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On entire solutions of some Fermat type

differential-difference equations

LONG Jian-ren QIN Da-zhuan

Abstract. On one hand, we study the existence of transcendental entire solutions with finite

order of the Fermat type difference equations. On the other hand, we also investigate the

existence and growth of solutions of nonlinear differential-difference equations. These results

extend and improve some previous in [5, 14].

§1 Introduction

It is well-known that the growth of solutions of complex differential equations is an important

topic in complex analysis theory, many results can be found in [11], in which Nevanlinna theory

is an effective research tool. The growth of solutions of complex difference equations and

differential-difference equations is a very interesting topic to which many related results have

been obtained, see [2,3,10,15,17] and the references therein. This paper is devoted to considering

the properties of solutions of complex difference equations and differential-difference equations.

Nevanlinna theory will play an important role in this paper, we assume that the readers are

familiar with standard notation and fundamental results of Nevanlinna theory, see [9, 11] for

more details. Let f be a meromorphic function in the complex plane, we use ρ(f) to denote

the order of growth of f .

The following equation

f(z)n + g(z)n = 1 (1)

can be regarded as the Fermat diophantine equations xn + yn = 1 over function fields, where n

is a positive integer. Gross [6] obtained that (1) has no transcendental meromorphic solutions

when n ≥ 4. Montel [16] proved that (1) has no transcendental entire solutions when n ≥ 3.

If n = 2, Gross [6, 7] obtained that (1) has the entire solutions f(z) = sin(h(z)) and g(z) =

cos(h(z)), where h(z) is an entire function; no other entire function solutions exist. The other
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non-constant meromorphic solutions of (1) can be stated as f(z) = 2β(z)
1+β(z)2 and g(z) = 1−β(z)2

1+β(z)2

for n = 2, where β(z) is a non-constant meromorphic function. Since then many researchers

have obtained further results on Fermat type difference and differential-difference equations.

For the case of n ̸= m, Yang [21] investigated the generalization of the Fermat type functional

equation (1) as the following equation

f(z)n + g(z)m = 1, (2)

and proved that if m and n satisfy 1
m + 1

n < 1, then the equation (2) has no non-constant

entire solutions. From which the cases of m > 2 and n > 2 are clear. Motivated by the above,

many authors considered equations such that g(z) has a special relationship, such as derivative

f ′(z), shift f(z+ c) or q-difference f(qz), with f(z) in (2) when m = n = 2, called Fermat type

equations, for example see [14,18,19,23] and the references therein.

Yang and Li [23, Theorem 1] considered the entire solutions of the equation

f(z)2 + f ′(z)2 = 1, (3)

and obtained that the transcendental meromorphic solutions of (3) must have the form f(z) =
1
2 (pe

−iz+peiz), where p is a constant. Furthermore, Tang and Liao [19, Theorem 1] investigated

the entire solutions of a generalization of (3) as the following equation

f(z)2 + P (z)2f (k)(z)2 = Q(z), (4)

where P (z) and Q(z) are non-zero polynomials. They showed that if f(z) is a transcendental

meromorphic solution of (4), then P (z) = A(constant), Q(z) = B(constant), k = 2n + 1

for some nonnegative integer n and f(z) = b cos(az + c), where a, b, c are constants such that

Aak = ±1, b2 = B. Since the difference analogue of logarithmic derivative lemma [2, 10] is

valid for finite order meromorphic functions, the finite order solutions of difference equations

can always be considered. Liu [12, Proposition 5.1] considered the finite order entire solutions

of the difference equation

f(z)2 + f(z + c)2 = 1, (5)

and proved that the transcendental entire solutions with finite order of (5) must satisfy f(z) =

sin(Az +B), where B is a constant, A = (4k+1)π
2c , k is an integer, and c is a non-zero constant.

If f(z + c) is replaced by f(z + c)− f(z) in (5), then the following equation

f(z)2 + [f(z + c)− f(z)]2 = 1 (6)

has no transcendental entire solutions with finite order, see [12, Proposition 5.3].

This paper is organized as follows. In Section 2, some results are shown for Fermat type

difference equations, the proofs of these results are given in Section 3. Some results are shown

for Fermat type differential-difference equations in Section 4, and the proofs of these results are

given in Section 5 and Section 6 respectively.

§2 Fermat Type Difference Equations

Concerning the properties of solutions of Fermat type difference equations, many results

have been obtained by different researchers. Liu considered the entire solutions of (7) and (8)
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below, which are generalizations of (5), and obtained the following two results.

Theorem 2.1. [14, Theorem2.1] Let P (z) and Q(z) be two non-zero polynomials. If the

difference equation

f(z)2 + P (z)2f(z + c)2 = Q(z) (7)

admits a transcendental entire solution of finite order, then P (z) = ±1 and Q(z) reduces to a

constant q. Thus f(z) =
√
q sin(Az +B), where B is a constant, A = (4k+1)π

2c , k is an integer.

Theorem 2.2. [14, Theorem2.3] There is no transcendental entire solution with finite order

of the equation

f(z)2 + P (z)2(△cf(z))
2 = Q(z), (8)

where △cf(z) = f(z + c)− f(z), P (z) and Q(z) are two non-zero polynomials.

According to Theorems 2.1 and 2.2, it is natural to ask: what happens on the growth of

solutions of differential equations when P (z) and Q(z) are replaced by transcendental entire

functions in (7) and (8) respectively. Here, we consider the question, and obtain the follow-

ing result, in which the coefficient P (z) is replaced by α(z)eP (z), improving the result of the

Theorem 2.1.

