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Locally and globally uniform approximations for ruin
probabilities of a nonstandard bidimensional risk model

with subexponential claims

LIU Zai-ming? GENG Bing-zhen!? WANG Shi-jie?*

Abstract. Consider a nonstandard continuous-time bidimensional risk model with constant
force of interest, in which the two classes of claims with subexponential distributions satisfy a
general dependence structure and each pair of the claim-inter-arrival times is arbitrarily depen-
dent. Under some mild conditions, we achieve a locally uniform approximation of the finite-time
ruin probability for all time horizon within a finite interval. If we further assume that each pair
of the claim-inter-arrival times is negative quadrant dependent and the two classes of claims
are consistently-varying-tailed, it shows that the above obtained approximation is also globally

uniform for all time horizon within an infinite interval.

81 Introduction

Consider a continuous-time nonstandard bidimensional risk model with constant force of
interest, in which an insurance company launches two classes of insurance business simultane-
ously. The surplus process is described as

( Ui(wy,t) ) ert( ) ( fo ert=9Cy (ds) ) - ( Zl{\f:ll(t) X}l) r(t—r") ) "

Uy (2,1) o fot e"(t=9)Cy(ds) Z;V:QY) X]('z)er(t—fjﬁ no|o
where {(Ul(xl,t),Ug(xg,t))T;t > 0} denotes the bidimensional surplus processes, (z1,732)"
the vector of initial surpluses, 7 > 0 the constant force of interest, {(Cy (t),Cg(t))T; t >
0} the bidimensional premium processes, {(Xi(l),X ;2))T;z’, j > 1} the sequence of claim size
( (1) (2))T

vectors and { 14, ] > 1} the sequence of claim arrival-time vectors which drive the

corresponding bldlmensional renewal counting processes {(Ny(t), No(t)) "5t > 0}.
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Throughout this paper, for each k = 1,2, assume that the claim sizes from the k-th line
{Xi(k),z' > 1} constitute a sequence of identically distributed, but not necessarily independent,
nonnegative random variables (r.v.s) with a common distribution Fj; the claim arrival-times
ol
the claim inter-arrival-times {(™),6(2), (95-1),95-2)),]' > 1} are independent and identically
distributed (i.i.d.) nonnegative random vectors, but the two components of each vector are

{(Ti(k),’i > 1} form another sequence of nonnegative r.v.s with Ti(k) =53 , © > 1, where

arbitrarily dependent; the premium process {(Ck(t),t > 0} is a nonnegative and nondecreasing
stochastic process with C(0) = 0 and Ci(t) < oo almost surely for every ¢ > 0. To avoid
triviality, we assume that either P(Ggl) >0)>0or P(9§2) > 0) > 0 holds. As we know, the
renewal counting process {Ny(t),t > 0} forms a nonnegative, nondecreasing, right continuous,
and integer-valued stochastic process with mean function ENy(t) < co. Define

Ap = {t >0,ENi(t) > 0} = {t > 0, P(r® <) > 0}
for later use and write A = ﬂi:l Ag. Moreover, suppose that {Xi(l),i > 1}, {Xi@),i > 1},
{N1(t), Na(t);t > 0} and {C4(t), Ca(t); t > 0} are mutually independent.
For the above continuous-time bidimensional renewal risk model, denote by
Tmax = Inf{t > 0 : max{U; (z1,t), Uz(z2,t)} < 0}
the first time when both Uj(z1,t) and Usz(x2,t) become negative. Then the corresponding
finite-time ruin probability ¥max (21, 22;t) is defined as

P(Tmax(xla m2) S t|(U1 (1'17 0)7 UQ(Q:Za 0))T = (xla xQ)T)
and further the infinite-time ruin probability is defined as

'(/)max(xlaxZ) = tli>Holo wmax(xl,xg;t) = P(Tmax < ()O|(Uv1(371,0)7 UQ(J?Q,O))T = (l‘l,.l“g)T).

Historically, bidimensional risk models have been widely investigated by many authors. In
general, some of them studied ruin probabilities of bidimensional risk models without constant
force of interest. See, for example, Chen et al. (2003), Yuen et al. (2006), Li et al. (2007),
Chen et al. (2011), Lu and Zhang (2016), Chen and Yu (2017) and so on. Whereas, others
investigated ruin probabilities for bidimensional risk models with constant force of interest or
stochastic investments driven by Lévy process. Besides, for the potential practicability of the
results, some dependence structures were also imposed among the claim sizes at the same time
in some recent papers. For instance, Chen et al. (2013), Gao and Yang (2014), Yang and Li
(2014), Yang and Yuen (2016), Li (2018), Chen et al.(2019), Yang et al. (2018, 2019) and
references therein.

