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Equivalence between the internal observability and

exponential decay for the Moore-Gibson-Thompson

equation

LIU Wen-jun TU Zhi-yu

Abstract. This paper is concerned with a third order in time linear Moore-Gibson-Thompson

equation which describes the acoustic velocity potential in ultrasound wave program. Influenced

by the work of Kaltenbacher, Lasiecka and Marchand (Control Cybernet. 2011, 40: 971-988), we

establish an observability inequality of the conservative problem, and then discuss the equiva-

lence between the exponential stabilization of a dissipative system and the internal observational

inequality of the corresponding conservative system.

§1 Introduction

The Moore-Gibson-Thompson (MGT) equation is known as the linearization of the Jordan-

Moore-Gibson-Thompson equation, which is driven by a wide range of applications such as the

medical and industrial use of high-intensity ultrasound in lithotripsy, thermotherapy, ultrasound

cleaning and sonochemistry. The original derivation dates back to Jordan [10], Stokes [25],

Moore and Gibson [18] and Thompson [27]. We refer to Lasiecka et al. [1,3,12–14] for a helpful

background on the subject and a deep list of references for the physical motivations of MGT

models.

Let (H, (·, ·), ∥ · ∥) be a real Hilbert space and let A be a strictly positive self-adjoint linear

operator on H with a dense domain D(A) ⊂ H. We consider the following abstract MGT

equation

τuttt + αutt + c2Au+ bAut = 0, (1.1)

with the initial conditions

u(0) = u0, ut(0) = u1, utt(0) = u2, (1.2)

where τ, α, c, b are strictly positive physical parameters inherited from modeling process, func-

tions u0, u1 and u2 are prescribed data.

Received: 2020-05-04. Revised: 2021-04-11.
MR Subject Classification: 35B35, 35G05, 93B07.
Keywords: Moore-Gibson-Thompson equation, internal observability, exponential stability.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-024-4133-5.
Supported by the National Natural Science Foundation of China(11771216), the Key Research and Devel-

opment Program of Jiangsu Province (Social Development)(BE2019725), and the Qing Lan Project of Jiangsu
Province.



90 Appl. Math. J. Chinese Univ. Vol. 39, No. 1

In 2011, Kaltenbacher, Lasiecka and Marchand [11] first discussed MGT equation (1.1).

Setting the parameter γ := α− c2τ
b ≥ 0 and defining the energies

E0(t) =
α

2
∥ut∥2 +

c2

2

∥∥∥A 1
2u
∥∥∥2 ,

E(t) =
τ

2

∥∥∥∥utt +
c2

b
ut

∥∥∥∥2 + b

2

∥∥∥∥A 1
2

(
ut +

c2

b
u

)∥∥∥∥2 + c2

2b
γ∥ut∥2,

they showed that when γ > 0, problem (1.1)-(1.2) is well-posed and the total energy Ê = E+E0

is exponentially stable; while when γ = 0, E(u, ut, utt; t) is conserved. After this seminal work,

an increasing interest has been developed to study the MGT equation [2,4,5,14–17,22] or other

related equations [6–8,19–21].

In 2016, Lasiecka and Wang [13, Section 2] gave a slightly different proof of the above

exponential stable result. For c2

b < k < α
τ , they defined the energy of problem (1.1)-(1.2) as

E(t) =τ

2
∥utt + kut∥2 +

b

2

∥∥∥∥A 1
2

(
ut +

c2

b
u

)∥∥∥∥2
+

kτ

2

(α
τ
− k
)
∥ut∥2 +

c2

2

(
k − c2

b

)∥∥∥A 1
2u
∥∥∥2 , (1.3)

and showed that

E(t) ∼ F (t) := ∥utt∥2 +
∥∥∥A 1

2ut

∥∥∥2 + ∥∥∥A 1
2u
∥∥∥2 , (1.4)

where F (t) is the norm generated by phase space H which will be defined in Section 2. Conse-

quently, we can get from [11,13] that

E(t) ∼ F (t) ∼ Ê(t)

and there exist ω > 0, M > 0 such that E(u, ut, utt; t) satisfies, for all t > 0,

E(t) ≤ Me−ωtE(0). (1.5)

Motivated by the stabilization of problem (1.1)-(1.2) and some pioneer works of Haraux [9],

Tebou [26] and Ramos et al. [23, 24], we are interested in considering an internal observability

inequality and establishing the equivalence between exponential stabilization and observability

of MGT equation. Although the model discussed in this paper is the Moore-Gibson-Thompson

equation, we believe that this method can be extended to other models with appropriate mod-

ifications.