Theorem 2.3. Let P (z) be non-constant polynomial, and α(z) and Q(z) be non-zero polyno-

mials. Then the difference equation

f(z)2 + α(z)
2
(eP (z))

2
f(z + c)2 = Q(z) (9)

do not have the transcendental entire solution with finite order.

We have the following result when the Q(z) is replaced by Q(z)eλz in (9) too, where λ is a

non-zero constant. Here, we consider the case Q(z) = α(z) = 1.

Theorem 2.4. Let P (z) = anz
n + · · · + a1z + a0, an ̸= 0 and |an| ̸= |λ1 − λ2|. Then the

difference equation

f(z)2 + (eP (z))
2
f(z + c)2 = eλz (10)

has no transcendental entire solution with finite order, where λ is a non-zero constant satisfying

λ = λ1 + λ2, λ1 and λ2 are two constants.

Related Theorem 2.2, we have the following result.

Theorem 2.5. Let P (z) and Q(z) be two non-constant polynomials, and α(z) be non-zero

polynomial. Then the following equation

f(z)2 + α(z)
2
(eP (z))

2
(△cf(z))

2 = Q(z) (11)

has no transcendental entire solution with finite order, where △cf(z) = f(z + c)− f(z).

§3 Proofs of Theorems 2.3-2.5

We start the proof from the following two lemmas.
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Lemma 3.1. [24, Theorem 1.62] Let fj (j = 1, 2, . . . , n) be meromorphic functions, fk (k

= 1, 2, . . . , n− 1) be not constants, satisfying
n∑

j=1

fj = 1 and n ≥ 3. If fn(z) ̸= 0 and

n∑
j=1

N

(
r,

1

fj

)
+ (n− 1)

n∑
j=1

N̄(r, fj) < (λ+ o(1))T (r, fk),

where λ(< 1) is positive constant and k = 1, 2, . . . , n− 1, then fn(z) = 1.

Lemma 3.2. [24, Theorem 1.51] Let fj(j = 1, 2, . . . , n, n ≥ 2) be meromorphic functions, and

gj (j = 1, 2, . . . , n) be entire functions. If fj and gj satisfy the following conditions,

(i)

n∑
j=1

fj(z)e
gj(z) = 0,

(ii) gj(z)− gk(z) is not a constant, 1 ≤ j < k ≤ n,

(iii) T (r, fj) = o(T (r, egh−gk)), r → ∞, r∈̄E, 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, where E ⊂ (1,∞) is

of finite linear measure or finite logarithmic measure, then fj(z) = 0, j = 1, 2, . . . , n.

Proof of Theorem 2.3. Suppose on the contrary to the assertion that there exists a tran-

scendental entire solution f of (9) with finite order. We aim for a contradiction. Then we can

rewrite (9) with the form

[f(z) + iα(z)eP (z)f(z + c)][f(z)− iα(z)eP (z)f(z + c)] = Q(z). (12)

Thus, f(z)+iα(z)eP (z)f(z+c) and f(z)−iα(z)eP (z)f(z+c) have finitely many zeros. Combining

(12) with the Hadamard factorization theorem, we assume that

f(z) + iα(z)eP (z)f(z + c) = Q1(z)e
P1(z) (13)

and

f(z)− iα(z)eP (z)f(z + c) = Q2(z)e
−P1(z), (14)

where P1(z) is a non-constant polynomial and Q1(z)Q2(z) = Q(z), Q1(z) and Q2(z) are non-

zero polynomials. It follows from (13) and (14) that

f(z) =
Q1(z)e

P1(z) +Q2(z)e
−P1(z)

2
(15)

and

f(z + c) =
Q1(z)e

P1(z) −Q2(z)e
−P1(z)

2iα(z)eP (z)
. (16)

Combining (15) with (16), we get

f(z + c) =
Q1(z + c)eP1(z+c) +Q2(z + c)e−P1(z+c)

2

=
Q1(z)e

P1(z) −Q2(z)e
−P1(z)

2iα(z)eP (z)
.

Thus, we have

iα(z)Q1(z + c)eP (z)+P1(z+c)+P1(z)

−Q2(z)
+

iα(z)Q2(z + c)eP (z)−P1(z+c)+P1(z)

−Q2(z)
(17)
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+
Q1(z)e

2P1(z)

Q2(z)
= 1.

If P (z) − P1(z + c) + P1(z) is a constant, then P (z) + P1(z + c) + P1(z) is not constant.

Thus by Lemma 3.1 and (17), we have

iα(z)Q2(z + c)eP (z)−P1(z+c)+P1(z) = −Q2(z), (18)

which means that Q2(z) is also a constant. Furthermore, we can rewrite (17) as the following

form

iα(z)Q1(z + c)eP (z)+P1(z+c)+P1(z) −Q1(z)e
2P1(z) = 0. (19)

Noticing that P (z) +P1(z + c) +P1(z) is not a constant, thus we get Q1(z) = 0 by Lemma 3.2

and (19), which is a contradiction.