However, to the best of our knowledge, most of the above-mentioned papers restricted the
claims belonging to some smaller heavy-tailed subclass (mainly belonging to the consistently-
varying-tailed class or the intersection of dominatedly-varying-tailed class and long-tailed class)
when studying ruin probabilities. Also, few works were devoted to investigating the uniformity
of asymptotics for both finite-time and infinite-time ruin probabilities. Based on these two
considerations, this paper aims to do some jobs on both objects simultaneously. Firstly, after
assuming that the claims from the same lines satisfy a general dependence structure and each
pair of the inter-arrival times are arbitrarily dependent, we achieve a locally uniform approx-
imation of the finite-time ruin probability for all time horizon within a finite interval. But
more than that, if we suppose that the two classes of claims are consistently-varying-tailed, this
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approximation can be extended to the infinite-time case. Finally, if we further assume that
each pair of the inter-arrival times are negative quadrant dependent (NQD), it shows that the
above obtained approximation is also globally uniform for all time horizon within an infinite
interval. Our obtained results coincide with and substantially extend some existing ones in the
literature.

At the end of this section, let us recall two dependence structures which will be used in this
paper. The first was proposed in Ko and Tang (2008) and then extended to infinite sequences by
Zhang and Cheng (2016); see also Yang et al. (2012) or Gong et al. (2020). Moreover, a weighted
version of this dependent structure can be found in Cheng and Cheng (2018), where they called
it conditionally linearly wide dependence. It is worth mentioning that Asimit and Jones (2008)
first introduced a well-known bivariate dependence structure through copula function. Even as
for the bivariate case, the following Assumption 1 obviously covers the dependence structure in
Asimit and Jones (2008) when the measurable function g in Assumption 2 of Asimit and Jones
(2008) is assumed to be bounded. One can also refer to Remark 2.3 of Ko and Tang (2008) for
more details. The second dependent structure named NQD was initiated by Lehmann (1966).

Assumption 1. Let {Xy, k > 1} be a sequence of nonnegative r.v.s. There exist some large
xo > 0, irrespective of n, and a sequence of nondecreasing constants {my,k > 1}, such that,
for all x > xy and every n > 2, the relation

n—1 n—1
P(ZXi > z—y’Xn :y) < mn_lP(ZXi > :c—y)
i=1 i=1
holds uniformly for ally € [xo,x — ().

Definition 1.1 Two r.v.s & and & are said to be NQD, if for any x1,x5 € R,
P(&1 > 1,82 > x2) < P(& > 21) P(§2 > 72).
The rest of this paper consists of five sections. Section 2 prepares some preliminaries on
heavy-tailed distributions. Section 3 gives our main results and their proofs are presented in
Sections 4, 5 and 6, respectively.

82 Preliminaries

Throughout this paper, all limit relationships are according to x1,x2 — oo unless stated
otherwise. For two positive functions f(-) and g(+), assume that

a= liminf& < limsup& =1b.
9() 9()
Write f(x) 2 g(x) if @ > 1; write f(z) S g(z) if b < 1; write f(z) < g(z) f 0 < a < b < o0
write f(z) ~ g(x) if @ = b = 1; write f(zx) = o(g(z)) if b = 0; write f(x) = O(g(x)) if
b < oo. Furthermore, for two positive trivariate functions a(-,-,-) and b(-, -, ), we say that the
asymptotic relation a(xy,xs,t) ~ b(x1,x2,t) holds uniformly over all ¢ in a nonempty set A if
lim sup M — 1| =0.
(z1,22)—(00,00) te A b(xla X2, t)
As usual, for a r.v. X, we write X = max{X,0}; for two constants a and b, write a V b =

max{a,b} and a A b = min{a, b}.The indicator function of an event A is denoted by I4. For
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any distribution function F', denote its tail by F(z) = 1 — F(z).

For convenience of later use, let us recall some definitions and properties of heavy-tailed
distribution classes which have been widely applied in many fields such as insurance, financial
mathematics, queueing theory and so on. We say that a r.v. X (or its distribution F) is
heavy-tailed if it has no finite exponential moments. In the following, we list some important
heavy-tailed classes.