The plan of this paper is as follows. In the next section, we recall some basic assumptions

and state our main result Theorem 2.1. In Section 3, we prove the inequality of observability

by the multiplier method. The proof of our main result is established in Section 4.

§2 Preliminary and main result

In this section, we shall present some assumptions and state the main result of the problem

on a phase space H which will be defined below. Throughout this paper, we use C to denote

generic positive constants, the values of which may change from one line to the next, unless we

give a special declaration. To the solution trajectory, we define the phase space

H = D
(
A 1

2

)
×D

(
A 1

2

)
×H.

In order to study problem (1.1)-(1.2), we make the following assumptions:



LIU Wen-jun, TU Zhi-yu. Equivalence between the internal observability and... 91

(A1) The parameters in the equation satisfy

c2

b
≤ α

τ
.

(A2) There exists λ0 > 0 such that

∥w∥2 ≤ λ0∥A
1
2w∥2, ∀ w ∈ H.

If c2

b < α
τ , we can pick up a constant k such that c2

b < k < α
τ and set the energy of problem

(1.1)-(1.2) as

Eu(t) =
τ

2
∥utt + kut∥2 +

b

2

∥∥∥∥A 1
2

(
ut +

c2

b
u

)∥∥∥∥2
+

kτ

2

(α
τ
− k
)
∥ut∥2 +

c2

2

(
k − c2

b

)∥∥∥A 1
2u
∥∥∥2 , (2.1)

which satisfies
d

dt
Eu(t) = −τ

(α
τ
− k
)
∥utt∥2 − b

(
k − c2

b

)∥∥∥A 1
2ut

∥∥∥2 . (2.2)

Inspired by Ramos et al. [23], we consider the following conservative problem

τvttt +
c2

b
τvtt + c2Av + bAvt = 0, (2.3)

with the initial conditions

v(0) = v0, vt(0) = v1, vtt(0) = v2, (2.4)

when c2

b = α
τ . In this case, the energy of conservative problem is given by

Ev(t) =
τ

2

∥∥∥∥vtt + c2

b
vt

∥∥∥∥2 + b

2

∥∥∥∥A 1
2

(
vt +

c2

b
v

)∥∥∥∥2 , (2.5)

which satisfies the conservative law
d

dt
Ev(t) = 0. (2.6)

Now we consider z(x, t) = u(x, t) − v(x, t), where z(x, t) is the solution of the auxiliary

problem

τzttt +

(
α− c2

b
τ

)
utt +

c2

b
τztt + c2Az + bAzt = 0, (2.7)

with the initial conditions

z(0) = zt(0) = ztt(0) = 0, (2.8)

for the case c2

b < α
τ . It is easy to see that the energy associated with system (2.7)-(2.8) is in

the form of

Ez(t) =
τ

2

∥∥∥∥ztt + c2

b
zt

∥∥∥∥2 + b

2

∥∥∥∥A 1
2

(
zt +

c2

b
z

)∥∥∥∥2 , (2.9)

which gives
d

dt
Ez(t) = −

(
α− c2τ

b

)(
utt, ztt +

c2

b
zt

)
. (2.10)

Our main result reads as follows.

Theorem 2.1. (Equivalence between stabilization and observability). The following estimates

are equivalent.

(i) Suppose that c2

b = α
τ . There exist C(T ) > 0 and T > T0 such that for all (v0, v1, v2) ∈ H,

we have

Ev(0) ≤ C(T )

∫ T

0

(
∥vtt(t)∥2 +

∥∥∥A 1
2 vt

∥∥∥2)dt. (2.11)
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(ii) Suppose that c2

b < α
τ . There exist M > 0 and ω > 0 such that for all (u0, u1, u2) ∈ H,

we have

Eu(t) ≤ Me−ωtEu(0), ∀ t > 0. (2.12)

§3 Internal observability

In this section, we will prove the inequality of internal observability of system (2.3)-(2.4) by

using the multiplier method.