If P (z)− P1(z + c) + P1(z) is not a constant, then by Lemma 3.1 and (17), we have

iα(z)Q1(z + c)eP (z)+P1(z+c)+P1(z)

−Q2(z)
= 1, (20)

which means that P (z) + P1(z + c) + P1(z) is a constant, thus P (z)− P1(z + c)− P1(z) is not

a constant. Combining (17) and (20), we get

iα(z)Q2(z + c)eP (z)−P1(z+c)+P1(z)

−Q2(z)
+

Q1(z)e
2P1(z)

Q2(z)
= 0. (21)

Thus we have Q1(z) = Q2(z) = 0 by Lemma 3.2 and (21), which is also a contradiction.

Therefore Theorem 2.3 is proved.

Proof of Theorem 2.4. Suppose on the contrary to the assertion that there exists a tran-

scendental entire solution f of (10) with finite order. We aim for a contradiction. By using the

similar reason as in the proof of Theorem 2.3, we get

f(z) =
eλ1z + eλ2z

2
(22)

and

f(z + c) =
eλ1z − eλ2z

2ieP (z)
, (23)

where λ1 and λ2 are constants and λ1 + λ2 = λ. Combining (22) with (23), we get

f(z + c) =
eλ1(z+c) + eλ2(z+c)

2
=

eλ1z − eλ2z

2ieP (z)
.

Thus we have

ieλ1(z+c)+P (z) + ieλ2(z+c)+P (z) + eλ2z − eλ1z = 0. (24)

Next we claim that λ1 ̸= λ2. In fact, if λ1 = λ2, then f(z) = e
λz
2 by (22) and λ1 + λ2 = λ.

It follows this and (10) that

eλz + (eP (z))2eλ(z+c) = eλz. (25)

This implies that (eP (z))2eλ(z+c) = 0, which is a contradiction.

From (24), we get

ieλ1c+P (z) + ie(λ2−λ1)z+λ2c+P (z) + e(λ2−λ1)z = 1 (26)

and

−ieλ2c+P (z) − ie(λ1−λ2)z+λ1c+P (z) + e(λ1−λ2)z = 1. (27)
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Since P (z) is a non-constant polynomial and λ1 ̸= λ2, then from Lemma 3.1 and (26), we have

ie(λ2−λ1)z+λ2c+P (z) = 1.

This shows that P (z) = (λ1 − λ2)z − λ2c+ (2kπ − π
2 )i. Similarly, from (27) we have

−ie(λ1−λ2)z+λ1c+P (z) = 1,

which means that P (z) = (λ2−λ1)z−λ1c+(2kπ+ π
2 )i. This is a contraction with |an|̸=|λ1−λ2|.

This shows that (10) has no the transcendental entire solutions with finite order. The proof of

Theorem 2.4 is completed.

Proof of Theorem 2.5. Suppose on the contrary to the assertion that there exists a tran-

scendental entire solution f of (11) with finite order. We aim for a contradiction. By using the

similar reason as in the proof of Theorem 2.3, we get

f(z) =
Q1(z)e

P1(z) +Q2(z)e
−P1(z)

2
(28)

and

△c(f) =
Q1(z)e

P1(z) −Q2(z)e
−P1(z)

2iα(z)eP (z)
, (29)

where P1(z) is a non-constant polynomial and Q1(z)Q2(z) = Q(z), Q1(z), Q2(z) are non-zero

polynomials and cannot be constants simultaneouslly. Thus, we have

iα(z)Q1(z + c)eP1(z+c)+P (z)+P1(z)

−Q2(z)
+

iα(z)Q2(z + c)eP (z)+P1(z)−P1(z+c)

−Q2(z)
(30)

+
iα(z)Q1(z)e

2P1(z)+P (z)

Q2(z)
+ iα(z)eP (z) +

Q1(z)e
2P1(z)

Q2(z)
= 1

and
iα(z)Q1(z + c)eP1(z+c)+P (z)−P1(z)

Q1(z)
+

iα(z)Q2(z + c)eP (z)−P1(z)−P1(z+c)

Q1(z)
(31)

− iα(z)Q2(z)e
P (z)−2P1(z)

Q1(z)
− iα(z)eP (z) +

Q2(z)e
−2P1(z)

Q1(z)
= 1.

Since P (z) and P1(z) are non-constant polynomials, then ieP (z), Q1(z)e
2P1(z), andQ2(z)e

−2P1(z)

are not constants.

If e2P1(z)+P (z) is not a constant, then eP1(z+c)+P (z)+P1(z) is not a constant too. From (30)

and Lemma 3.1 we have

iα(z)Q2(z + c)eP (z)+P1(z)−P1(z+c) = −Q2(z), (32)

meaning that P (z)+P1(z)−P1(z+ c) is a constant. Thus eP (z)−P1(z)−P1(z+c) and eP (z)−2P1(z)

are not constants too. By (31) and Lemma 3.1 we have

iα(z)Q1(z + c)eP1(z+c)+P (z)−P1(z) = Q1(z). (33)

Multiplying (32) and (33), we have α(z)
2
Q(z + c)e2P (z) = Q(z), from which we get P (z) = p,

α(z) = α and Q(z) = q, where p, α and q are constants. This is a contradiction with P (z) and

Q(z) are not-constant polynomials.

If e2P1(z)+P (z) is a constant, denoting 2P1(z) + P (z) = c1, that is, P (z) = −2P1(z) + c1,

then eP1(z+c)+P (z)−P1(z) and eP (z)−P1(z)−P1(z+c) are not constants in (31). Thus from (31) and
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Lemma 3.1, we have −iα(z)Q2(z)e
P (z)−2P1(z) = Q1(z), that is

−iα(z)Q2(z)e
−4P1(z)+c1 = Q1(z).