We say a distribution function F' on [0, 00) belongs to the subexponential class, denoted by
F € ., if limy o0 F*™(x)/F(x) = n holds for all n > 2, where F*" is the n-fold convolution of
F; belongs to the long-tailed class, written as F' € ., if lim, o, F(x—y)/F(z) = 1for ally € R;
belongs to the dominatedly-varying-tailed class, written as F' € 2, if lim, . F(zy)/F(x) <
oo for some 0 < y < 1; belongs to the consistently-varying-tailed class, written as F € €,
if limyq liminf, o F(2y)/F(z) = 1 (or, equivalently, lim,4 limsup,_,. F(zy)/F(z) = 1);
belongs to the extended regularly-varying-tailed class, written as F' € ERV(—a, —f) for some
0<a<pB<ooify? <liminf, o F(zy)/F(z) < limsup,_, . F(ry)/F(z) < y~2, for any
y > 1. Among the heavy-tailed subclasses mentioned above, by Embrechts et al.(1997), the
following inclusion relationships are well-known:

ERVCcécCco9Nn¥ cCcsCZ.

Moreover, the long-tailed distribution class has some elementary properties. It was proved that
if '€ %, then the function class
H(F)={l(-) on [0,00):1(z) 1 oo, l(z) < x/2, I(z)/x |0 and F(z —I(z)) ~ F(z)}
is not empty; see for instance Cline and Samorodnitsky (1994) or Foss et al. (2013). Clearly,
for any I(x) € #(F), F(z — Kl(z)) ~ F(z) for any constant K > 0.
Furthermore, for a distribution function F' with an ultimate right tail, define

log F, log F"
J;E:inf{—Og(y):y>1} and J;:sup{—og(y):y>1}

logy logy
with
— F — F
F.(y) = liminf 7(xy) and F (y) =limsup 7(1’2/)
z—oo  F(x) a—oo  F(x)

Following the terminology of Tang and Tsitsiashvili (2003a), J; and Jp are called the upper
and lower Matuszewska index of F', respectively. It is known that F' € Z is equivalent to
J§ < oo; see Embrechts et al.(1997). Moreover, from Proposition 2.2.1 of Bingham et al.
(1987), for any p1 < J5 and ps > J;,f, there exist positive and sufficiently large constants C, D
such that

C’1<£)pl < Ely) < C’(ﬁ)pz for all x >y > D. (2)

83 Main results

In this section, let us present our main results. Theorem 3.1 gives a locally uniform asymp-
totic for the finite-time ruin probability of bidimensional renewal risk models for all time horizon
within a finite interval. Under some stronger conditions, Theorem 3.2 derives an asymptotic
formula for the infinite-time ruin probability of bidimensional renewal risk models.



102 Appl. Math. J. Chinese Univ. Vol. 39, No. 1

Theorem 3.1. Consider the bidimensional renewal risk model introduced in Section 1 with
r >0, in which, for k = 1,2, the claims {Xi(k);i > 1} with common distribution Fy, € . satisfy
Assumption 1. Assume that the claim inter-arrival-times {(8™),0(?)), (9§1),9§-2)),j > 1} are
i.3.d. nonnegative random vectors, but the two components of each vector are arbitrarily depen-
dent and further {X™M i > 1}, {X® i > 1}, {(N1(t), Na(t)); t > 0} and {(C1(t), Ca(t)); t > 0}
are mutually independent. If there exists a constant M such that m, < M for allmn > 1, then,
for any fixed T € A, it holds uniformly for all t € Ay =: AN[0,T] that

(211, 223 1) ~ / ) /  Filwe™ Fylwae™)dEN: (1) Na(s2)] (3)

Theorem 3.2. Suppose that all the same conditions in Theorem 3.1 hold. Additionally, if
fork=1,2, Fy € ¢,k =1,2 with Jp_> 0, then the relation (3) also holds for t = oo, i.e.

Ve (1, 3) ~ / °° / °° (17 B (r2¢™2)d BN (51) Na (52))

In particular, next we intend to verify the global uniformity of the relation (3) for all ¢t € A.
However, it is mathematically difficult under the assumption that #(*) and 6(2) are arbitrarily
dependent. Fortunately, if we further assume that () and 6(2) are NQD, then the global
uniformity result of the relation (3) is achieved in the following Theorem 3.3.

Theorem 3.3. Suppose that all the same conditions in Theorem 3.2 hold. Moreover, if each
pair of the claim-inter-arrival times is NQD and {(6("),0)T (91(1), 052))T,i > 1} is a sequence
of i.i.d. nonnegative random vectors, then the relation (8) holds uniformly for allt € A.