Theorem 3.1. Suppose that c2

b = α
τ and let (v0, v1, v2) ∈ H. Then for all T > 3σ1, there exists

C(T ) > 0 such that the following estimate holds true

Ev(0) ≤ C(T )

∫ T

0

(
∥vtt(t)∥2 +

∥∥∥A 1
2 vt(t)

∥∥∥2)dt, (3.1)

where C(T ) = σ2

2(T−3σ1)
, σ1 = max

{
c2τb+3c4τ

b3 λ0,
2λ0τ+b

b

}
and σ2 = max

{
τ, b+ c4τλ0

b2

}
.

Proof. Multiplying (2.3) by c2

b v and integrating by parts on (0, T )×H, we have

c2

b

[
τ(vtt, v)−

τ

2
∥vt∥2 +

c2τ

b
(vt, v)

]T
0

+

∫ T

0

(
c4

b

∥∥∥A 1
2 v(t))

∥∥∥2 + b

(
A 1

2 vt(t),
c2

b
A 1

2 v(t)

))
dt

=
c4τ

b2

∫ T

0

∥vt(t)∥2dt,

then we rewrite this equality as

c2

b

[
τ(vtt, v) +

c2τ

b
(vt, v)−

(
τ

2
+

c2τ

b

)
∥vt∥2 −

c2

2

∥∥∥A 1
2 v
∥∥∥2]T

0

+

∫ T

0

(
τ

∥∥∥∥vtt(t) + c2

b
vt(t)

∥∥∥∥2 + b

∥∥∥∥A 1
2

(
vt(t) +

c2

b
v(t)

)∥∥∥∥2
)
dt

=

∫ T

0

(
τ ∥vtt(t)∥2 + b

∥∥∥A 1
2 vt(t)

∥∥∥2 + (c4τ

b2
+

c4τ

b2

)
∥vt(t)∥2

)
dt.

(3.2)

From (3.2), we can get

c2

b

[
τ(vtt, v) +

c2τ

b
(vt, v)−

τb+ 2c2τ

2b
∥vt∥2 −

c2

2

∥∥∥A 1
2 v
∥∥∥2]T

0

+ 2

∫ T

0

Ev(t)dt

=

∫ T

0

(
τ ∥vtt(t)∥2 + b

∥∥∥A 1
2 vt(t)

∥∥∥2 + 2c4τ

b2
∥vt(t)∥2

)
dt.

(3.3)

For the first term in the left-hand side of (3.3), we apply Young’s inequality and (A2) to get

c2

b

∣∣∣∣τ(vtt, v) + c2τ

b
(vt, v)−

τb+ 2c2τ

2b
∥vt∥2 −

c2

2

∥∥∥A 1
2 v
∥∥∥2∣∣∣∣
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≤c2

b

[
τ

2

b

c2
∥vtt∥2 +

c2τ

2b
∥v∥2 + c2τ

2b
∥vt∥2 +

c2τ

2b
∥v∥2 + τb+ 2c2τ

2b
∥vt∥2 +

c2

2

∥∥∥A 1
2 v
∥∥∥2]

≤c2

b

[
τ

2

b

c2
∥vtt∥2 +

τb+ 3c2τ

2b
λ0∥A

1
2 vt∥2 +

2λ0c
2τ + c2b

2b

∥∥∥A 1
2 v
∥∥∥2]

=
τ

2
∥vtt∥2 +

b

2

c2τb+ 3c4τ

b3
λ0

∥∥∥A 1
2 vt

∥∥∥2 + c4

2b

2λ0τ + b

b

∥∥∥A 1
2 v
∥∥∥2 ,

(3.4)

then it is easy to see that

c2

b

∣∣∣∣τ(vtt, v) + c2τ

b
(vt, v)−

τb+ 2c2τ

2b
∥vt∥2 −

c2

2

∥∥∥A 1
2 v
∥∥∥2∣∣∣∣

≤3max

{
1,

c2τb+ 3c4τ

b3
λ0,

2λ0τ + b

b

}
Ev(t)

=3max

{
c2τb+ 3c4τ

b3
λ0,

2λ0τ + b

b

}
Ev(t).