This shows that P1(z) is a constant, which is a contradiction. The proof of Theorem 2.5 is

completed.

§4 Fermat type Differential-Difference Equations

It is interesting in the studying of solutions of differential-difference equations. Yang and

Laine [22, Theorem 2.6] considered the existence of solutions of the differential-difference equa-

tion fn + M(z, f) = h, where M(z, f) is a linear differential-difference polynomial of f , not

vanishing identically, and h is a meromorphic function of finite order. Later, Liu-Cao-Cao [13]

considered the properties of entire solutions of the Fermat type differential-difference equations

f ′(z)n + f(z + c)m = 1 (34)

and

f ′(z)n + (∆cf(z))
m

= 1, (35)

where m and n are positive integers. They proved the following results.

Theorem 4.1. [13, Theorem 1.2] If m ̸= n, then (34) has no transcendental entire solutions

with finite order.

Theorem 4.2. [13, Theorem 1.4] The equation (35) has no transcendental entire solutions

with finite order, provided that m ̸= n, and m > 1, n > 1.

From [21, Theorem 1], we know that there does not exist entire solutions of (34) when

m > 2, n > 2. A natural question is what happen on the growth of solutions of differential

equations for the case of n = m = 2. Liu-Cao-Cao studied the question, and proved the

following results.

Theorem 4.3. [13, Theorem 1.3] The transcendental entire solutions with finite order of

differential-difference equation

f ′(z)2 + f(z + c)2 = 1 (36)

must satisfy f(z) = sin(z ± Bi), where B is a constant and c = 2kπ or c = 2kπ + π, k is an

integer.

Theorem 4.4. [13, Theorem 1.5] The transcendental entire solutions with finite order of

differential-difference equation

f ′(z)2 + (∆cf(z))
2
= 1 (37)

must satisfy f(z) = 1
2 sin(2z +Bi), where B is a constant and c = kπ + π

2 , k is an integer.

As an improvement of Theorem 4.3, Liu-Yang proved the following result.

Theorem 4.5. [14, Theorem 3.1] The transcendental entire solutions with finite order of

differential-difference equation
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(f (k)(z))2 + f(z + c)2 = 1 (38)

must satisfy the following two cases:

(i) if k is odd, then f(z) = ∓sin(Aiz +Bi) and c = kπi
A , Ak = ±i,

(ii) if k is even, then f(z) = ±cos(Aiz+Bi) and c =
kπi+πi

2

A , Ak = ±1, where B is a constant.

In 2016, Chen-Gao considered the following equation

(f ′(z))2 + P (z)2f(z + c)
2
= Q(z), (39)

where P (z) and Q(z) are polynomials, and obtained the following result.

Theorem 4.6. [4, Theorem 1.1] Let P (z) and Q(z) be two non-zero polynomials. If equa-

tion (39) has a transcendental entire solutions with finite order, then P (z) = A(̸= 0) and

Q(z) = pq( ̸= 0). Furthermore,

f(z) =
peaz+b − qe−(az+b)

2a
,

where a = ±iA,A = (−1)kkπ
c , b ∈ C, p, q, c ∈ C\{0}.

Motivation from Theorem 4.5, we will consider the high order derivative of (39), and get

the following result.

Theorem 4.7. There is no transcendental entire solutions with finite order of the equation

f (k)(z)2 + P (z)2f(z + c)2 = Q(z), (40)

where P (z) is non-constant polynomial, and Q(z) is a non-zero polynomial.

In 2017, Chen-Gao-Du studied the existence of solutions of the following equation

f ′(z)2 + P (z)2f(z + c)
2
= Q(z)eα(z), (41)

where P (z), Q(z) and α(z) are polynomials, and obtained the following result.

Theorem 4.8. [5] Let P (z) and Q(z) be two non-zero polynomials, c ∈ C \ {0} and α(z) be a

polynomial. If the differential-difference equation (41) admits a transcendental entire solution

of finite order, then f(z) must satisfy one of the following cases:

(i) P (z) and Q(z) reduce to constants, and

f(z) =
q1e

A1z+B1

2A1
+

q2e
A2z+B2

2A2
,

where A1 = ieA1cp and A2 = −ieA2cp, B1 and B2 are constants, and A1, A2, q1, q2, p, c are

non-zero constants;

(ii) P (z) reduces to a constant, and Q(z) is a polynomial with degree 1, and

f(z) =
(a1z + a0 − a1

A1
)eA1z+B1

2A1
+

q2e
A2z+B2

2A2
,

1

A1
= c and

1

A2
̸= c,

or

f(z) =
q1e

A1z+B1

2A1
+

(b1z + b0 − b1
A2

)eA2z+B2

2A2
,

1

A1
̸= c and

1

A2
= c,
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where A1 = ieA1cp and A2 = −ieA2cp, B1, B2, a0, b0 are constants, and A1, A2, q1, q2, a1, b1, p,

c are non-zero constants;

(iii) f(z) = B(z)eAz, α(z) = 2Az+D, where B(z) satisfies [B′(z)+AB(z)]2+P 2(z)B2(z+

c)e2Ac = Q(z)eD, A, c are non-zero constants, D is a constant.

Here, we replace P (z) by eP (z) in (41), and prove the following result.