84 Proof of Theorem 3.1

In order to prove Theorem 3.1, we need to prepare some lemmas. Lemma 4.1 below is
due to Ko and Tang (2008). Lemma 4.2 is a special case of Theorem 2.1 of Gong and Yang
(2020). Lemma 4.3 is an asymptotic formula of weighted sums of r.v.s satisfying Assumption
1 which plays a key role for proving the next Lemma 4.4. Certainly, Lemma 4.3 has its own
interest since it derives some type of asymptotic formula for weighted sums under Assumption
1. An independent randomly weighted sum version of this result was proposed in Tang and
Tsitsiashvili (2003b) and more recently a dependent version can be also found in Proposition 1
of Yang et al. (2020) where the dependence structure used is different from ours. Lemma 4.4
is an analogue of Lemma 4.4 in Yang and Li (2017) which is essentially important for proving
Theorem 3.1.

Lemma 4.1. Let {X;,i > 1} be a sequence of nonnegative r.v.s satisfying Assumption 1
with a common distribution F € ., then, for any fited n > 1, it holds that

P(En:XZ- >x> NZH:P(XZ- > 7).
=1 i=1

Lemma 4.2. Let {X;,i > 1} be a sequence of nonnegative r.v.s satisfying Assumption
1 with common distribution F € . If there exists a constant M such that m, < M for all
n > 1, then, for any fited n > 1 and € > 0, there exist some sufficiently large xg > 0 and some
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constant K = K(e, M,xq) > 0 such that for all x > xq,
P(YXi>x) < K(1+2)"F(a).
i=1

Lemma 4.3. Let {X;,i > 1} be a sequence of nonnegative r.v.s satisfying Assumption 1
with a common distribution F' € ., then, for any firedn > 1 and any cosntants 0 < a < b < 0o,

the relation
n

P(ZciXi > x) ~ 3" P(eiXi > @), (4)
i=1 i=1
holds uniformly for all (c1,...,c,) € [a,b]™.

Proof. For simplicity, in what follows, denote by c(,) =: maxi<i<, ¢;. First, we proceed
to use the induction method to prove the asymptotic upper bound of (4). Clearly, this case
n = 1 is trivial. Suppose that (4) holds for any fixed positive integer n — 1, we aim to show
that (4) also holds for n. To do so, we arbitrarily choose some I(z) € ' (F) and divide the
probability P( Yo aX > x) as the following three parts:

P(ZciXi >x,cp X, < l(x)) + P(ZQXZ' >x,c, X, > T — l(x))

=1 i=1

+P(i:ciXi >x,l(x) < epXp <z — l(x))

i=1
= L(z)+ L(z) + I3(x). (5)
For any € > 0 and some sufficiently large ;1 > 0, by induction hypothesis and F' € .¥ C .Z, it
holds for all > z; and uniformly for all (c1,...,¢,) € [a,b]™ that
n—1 n—1
Lz)<(1+e)> PleXi>z—1(z) < (1+)?* ) P(e;X; > x) (6)
i=1 i=1
and
Iy(z) < P(cp, Xp > 2 —l(z) < (1+¢)P(cpn X, > ). (7)

For I5(z), let X7, X} be two independent copies of X;. By Assumption 1 and Lemma 4.1,
there exits some some sufficiently large x5 > x; such that for all x > x5 and uniformly for all
(c1,...,¢y) € [a,b]",

z=l(z) n—1
o et
L(z) < /(z) P(in > :”C( Cl) X, = t)P(Xn € dt)
on i=1 n-
z—Ul(z) n—1 "
on T —cy
< .
< ma /l() P(gxz > )P(Xn € dt)
n—1 ,z=l@)
< (1+e&)m Z/ - P(X4>x_6"t)P(X € dt)
- " o1 T ey "
= (1+e)mu_1(n—1DP(cion X + Xy > 3,l(z) < e Xp < . — ()
< e(l+eg)mp_1(n— 1) (Plcp-XT > x) + P(c, X, > x))
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e(l+e)mp_1(n—1) (Z (¢iXi>x)+ P(cn Xy >x)>

=1

IN

= (1+€mn1n—lz (¢ X > x), (8)

where in the fifth step we used Lemma 3.2 in Gong et al. (2020). Plugging (6)-(8) into (5) and
letting € | 0, the asymptotic upper bound of (4) is derived.