(3.5)

Noting that Ev(t) = Ev(0), we arrive at

c2

b

[
τ(vtt, v) +

c2τ

b
(vt, v)−

τb+ 2c2τ

2b
∥vt∥2 −

c2

2

∥∥∥A 1
2 v
∥∥∥2]T

0

≥ −6σ1Ev(0), (3.6)

with σ1 = max
{

c2τb+3c4τ
b3 λ0,

2λ0τ+b
b

}
. If we now combine (3.3) and (3.6), then we obtain

2 (T − 3σ1) Ev(0) ≤
∫ T

0

(
τ ∥vtt(t)∥2 +

(
b+

c4τλ0

b2

)∥∥∥A 1
2 vt(t)

∥∥∥2) dt. (3.7)

Thus, it is easy to show that

Ev(0) ≤
σ2

2(T − 3σ1)

∫ T

0

(
∥vtt(t)∥2 +

∥∥∥A 1
2 vt(t)

∥∥∥2)dt, (3.8)

where σ2 = max
{
τ, b+ c4τλ0

b2

}
.

§4 Proof of Theorem 2.1

In this section, we will prove an equivalence between the stabilization of system (1.1)-

(1.2) and the observability of the corresponding conservative system. The proof is based on

appropriate decomposition of the solution and the energy method.

Proof of Theorem 2.1. (i) ⇒ (ii). Noting that u = v + z, (u0, u1, u2) = (v0, v1, v2) and z(0) =

zt(0) = ztt(0) = 0, we obtain

Ez(t) =−
(
α− c2τ

b

)∫ t

0

(
utt(s), ztt(s) +

c2

b
zt(s)

)
ds

≤1

2

(
α− c2τ

b

)∫ t

0

[
∥utt(s)∥2 +

∥∥∥∥vtt(s) + c2

b
vt(s)

∥∥∥∥2
]
ds

+
1

2

(
α− c2τ

b

)∫ t

0

[
∥utt(s)∥2 +

∥∥∥∥utt(s) +
c2

b
ut(s)

∥∥∥∥2
]
ds
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≤
(
α− c2τ

b

)∫ t

0

∥∥∥∥ztt(s) + c2

b
zt(s)

∥∥∥∥2 ds
+

(
α− c2τ

b

)∫ t

0

[
∥utt(s)∥2 +

3

2

∥∥∥∥utt(s) +
c2

b
ut(s)

∥∥∥∥2
]
ds

≤2

τ

(
α− c2τ

b

)∫ t

0

Ez(s)ds

+
4b2 + 3λ0c

4

b2

(
α− c2τ

b

)∫ t

0

(
∥utt(s)∥2 +

∥∥∥A 1
2ut(s)

∥∥∥2)ds,

(4.1)

where we have used (2.10), Young’s inequality and (A2). Applying Gronwall’s lemma to (4.1),

we have, for all 0 ≤ t ≤ T0,

Ez(t) ≤ M0 exp

(
2

τ

(
α− c2τ

b

)
T0

)∫ T0

0

(
∥utt(s)∥2 +

∥∥∥A 1
2ut(s)

∥∥∥2)ds, (4.2)

where M0 = 4b2+3λ0c
4

b2

(
α− c2τ

b

)
. From (2.1), (2.5), (2.11) and (4.2), we arrive at, for some

positive constant C1,

Eu(0) ≤
(
1 +

bk

c2

)
Ev(0)

≤
(
1 +

bk

c2

)
C(T )

∫ T0

0

(
∥vtt(t)∥2 +

∥∥∥A 1
2 vt(t)

∥∥∥2)dt

≤ 2

(
1 +

bk

c2

)
C(T )

∫ T0

0

(
∥utt(t)∥2 +

∥∥∥A 1
2ut(t)

∥∥∥2 + ∥ztt(t)∥2 +
∥∥∥A 1

2 zt(t)
∥∥∥2) dt

≤ C1

∫ T0

0

(
∥utt(t)∥2 +

∥∥∥A 1
2ut(t)

∥∥∥2)dt

(4.3)

where we have used the fact that v = u− z together with Young’s inequality.

