t) ≤
∞∑

n=1

∞∑
m=n+1

P
( n∑

i=1

θ
∗(1)
i ≤ t

)
P
( m∑

j=1

θ
∗(2)
j ≤ t

)
. (22)

Plugging (21) and (22) back into (20), the desired result is achieved immediately.
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Lemma 6.2. Under the conditions of Theorem 3.3, it holds that

lim
t→∞

lim
(x1,x2)→(∞,∞)

∫ t

0−

∫ t

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)] ≍ F1(x)F2(y) (23)

and

lim
t→∞

lim
(x1,x2)→(∞,∞)

∫∞
t

∫∞
0− F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

F1(x1)F2(x2)

= lim
t→∞

lim
(x1,x2)→(∞,∞)

∫∞
0−
∫∞
t
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

F1(x1)F2(x2)
= 0. (24)

Proof. Arbitrarily choose two positive constant p1 and p2 satisfying 0 < p1 < J−
F1

∧ J−
F2

≤ J+
F1

∨J+
F2
< p2 <∞. Then, for large enough x1, x2, it follows from Theorem 3.2 and (2) that

lim sup
t→∞

lim
(x1,x2)→(∞,∞)

∫ t

0−
∫ t

0− F1(x1e
rs1)F2(x2e

rs2)dE[N1(s1)N2(s2)]

F1(x1)F2(x2)

= lim
(x1,x2)→(∞,∞)

∑∞
i=1

∑∞
j=1 P (X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2)

F1(x1)F2(x2)

≤ lim
(x1,x2)→(∞,∞)

∞∑
i=1

∞∑
j=1

∫ ∞

1

∫ ∞

1

F1(x1u)F2(x2v)

F1(x1)F2(x2)
P (erτ

(1)
i ∈ du, erτ

(2)
j ∈ dv)

≤ C2
∞∑
i=1

∞∑
j=1

∫ ∞

1

∫ ∞

1

(uv)−p1P (erτ
(1)
i ∈ du, erτ

(2)
j ∈ dv)

≤ C2
∞∑
i=1

(E(e−2rp1τ
(1)
1 ))i/2

∞∑
j=1

(E(e−2rp1τ
(2)
1 ))j/2

< ∞.

Conversely,

lim sup
t→∞

lim
(x1,x2)→(∞,∞)

F1(x1)F2(x2)∫ t

0−
∫ t

0− F1(x1ers1)F2(x2ers2)dE[N1(s1)N2(s2)]

= lim
(x1,x2)→(∞,∞)

F1(x1)F2(x2)∑∞
i=1

∑∞
j=1 P (X

(1)
i e−rτ

(1)
i > x1, X

(2)
j e−rτ

(2)
j > x2)

≤ lim
(x1,x2)→(∞,∞)

F1(x1)F2(x2)∫∞
1

∫∞
1
F1(x1u)F2(x2v)P (erτ

(1)
1 ∈ du, erτ

(2)
1 ∈ dv)

≤ lim
(x1,x2)→(∞,∞)

1

C−2
∫∞
1

∫∞
1
u−p2v−p2P (erτ

(1)
1 ∈ du, erτ

(2)
1 ∈ dv)

≤ C2

Ee−rp2(τ
(1)
1 +τ

(2)
1 )

< ∞.

Thus, the desired (23) is verified.
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Next, we turn to prove (24). Similarly done as above, by Lemma 6.1, it holds that∫∞
t

∫∞
0− F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

F1(x1)F2(x2)

≤
∫∞
t

∫∞
0− F1(x1e

rs1)F2(x2e
rs2)dEN1(s1)dEN2(s2)

F1(x1)F2(x2)

≤ C−2

∫ ∞

t

e−rp1s1dEN1(s1)

∫ ∞

0−
e−rp1s2dEN2(s2). (25)

Note that, for k = 1, 2,∫ ∞

0−
e−rp1tdENk(t) =

∞∑
i=1

∫ ∞

0−
e−rp1tdP (τ

(k)
i ∈ dt) =

∞∑
i=1

Ee−rp1τ
(k)
i =

∞∑
i=1

(
Ee−rp1θ

(k)
1

)i
<∞,

which together with (25) implies the desired (24) and this ends the proof.

Proof of Theorem 3.3. Following the proof method of Theorem 2.2 in Hao and Tang

(2008), in order to prove Theorem 3.3, it suffices to prove the relation (3) holds uniformly for

all t ∈ (T,∞] for some fixed and sufficiently large T ∈ Λ since the relation (3) holds uniformly

for all t ∈ ΛT due to Theorem 3.1. First, according to Lemma 6.2, we easily see that

lim
T→∞

lim
(x1,x2)→(∞,∞)

∫∞
T

∫∞
0− F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]∫ T

0−
∫ T

0− F1(x1ers1)F2(x2ers2)dE[N1(s1)N2(s2)]
= 0, (26)

and

lim
T→∞

lim
(x1,x2)→(∞,∞)

∫∞
0−
∫∞
T
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]∫ T

0−
∫ T

0− F1(x1ers1)F2(x2ers2)dE[N1(s1)N2(s2)]
= 0. (27)

For any ε > 0, t ∈ (T,∞] and sufficiently large x1, x2, by Theorem 3.2 and the relations (26)

and (27), we obtain

ψmax(x1, x2; t) ≤ ψmax(x1, x2)

∼
∫ ∞

0−

∫ ∞

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

≤
(∫ t

0−

∫ t

0−
+

∫ ∞

T

∫ ∞

0−
+

∫ ∞

0−

∫ ∞

T

)
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

≤ (1 + 2ε)

∫ t

0−

∫ t

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)], (28)

and

ψmax(x1, x2; t) ≥ ψmax(x1, x2;T )

∼
∫ T

0−

∫ T

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

≥
(∫ t

0−

∫ t

0−
−
∫ ∞

T

∫ ∞

0−
−
∫ ∞

0−

∫ ∞

T

)
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]

≤ (1− 2ε)

∫ t

0−

∫ t

0−
F1(x1e

rs1)F2(x2e
rs2)dE[N1(s1)N2(s2)]. (29)

Therefore, by (28), (29) and the arbitrariness of ε, we obtain the uniformity of (3) for all

t ∈ (T,∞]. The proof of Theorem 3.3 is now complete.
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