Next, we turn to verity the asymptotic lower bound of (4). Indeed, since the nonnegativity
of X1,...,X,, it holds that

P(ZciXi > Jc) > ZP(ciXi > ) — Z P(e;X; > x,¢;X; > x). (9)
i=1 i=1 1<i<j<n
By applying Assumption 1 and Lemma 4.1, there exists some sufficiently large z3 such that for
all x > x3,
P(CiXi >, Cij > J?)
o0 j—1
< / P(X;Xi > - ‘Xj — ) P(X; € di)
P(Zf;l *t‘Xj :t)
< (2:XZ > )P(chj > x) sup ,
S A (SRS )
j—1
< mp(> x> )P(e;X; > )
i=1

CG-1)

j—1
< (Q4eM> P(X;>——— \P(c;X; >x
(1+e) ; ( <j_1)c<j,1)) (c;X; > )

= o(1)P(¢; X; > ). (10)

Thus, letting € | 0, (10) together with (9) yields the desired asymptotic lower bound of (4) and
this ends the proof.

Lemma 4.4. Under the conditions of Theorem 3.1, it holds uniformly for t € Ap that
Na(t)

P( Z X _TT >CI?1, Z X (2) _TTJ > ])2)
j=1

~ /07 /7 Fi(z1€™t)Fa(22e"?)dE[Ny(s1) Na(s2)].

Proof. Following the same method used as in Lemma 4.4 in Yang and Li (2017) by Lemmas
4.2 and 4.3 instead of Lemmas 4.1 and 4.2 in their paper, one can easily derive this lemma. To
save space, we omit it here.

Proof of Theorem 3.1. Following the proof method of Theorem 2.1 in Yang and Li (2014),
Theorem 3.1 can be easily achieved according to Lemma 4.4. For simplicity, we also omit it
here.
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85 Proof of Theorem 3.2

In this section, we also present some lemmas for proving Theorem 3.2. Lemmas 5.1 and 5.2
are similar results as Lemma 5.2 in Yang and Li (2017), but it is worth mentioning that the
dependence structure appeared in their paper is quite different from ours. Hence the treatment
should be adjusted.

Lemma 5.1. Under the conditions of Theorem 3.2, it holds that

2)
P(YX2 N X(l) —rr) 33172;‘;1 Xj(.2)e_”j2 > x)
lim lim sup — =0, (11)
N—=00 (21 29)—(00,00) Fl(ml)F2(x2)

and

i i P( Zzl Xz'(l)e_TTi(l) > T, Z;O N X(Q) —TT(Q) > 252)
lim lim sup

N=09 (31 5) —(00,00) Fy (1) Fy(2)

—0. (12)

Proof. The proof idea of this lemma is due to Lemma 5.2 in Yang and Li (2017). Tt suffices
to prove (11) since the proof of (12) is fully similar. Firstly, arbitrarily choose some large M
such that ) 2, 1/i* < M. Moreover, noting that Fy, F» € ¢ C &, thus, we can two positive
constant p; and po satisfying 0 <py < Jp A Jp < JI}Ll \Y Jg < p2 < oco. It is obvious that

> ) > @)
P( S xWerm 50, 3 x e > 1‘2)
=N j=1

oo oo
1) —rr! (2 —7"7—(2) L2
< (XX Z ZX e >N )
=N Jj= 1‘7
- (W) —re® _ T 2) —rr® T2
< P<‘ {xMemr >Z.2M},_U{Xj e " >j2M})
=N Jj=1
S (1) —rrD () —TT(Q) T2
< SRt 5 2 x5 1)

UL

(R e e can

= Il(I1,$27N)+IQ(I1,Z‘2,N)+13(56171‘2,N)+I4(£L‘1,I2,N). (13)
For I (x1,x2,N), noting that F; € € C 2,i = 1,2, by the second inequality in (2), for
sufficiently large x1, z2, the quantity Iy (z1, 22, N) is not large than

oo oo o L i’M 2 M P2M i2M
Sy e [ [ (S
[e.¢] (o9}

P2 e (2
) P(e" edu,e" € dv)
i=N j=1

< M (2)Fy(a2) Y Y 2 E(er e
i=N j=1
o0
<

CMP (o) Fa(w) 3 P {B(e 27" }2/2212’)2{}3 ey
i=N
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where the last step holds due to the Holder’s inequality. Noting the convergence of the series

appearing in the above relation, we have
1 N
lim lim sup M =
N=09 (21,25)(c0,00) F1(21) F2(72)
By the same arguments as above and applying the first inequality in (2), one can also obtain
I; N

lim lim sup L@y, 25, N)

N=+99 (21 5) (00,00) F1(21)F2(w2)

These together with (13) and (14) yield the desired (11) and this ends the proof.