On the other hand, from (2.2) we have

τ
(α
τ
− k
)∫ T0

0

∥utt(t)∥2dt+ b

(
k − c2

b

)∫ T0

0

∥∥∥A 1
2ut(t)

∥∥∥2 dt
=Eu(0)− Eu(T0).

Then there exists some positive constant C2 such that∫ T0

0

(
∥utt(t)∥2 +

∥∥∥A 1
2ut(t)

∥∥∥2)dt ≤ C2 (Eu(0)− Eu(T0)) . (4.4)

Combining (4.3) and (4.4), we get that

Eu(T0) ≤ Eu(0) ≤ C1C2 (Eu(0)− Eu(T0)) . (4.5)

Thereafter

Eu(T0) ≤
C1C2

1 + C1C2
Eu(0).

Then as in [28], we can get the decay result.

(ii) ⇒ (i). In view of (2.2) and (ii), we get, for T1 > T ∗ = ln 2Mσ3

ω , σ3 = 1 + bk
c2 ,

Eu(T1) =Eu(0)− τ
(α
τ
− k
)∫ T1

0

∥utt(t)∥2dt

− b

(
k − c2

b

)∫ T1

0

∥∥∥A 1
2ut(t)

∥∥∥2 dt
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and

Eu(T1) ≤
1

2σ3
Eu(0) ≤

1

2
Ev(0).

Consequently, we can arrive at

Ev(0) ≤2Eu(0)− Ev(0)

≤2τ
(α
τ
− k
)∫ T1

0

∥utt(t)∥2dt+ 2b

(
k − c2

b

)∫ T1

0

∥∥∥A 1
2ut(t)

∥∥∥2 dt
≤2
(
α− τk + bk − c2

) ∫ T1

0

(
∥utt(t)∥2 +

∥∥∥A 1
2ut(t)

∥∥∥2) dt.

(4.6)

Let us apply u = v + z to (4.6), which we rewrite as

Ev(0) ≤2
(
α− τk + bk − c2

) ∫ T1

0

(
∥vtt(t)∥2 +

∥∥∥A 1
2 vt(t)

∥∥∥2)dt

+ 2
(
α− τk + bk − c2

) ∫ T1

0

(
∥ztt(t)∥2 +

∥∥∥A 1
2 zt(t)

∥∥∥2)dt.

(4.7)

As in the previous computations in (4.1), we can deduce that

Ez(t) ≤
(
α− c2τ

b

)∫ t

0

[
∥utt(s)∥2 +

1

2

∥∥∥∥ztt(s) + c2

b
zt(s)

∥∥∥∥2 + 1

2

∥∥∥∥vtt(s) + c2

b
vt(s)

∥∥∥∥2
]
ds

≤
(
α− c2τ

b

)∫ t

0

[
2∥ztt(s)∥2 +

1

2

∥∥∥∥ztt(s) + c2

b
zt(s)

∥∥∥∥2
]
ds

+

(
α− c2τ

b

)∫ t

0

[
3∥vtt(s)∥2 +

c4

b2
∥vt(s)∥2

]
ds

≤5

τ

(
α− c2τ

b

)∫ t

0

Ez(s)ds

+
3b2 + λ0c

4

b2

(
α− c2τ

b

)∫ t

0

(
∥vtt(s)∥2 +

∥∥∥A 1
2 vt(s)

∥∥∥2)ds,

then we can finally get

Ez(t) ≤ M1 exp

(
5

τ

(
α− c2τ

b

)
T1

)∫ T1

0

(
∥vtt(s)∥2 +

∥∥∥A 1
2 vt(s)

∥∥∥2)ds, (4.8)

where M1 = 3b2+λ0c
4

b2

(
α− c2τ

b

)
. Combining (4.7) and (4.8) leads to the inequality

Ev(0) ≤ C3

∫ T1

0

(
∥vtt(t)∥2 +

∥∥∥A 1
2 vt(t)

∥∥∥2)dt,

where C3 is a positive constant that depends on T1 and the physical parameters of our problem.

This completes the proof.
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