Theorem 4.9. Let P (z) be non-zero polynomial, Q(z) be non-constant polynomial, c ∈ C\{0},
and α(z) be a polynomial. If the differential-difference equation

f ′(z)2 + (eP (z))2f(z + c)
2
= Q(z)eα(z) (42)

admits a transcendental entire solution of finite order, then f(z) must satisfy one of the following

cases:

(i) P (z) and Q(z) reduce to constants, and

f(z) =
q1e

A1z+B1

2A1
+

q2e
A2z+B2

2A2
,

where A1 = ieA1c+p and A2 = −ieA2c+p, B1 and B2 are constants, and A1, A2, q1, q2, p, c are

non-zero constants;

(ii) P (z) reduce to a constant, and Q(z) is a polynomial with degree 1, and

f(z) =
(a1z + a0 − a1

A1
)eA1z+B1

2A1
+

q2e
A2z+B2

2A2
,

1

A1
= c and

1

A2
̸= c,

or

f(z) =
q1e

A1z+B1

2A1
+

(b1z + b0 − b1
A2

)eA2z+B2

2A2
,

1

A1
̸= c and

1

A2
= c,

where A1 = ieA1c+p and A2 = −ieA2c+p, B1, B2, a0, b0 are constants, and A1, A2, q1, q2, a1, b1, p,

c are non-zero constants;

(iii) f(z) = B(z)eAz, α(z) = 2Az+D, where B(z) satisfies [B′(z)+AB(z)]2+(eP (z))2B2(z+

c)e2Ac = Q(z)eD, A, c are non-zero constants, D is a constant.

Form the Malmquist-Yosida theorem [11, Theorem 10.2], it is easy to know that non-linear

differential equation f(z)2 + f ′(z)f(z) = 1 (also can be written as f ′(z) = 1−f(z)2

f(z) ) has no non-

constant entire solutions. Using the Yanagihara’s result [20, Theorem 1] or combining Lemma

6.3 given in Section 6 with Valiron-Mohon’ko theorem [11, Theorem 2.2.5], we know the non-

linear difference equation f(z)2 + f(z)f(z + c) = 1 (also can be written as f(z + c) = 1−f(z)2

f(z) )

has no finite order entire solutions. This shows that the existence of solutions of differential

equations is very different with the existence of solutions of difference equations. Therefore,

Liu-Yang considered the growth of entire solutions of the following two differential-difference

equations

f(z)2 + f ′(z)f(z + c) = 1 (43)

and

f ′(z)2 + f(z)f(z + c) = 1, (44)

and obtained following result.
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Theorem 4.10. [14, Theorem3.4] The order of transcendental entire solutions of (43) and

(44) must be at least one.

As an improvement of Theorem 4.10, we consider the following equation

f(z)2 + f (k)(z)f(z + c) = 1 (45)

and

(f (k)(z))2 + f(z)f(z + c) = 1, (46)

and prove the following result.

Theorem 4.11. The order of transcendental entire solutions of (45) and (46) must be at least

one.

The following examples will show that Theorem 4.11 is sharpness.

Example 1 The function f(z) = sin z is a solution of (45), when k = 4n + 1, c = π
2 , or

k = 4n+ 3, c = 3π
2 , where n is a natural number. In addition, f(z) = cos z is also a solution of

(45), when k = 4n+ 1, c = π
2 , or k = 4n+ 3, c = 3π

2 .

Example 2 The function f(z) = sin z is a solution of (46), where k = 2n+1, with c = 2mπ,

m is an integer and n is a natural number.

Example 3 The functions f(z) = 1± ez and g(z) = −1± ez are the solutions of (46) when

ec = −1.

By using the similar idea as in the proof Theorem 4.11, we also consider the growth of entire

solutions of the following differential-difference equations,

f(z)2 + f(z)△cf(z) = 1, (47)

f(z + c)2 + f(z)△cf(z) = 1, (48)

f ′(z)2 + f(z)△cf(z) = 1. (49)

Theorem 4.12. The order of transcendental entire solutions of (47), (48) and (49) must be

at least one.

We also study the growth of solutions of the following equations,

f(z + c)2 + f(z)f ′(z) = 1, (50)

△2
cf(z)

2 + f(z)f ′(z) = 1, (51)

f(z + c)2 + f(z)f(z + c) = 1. (52)

Theorem 4.13. The order of transcendental entire solutions of (50),(51) and (52) must be at

least one.

In [14], Liu-Yang also considered the generalization of (43) as the following equation

f(z)n + f ′(z)f(z + c) = 1. (53)

It showed that there is no transcendental entire solutions of finite order when n ≥ 3 or n = 1.

In the following, we will consider the high order derivative of (53) when n = 1, that is

f(z) + f (k)(z)f(z + c) = 1. (54)

Theorem 4.14. There is no transcendental entire solution with finite order of (54).
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§5 Proofs of Theorems 4.7 and 4.9

We start the proof from the following lemma, which plays a key role in the proof of Theorem

4.9.

Lemma 5.1. [5, Lemma 2.4] Let Q(z) be a non-zero polynomial and satisfy

Q(z + c)−Q(z) = aQ′(z) + b,

where a, c are non-zero constants, b is a constant, then one of the following statements holds:

(i) If b = 0 and a ̸= c, then Q(z) reduces to a non-zero constant;

(ii) If b = 0 and a = c, then Q(z) reduces to a non-zero constant or

Q(z) = a1z + a0, where a1 is a non-zero constant, a0 is a constant;

(iii) If b ̸= 0 and a ̸= c, then Q(z) = a1z + a0 and b = a1(c− a), where

a1 is a non-zero constant, a0 is a constant;

(iv) If b ̸= 0 and a = c, then Q(z) = a2z
2 + a1z + a0, and b = a2c

2, where

a2 is a non-zero constant, a1, a0 are constants.