(14)

=0, i=2,3,4.

Lemma 5.2. Under the conditions of Theorem 3.2, it holds that
0o oo P X(l) —77'( ) > xl’X;Z)e—TT;Z) > :62)

lim  limsup > Y TAERTES =0, (15)

N—=00 (g1 ,25)—(c0,00) =N j—=1

and
2
< & PXPe > ay, XxPe " s 1)

lim lim sup Z Z () Fo(m) =0. (16)

N—=00 (31,2, )= (00,00) ;= 1i=N

Proof. It suffices to prove (15). Indeed, for sufficiently large x,y, it follows from (2) that

®© % p X(l) —TT( ) > LL’l,X(Q)e*TT;Z) > :EQ)

Z Z F1($1)F2(]$2)

= Nj 1
Fy(xqu) Fy(
< L3[R p ¢ e e
=N j=1 Fl 'Tl F )
< C’QZZ/ / uv) PtP(e rri? Gdu,e”f) € dv)
i=N j=1
< C2 Z( (72rp17- 1/22 727“1)17’ )g/2
i=N

which implies the desired (15) by letting N T 00 and this ends the proof.

Proof of Theorem 3.2. It suffices to prove the following fact, then the remained proof
can fully be followed from the method used in Theorem 2.2 in Yang and Li (2017) and Theorem
3.2 can be easily derived.

P XM >0 3 xPerrn” > a)

i=1 =1
(1) _ (2)
NZZP XM >x1,X(2) T > 1),
=1 j=1

In fact, the proof of this lemma is routine. For any 0 < 6 < 1/2 and each fixed m,n > 1, we
first consider the asymptotic upper bound Note that

PS> AP ) < e
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with
S 1) —pr™ - 2) —rr®
:P(ZXi e " >(1—§)m1,ZXj e " >(1—6):1:2),
i=1 =1
Jo = P(ZXZ.(I)e_”fl) S (1=, Y xPen? > 5352),
i=1 j=m+1
J3 = P( Z XZ-(l)e_TT’i(l) > dxq, ZX](?)@_""T]@) > (1 — (5)1‘2),
i=n+1 =1
and

Jy = P( Z Xi(l)eiTTi(l) > 5‘751, Z _Xv_](»z)eim—.?(2> > (5:102)
i=n+1 j=m+1
We first estimate J;. For any € > 0 and sufficiently large 1, 2, it follows from Lemma 4.3 and
(2) that

B 0+ S PxOe ! 5 (1= d)ay, XPe Y > (1 - 8)as)
i=1 j=1
= (1+e Z Z/ / Fi((1—=6)z1u)Fa((1 - 5)332U)P(6”i<1) € du, e e dv)
1=15=1
F((1-0 F((1-06
< (l14¢€) sup —I(L Jor) —Q(L Jeav)
u€(1,00) Fy (371“) vE(1l,00) F2($2v)
X ZZ/ / Fy(xu)Fy ;vgv)P(e”i(l) € du,e”;2> € dv).
i=1 j=1
Noting that Fy, F5 € € and the arbitrariness of €, we conclude
()
Jl < ZZP _TT > .’El,)(](-z)e_TTJ2 > $2).
i=1 j=1

Next we deal with J. By Lemmas 5.1 and 4.3 and (2), it holds for large enough 1, xo, m and
n that

Jo < P(fo”ewf“ S(1=d)a, Y xPer” > 5352)

=1 Jj=m+1

< <R((1 - 0)a1)Fa(o22)
< € Fu(1 — 8)a) Py (s) .
- 1= 6 (1) —prV (2) 77"7' L
PR 12] 1P(X T > (1= 6)x, X > (1-90)x )
€ Fi((1- )$1)F2(5332) .
= 1—c¢ P(Xfl)e—’l‘T > (1-06)1, X(Q) —rr! > (1—6)xs) 5
_ g ) ﬁ((l ).’El)FQ(§£C2) ) Jl
Loe [ [ = 0)mu)Fa((1 = 8)agv) Pler™ € du, et € dv)
€ 1
< )

1—¢ 0_2 floo floo U_pz((l_(;”v)_pZP( TTI( ) c du,erTl(2) c d’l})
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eC?p2
= oo I (17)
(1 — 5)(1 — 5)P2E6*TP2(71 +717)

Lo 1« S
this implies Jo = o(J1) due to Be~m22(1"+71”) 5 0 and the arbitrariness of . For Js and
Jy, one can get the similar results by using the same arguments as above. Plugging all these

relations back and letting m,n — oo lead to

00 S @
P(ZXlgl)efrqul) > 2, ZX§2)67TTJZ > 1,2)

i=1 j=1

<Y P(xPe " > py, XPe 5 1)

~ i € ; T1, X, 7€ > x2).
i=1 j=1

This ends the proof of asymptotic upper bound. Now we turn to the proof of asymptotic lower
bound. Indeed, by Lemma 4.3, it holds that

o0 o0
( (2)
P(fol)e*”vv” >, Y xPern? s .1‘2)
i—1 J=1

V
w
/N
<
c
1
;‘A
V
G
o
n
(o)
|
B
V
=
[\v]
N—

i=1 j=1
ST RED sy X 5
i=1 j=1

[ AP s xEe ) ()

Since

< (Z i + Z i)P(Xi(l)eirTi(l) > .leX](2)€7TTJ§2) > 1’2) = Ll +L2,

i=1 j=m+1 i=n+1j=1
applying Lemma 5.2 and using the same treatment as in (17) yield that as z1, 2, m,n — 00,

Ly = o) L (e Fa(y) = o) 3.3 P(x Ve > 0y xPe™ S ), k=12 (19)

i=1 j=1

(18) and (19) imply that
> e > @
P(ZXfl)efTTil > 1, ZXJ(Q)e*sz > x2>
i=1 =1

oo oo 7TT(1) 77“7'(2)
ZZZP(XZ-U)@ >:c1,X](2)e i >z2).

i=1 j=1
Thus, the proof is now completed.
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86 Proof of Theorem 3.3

In this section, we aim to prove Theorem 3.3. Let us prepare two lemmas for later use.
Lemma 6.1 is a property of renewal process. Lemma 6.2 plays a key role in proving Theorem
3.3.

Lemma 6.1. Let {(#™),0®), (951),09)),2' > 1} be a sequence of i.i.d. nonnegative random
vectors. For k = 1,2, suppose that {ng),i > 1} drive a renewal process {Ni(t),t > 0}. If ()
and 0@ are NQD, then, for allt € A, it holds that

E[Ny(t)No(t)] < EN;y(t)ENa(t).
Proof. For k = 1,2, let {Hj(k),i > 1} be independent copies of {ng),i > 1} and satisfy
{Gf(l),i > 1} and {9*(2) i > 1} are independent Note that

E[N1(t)N: Z Z P(rM <t,72 <)
(i i +i i )P (fjeg“ gt,i&f) <t)
n=1m=1 n=1m=n+1 =1 j=1
= Q1(t) + Q2(1). (20)

Since ) and #) are NQD, it is equivalent to P(#() < 2,0 < y) < P(OM) < z)P(9?) < )
for any x,y € R. Thus, for Q1 (t), we have

Qit) = ZZ/ / PO <t —sW, 09 <t —5@)

n=1m=1

xP(Zegl) € dsW, Z 95-2) € ds(Q))
i= j=2

2
S o < 2o
n=1m=1"%"" -
xP( Y00 s, >0 € ds®)
i=2 j=2

VAN
g
N

g
—

+\/
NN

N

o~

>

+
Ng

N

no

N
NG

n=1m=1 =2

Repeating the above steps for a limited number of times leads to

0t < Z ZP<ZQ*(1 I Z 8! (1) <t) (iezf@) St)
n=1m=1 i=m+1 j=1
_ ZZ (Za*“ <t) (Ze“gt). (21)

The same treatment applying to Q2(t) also yields that

i i P(iej”) < t)P(iG;(Q) < t). (22)
i=1 =

n=1m=n+1
Plugging (21) and (22) back into (20), the desired result is achieved immediately.
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Lemma 6.2. Under the conditions of Theorem 3.3, it holds that
t ot
lim lim / F1 (:Clersl)Fz(l‘gerSQ)dE[N1(S1)N2(S2)] = F1 (x)Fg(y) (23)
t—=00 (z1,22)—(00,00) Jo_ Jo—
and o o
. . j;oo fooi Fl(xlersl)F2(1‘26m2)dE[N1(Sl)NQ(SQ)}
lim lim — —
t—00 (z1,72)—(00,00) F (xl)FZ(xQ)
. . Joo [ Fi(ziem )Py (9e7*2)dE[Ny (s1) Na(s2)]
= lim lim — —
t—=00 (z1,x2)—(00,00) Fl(xl)Fg(iCQ)

Proof. Arbitrarily choose two positive constant p; and ps satisfying 0 < p; < Jp A Jpg,

=0. (24)