Proof of Theorem 4.7. Suppose on the contrary to the assertion that there exists a tran-

scendental entire solution f of (40) with finite order. We aim for a contradiction. By using the

similar reason as in the proof of Theorem 2.3, we get

f (k)(z) =
Q1(z)e

h(z) +Q2(z)e
−h(z)

2
(55)

and

f(z + c) =
Q1(z)e

h(z) −Q2(z)e
−h(z)

2iP (z)
, (56)

where h(z) is a non-constant polynomial, Q1(z) and Q2(z) are non-zero polynomials with

Q1(z)Q2(z) = Q(z). Combining (55) and (56), we get

f (k)(z + c) =
Q1(z + c)eh(z+c) +Q2(z + c)e−h(z+c)

2
(57)

=
h1(z)e

h(z) − h2(z)e
−h(z)

2iP (z)k+1
,

where

h1(z) =

k−1∑
h=0

Ch
k−1

k−h∑
t=0

Ct
k−hQ

(k−t−h)
1 [(h′)t +Mt(h

(t), · · · , h′)]P (h)P k−1

−
k−1∑
h=0

Ch
k−1

h∑
t=0

Ct
hQ

(h−t)
1 [(h′)t +Mt(h

(t), · · · , h′)]P (k−h)P k−1 + o(h1(z)),

h2(z) =
k−1∑
h=0

Ch
k−1

k−h∑
t=0

(−1)tCt
k−hQ

(k−t−h)
2 [(h′)t +Nt(h

(t), · · · , h′)]P (h)P k−1

−
k−1∑
h=0

Ch
k−1

h∑
t=0

Ct
hQ

(h−t)
2 [(h′)t +Nt(h

(t), · · · , h′)]P (k−h)P k−1 + o(h2(z)),
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Mt and Nt are differential polynomials of (h(t), · · · , h′, h) respectively. Thus from (57), we get

h1(z)e
h(z)+h(z+c)

iP (z)k+1Q2(z + c)
− h2(z)e

h(z+c)−h(z)

iP (z)k+1Q2(z + c)
− Q1(z + c)

Q2(z + c)
e2h(z+c) = 1. (58)

It is easy to see that both h1(z)e
h(z)+h(z+c)

iP (z)k+1Q2(z+c)
and Q1(z+c)

Q2(z+c)e
2h(z+c) are not constants. From Lemma

3.1, we get −h2(z)e
h(z+c)−h(z) = iP (z)k+1Q2(z + c), which implies that h(z) = Az +B, where

A is a non-zero constant, B is a constant. Thus we get

−h2(z)e
Ac = iP (z)k+1Q2(z + c). (59)

Set deg(P (z)) = p, deg(Q(z)) = q, deg(Q1(z)) = q1, deg(h(z)) = h and deg(Q2(z)) = q2. By

comparing the both side degree of (59), it is not difficult to find the degree of left hand side is

kp + q2 − 1, and the degree of right hand side is (k + 1)p + q2, which is a contradiction. The

proof is completed.

Proof the Theorem 4.9. Assume that f is a finite order transcendental entire solution of

(42). Then by using the similar reason as in the proof of Theorem 2.3, we get

f ′(z) =
Q1(z)e

α1(z) +Q2(z)e
α2(z)

2
(60)

and

f(z + c) =
Q1(z)e

α1(z) −Q2(z)e
α2(z)

2ieP (z)
. (61)

where Q1(z) and Q2(z) are two non-zero polynomials, and cannot be constants simultaneously,

Q(z) = Q1(z)Q2(z), α1(z) and α2(z) are two polynomials and cannot be constants simultane-

ously. In fact if both α1(z) and α2(z) are constants at the same time, then f(z) is a polynomial.

Shifting (60) and differentiating (61), we get

Q′
1 +Q1α

′
1 − P ′Q1

ieP (z)Q1(z + c)
eα1(z)−α1(z+c) − Q′

2 +Q2α
′
2 − P ′Q2

ieP (z)Q1(z + c)
eα2(z)−α1(z+c) (62)

− Q2(z + c)

Q1(z + c)
eα2(z+c)−α1(z+c) = 1.

Next we claim that Q′
1+Q1α

′
1−P ′Q1 ̸= 0, Q′

2+Q2α
′
2−P ′Q2 ̸= 0. If Q′

1+Q1α
′
1−P ′Q1 = 0,

then Q1(z) = k1e
P (z)−α1(z) and P (z) = lnQ1(z) + α1(z) + k2, which means that P (z) =

α1(z) + c1 and Q1(z) = q1(constant).

If α1(z) is a constant denoting by s, then P (z) must reduce to be a constant p and α2(z)

cannot be a constant, thus Q′
2 +Q2α

′
2 − P ′Q2 ̸= 0. Then (62) can be rewritten as

(Q′
2 +Q2α

′
2)e

α2(z) + iQ2(z + c)eα2(z+c)+p + iq1e
p+s = 0. (63)

If deg(α2(z)) ≥ 2, then deg(α2(z + c)− α2(z)) ≥ 1. By Lemma 3.2, we have

Q′
2 +Q2α

′
2 = iQ2(z + c) = iq1e

p+s = 0.