< J;l \% J}; < pg < 00. Then, for large enough 1, x2, it follows from Theorem 3.2 and (2) that
Jo_ fo_ Fi(z1emt) Fo(x2e™2 )d B[N (s1)No(s2)]

lim sup lim — —
t—oo (x1,22)—(00,00) Fl(.’El)FQ(SﬂQ)
L R PO > 0 XD > )
= im — —
(1,2)—(00,00) Py (21)F3(2)
Fy(zu)Fy(z
< ZZ/ %P(e S du,e”]@) € dv)
(7'17T2)_>(OO %) {53 im Fi (1) F(z2)
< 0222/ / uv)"PLP(e" Ti(l) € du,e”f) € dv)
i=1 j=1
< Oy )y (e
i=1 =1
< Q.
Conversely,
lim sup lim L} (21 )F2 (x2)
t—oo  (1,22)—>(00,00) fO fO F1 xlersl)FQ(xQBTSQ)dE[Nl(SI)NQ(SQ)]
_ hm Fl(xl)F2($2)
(z1,22)—(00,00) Zfil Z;}il P(Xgl)e—rfi(l) > xl,XJ@)G_TTJ(Q) N xg)
< lim Fy(z1)Fa(z2)
N (T17”£2)—>(°° o) f fl F xlu)Fg(argv)P(e”l( c du,e”l(z) € dv)
1
< lim pe—— 5) @
(z1,22)—(00,00) -2 fl fl u—P2v—P2P(eTT1 c du7 e € d’U)
02
< N
— Ee_,rp2(7_( )_,’_7.(2))
< 0o0.

Thus, the desired (23) is verified.
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Next, we turn to prove (24). Similarly done as above, by Lemma 6.1, it holds that
S Jos Filaie™t) Fy(aze”*2)dE [Ny (s1) Na(s2)]
Fi (1) Fa(x2)
I Fi(wiemst) Fy(w2em2)dEN; (s1)dEN3(s2)
- Fi(z1)Fa(x2)

c? / e P dE N (s1) / e P12 dE Ny (s5). (25)
t 0—

IN

Note that, for k =1, 2,

/ e P dEN(t) Z/ e Pt pP(r, k € dt) = ZE@‘”’W(M = Z (Ee—rp19§k)) < o0,
0~ i=1

i=1
which together with (25) implies the desired (24) and this ends the proof.

Proof of Theorem 3.3. Following the proof method of Theorem 2.2 in Hao and Tang
(2008), in order to prove Theorem 3.3, it suffices to prove the relation (3) holds uniformly for
all t € (T, 00] for some fixed and sufficiently large T' € A since the relation (3) holds uniformly
for all ¢ € A7 due to Theorem 3.1. First, according to Lemma 6.2, we easily see that

i lim I Jo Fi(ziem ) Fa(x0e7*?)d B[Ny (s1) Na(s2)] 0 (26)
1m =Y,
T—00 (z1,22)—(00,00) f fO F1 {Elersl)FQ(LC2€TS2)dE[N1(S])NQ(SQ)]

and
> Oofmerslﬁx e"2)dE|[N1(s1)Na(s
i i Jo_ Jr Fi(z1€")Fy(22€"*2)dE[N1(s1) Na(s2)] o (@7)
T—00 (w1,22)—(00,00) fO fO F1 mlersl)F2(1'26T52)dE[N1(Sl)NQ(SQ)]

For any € > 0, t € (T, 00| and sufficiently large 21, z2, by Theorem 3.2 and the relations (26)

and (27), we obtain

wmax(xbx%t) S wmax(xlny)

~ /io /io Fy (21" ) Fy(22€"2)dE[N1(s1)Na(s2)]

(/Ot /Ot+/TOO /Ooo+/oo /:)Fl(xw”l)Fz(asge”z)dE[Nl(sl)NQ(SQ)]

(14 2¢) /O | e PN () Vo), (28)

IN

IN

and
wmax($17 T2, t) Z wrnax(mla T2; T)

T B
~ /O_ /0_ P (16" ) Fy (226" )dE [Ny (s1)Na(s2)]

(/o_ /0 - /Tw /: - /Oio /Tw )Fi(a1e"™ ) Fa(ze™™ B[N (s1) Na(s2)

< (1-2) /O ) /0 | Fi(1e™) B e B[N (51) Vol (29)

Therefore, by (28), (29) and the arbitrariness of e, we obtain the uniformity of (3) for all

Y

€ (T, o0]. The proof of Theorem 3.3 is now complete.
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