This is a contradiction. Thus deg(α2(z)) ≤ 1. Noting that α2(z) cannot be a constant, then

α2(z) = A2z +B2, where A2 is a non-zero constant. Rewriting (63) as

H(z)eA2z = −iq1e
p+s, (64)

where H(z) = (Q′
2+Q2α

′
2)e

B2 + ieB2+A2c+pQ2(z+ c). If H(z) = 0, then we get a contradiction

by (64) and iq1e
p+s ̸= 0. If H(z) ̸= 0, we can see that the left side of (64) is a transcendental
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entire function, and the right side of (64) is a non-zero constant, which is a contradiction, and

then Q′
1 +Q1α

′
1 − P ′Q1 ̸= 0.

If α1(z) is not a constant, then Q2(z) cannot be constant by Q1(z) and Q2(z) cannot be

constants simultaneously. Thus Q′
2 +Q2α

′
2 − P ′Q2 ̸= 0. Then (62) can be rewritten as

(Q′
2(z) +Q2(z)α

′
2(z)− P ′(z)Q2(z))e

α2(z)−α1(z+c) (65)

+ iQ2(z + c)eα2(z+c)−α1(z+c)+P (z) + iq1e
P (z) = 0

and
Q′

2(z)e
α2(z)−α1(z+c)−P (z)

−iq1
+

Q2(z)(α
′
2(z)− P ′(z))eα2(z)−α1(z+c)−P (z)

−iq1
(66)

− Q2(z + c)

q1
eα2(z+c)−α1(z+c) = 1.

Next we claim that α2(z)− α1(z) is a constant. In fact, if α2(z)− α1(z) is not a constant,

then α2(z)− α1(z + c)− P (z) is not constant. Otherwise, from (62) we have

−Q′
2 +Q2α

′
2 − P ′Q2

iq1
eα2(z)−α1(z+c)−P (z) = 1 +

Q2(z + c)

q1
eα2(z+c)−α1(z+c). (67)

It is not difficult to see that the order on both sides of the equation (67) are not equal. Fur-

thermore, we get α2(z + c) − α1(z + c) − (α2(z) − α1(z + c) − P (z)) is not constant by (67).

Thus by (67) and Lemma 3.2, we have

−Q′
2 +Q2α

′
2 − P ′Q2

iq1
= −Q2(z + c)

q1
= 0,

which is a contradiction. Thus α2(z)−α1(z) is a constant, noting that P (z) = α1(z)+ c1, then

eα2(z)−α1(z+c)−P (z) is not a constant. From (66) and Lemma 3.1, we have

−Q2(z + c)eα2(z+c)−α1(z+c) = q1,

which means that Q2 is also a constant. This is a contradiction, and then Q′
1+Q1α

′
1−P ′Q1 ̸= 0.

By using the similar way above we get Q′
2 +Q2α

′
2 − P ′Q2 ̸= 0.

By Q′
1 + Q1α

′
1 − P ′Q1 ̸= 0, Q′

2 + Q2α
′
2 − P ′Q2 ̸= 0, (62) and Lemma 3.1, we see that if

any two of eα1(z)−α1(z+c), eα2(z)−α1(z+c), and eα2(z+c)−α1(z+c) are not constants, then the third

term must be constant. If any two of them are constants, then the third term also must be

constant. In what follows, we discuss four cases:

Case 1, eα1(z)−α1(z+c) and eα2(z)−α1(z+c) are not constants;

Case 2, eα1(z)−α1(z+c) and eα2(z+c)−α1(z+c) are not constants;

Case 3, eα2(z)−α1(z+c) and eα2(z+c)−α1(z+c) are not constants;

Case 4, eα1(z)−α1(z+c), eα2(z)−α1(z+c), and eα2(z+c)−α1(z+c) are all constants.

Case 1. If eα1(z)−α1(z+c) and eα2(z)−α1(z+c) are not constants, then by (62) and Lemma 3.1,

we have

−Q2(z + c)

Q1(z + c)
eα2(z+c)−α1(z+c) = 1. (68)

Combining and (62) and (68), we get

Q′
1 +Q1α

′
1 − P ′Q1

Q′
2 +Q2α′

2 − P ′Q2
eα1(z)−α2(z) = 1, (69)

which implies that α2(z+c)−α1(z+c) and α1(z)−α2(z) are constants. Denote eα2(z+c)−α1(z+c) =
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eα2(z)−α1(z) = k3(̸= 0), by (68), we get Q1(z) = −k3Q2(z), substituting it into (69) yields

2(P ′Q2 −Q′
2) = Q2(α

′
1 + α′

2). Then we get

Q2(z) = eP (z)− 1
2α(z),

which shows that P (z)− 1
2α(z) is a constant and Q2(z) = q2(constant). Thus by (68) we can

get that Q1(z) is also a constant, which is a contradiction with Q1(z) and Q2(z) cannot be

constants at the same time.

Case 2. If eα1(z)−α1(z+c) and eα2(z+c)−α1(z+c) are not constants, then by (62) and Lemma

3.1, we have

−Q′
2 +Q2α

′
2 − P ′Q2

ieP (z)Q1(z + c)
eα2(z)−α1(z+c) = 1. (70)

Combining (62) and (70), we get

Q′
1 +Q1α

′
1 − P ′Q1

ieP (z)Q2(z + c)
eα1(z)−α2(z+c) = 1,

which means that α2(z)−α1(z+ c), α2(z+ c)−α1(z+2c), and α1(z)−α2(z+ c) are constants.

By α1(z) − α1(z + 2c) = [α1(z) − α2(z + c)] + [α2(z + c) − α1(z + 2c)], we see that α1(z) −
α1(z + 2c) is a constant, then α1(z) is a constant or a polynomial with degree 1, which means

that α1(z)− α1(z + c) is also a constant, and this is a contradiction.

Case 3. If eα2(z)−α1(z+c) and eα2(z+c)−α1(z+c) are not constants, then eα1(z)−α1(z+c) is a

constant, which means that α1(z)−α1(z+ c) is a constant. From (62) and Lemma 3.1, we have

Q′
1 +Q1α

′
1 − P ′Q1

iQ1(z + c)
eα1(z)−α1(z+c)−P (z) = 1, (71)

which means that P (z) = p is a non-zero constant. Therefore α1(z) cannot be a constant,

otherwise we get Q′
1 = iepQ1(z + c), which is impossible. Therefore, α1(z) can only be a

polynomial with degree 1. Denote α1(z) = A1z +B1, where A1 is a non-zero constant, and B1

is a constant. Rewriting (71) as

Q1(z + c)−Q1(z) =
1

A1
Q′

1(z) and A1 = ieA1c+p. (72)

By Lemma 5.1, we have

(1) if 1
A1

̸= c, then Q1(z) = q1(constant);

(2) if 1
A1

= c, then Q1(z) = q1(constant) or Q1(z) = a1z + a0,

where a1 is a non-zero constant and a0 is a constant.

By (62) and (71), we have

−Q′
2 +Q2α

′
2

iQ2(z + c)
eα2(z)−α2(z+c)−p = 1, (73)

which means that α2(z)− α2(z + c) is a constant, thus α2(z) cannot be a constant, otherwise

we get −Q′
2 = iepQ2(z + c), which is impossible. Thus α2(z) can only be a polynomial with

degree 1. Denote α2(z) = A2z + B2, where A2 is a non-zero constant, and B2 is a constant.

Rewriting (73) as

Q2(z + c)−Q2(z) =
1

A2
Q′

2(z), and A2 = −ieA2c+p.

By Lemma 5.1, we have

(1) if 1
A2

̸= c, then Q2(z) = q2(constant);
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(2) if 1
A2

= c, then Q2(z) = q2(constant) or Q2(z) = b1z + b0,

where b1 is a non-zero constant and b0 is a constant.

Noting that A1 = ieA1c+p and A2 = −ieA2c+p, we see that A1 ̸= A2, that is 1
A1

̸= 1
A2

. In

what follows, we discuss three subcases:

Subcase 3.1, 1
A1

̸= c and 1
A2

̸= c;

Subcase 3.2, 1
A1

= c and 1
A2

̸= c;

Subcase 3.3, 1
A1

̸= c and 1
A2

= c.

Subcase 3.1. If 1
A1

̸= c and 1
A2

̸= c, then Q1(z) = q1 and Q2(z) = q2. By (42), (60), and

(61), we get

f ′(z) =
q1e

A1z+B1 + q2e
A2z+B2

2
(74)

and

f(z) =
q1e

A1z+B1

2A1
+

q2e
A2z+B2

2A2
. (75)

Subcase 3.2. If 1
A1

= c and 1
A2

̸= c, then Q1(z) = q1 and Q2(z) = q2, or Q1(z) = a1z + a0

and Q2(z) = q2. If Q1(z) = q1 and Q2(z) = q2, then we get (74) and (75). If Q1(z) = a1z + a0

and Q2(z) = q2, then by (42), (60) and (61), we get

f ′(z) =
(a1z + a0)e

A1z+B1 + q2e
A2z+B2

2
and

f(z) =
(a1z + a0 − a1

A1
)eA1z+B1

2A1
+

q2e
A2z+B2

2A2
.

Subcase 3.3. If 1
A1

̸= c and 1
A2

= c, then Q1(z) = q1 and Q2(z) = q2, or Q1(z) = q1 and

Q2(z) = b1z + b0. If Q1(z) = q1 and Q2(z) = q2, then we get (74) and (75). If Q1(z) = q1 and

Q2(z) = b1z + b0, then by (42), (60) and (61), we get

f ′(z) =
q1e

A1z+B1 + (b1z + b0)e
A2z+B2

2
and

f(z) =
q1e

A1z+B1

2A1
+

(b1z + b0 − b1
A2

)eA2z+B2

2A2
.

Case 4. If eα1(z)−α1(z+c), eα2(z)−α1(z+c) and eα2(z+c)−α1(z+c) are all constants, then α1(z)−
α1(z+c), α2(z)−α1(z+c) and α2(z+c)−α1(z+c) are all constants. Note that α1(z) and α2(z)

are not constants simultaneously, then α1(z) = Az+B1, α2(z) = Az+B2 and α(z) = 2Az+D,

where A is non-zero constant and B1, B2, D(= B1 +B2) are constants. Therefore, we get that

f(z) = B(z)eAz by (42), (60) and (61), where B(z) satisfies [B′(z) +AB(z)]2 + (eP (z))2B2(z+

c)e2Ac = Q(z)eD. This proof is completed.

§6 Proofs of Theorems 4.11-4.14

In order to prove Theorems 4.11-4.13, we need Lemma 6.1. The definition of ε− set E can

be found in [8, p. 75-76].

Lemma 6.1. [1, Lemma 3.5] Let f be a transcendental meromorphic function with ρ(f) < 1.
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Let h > 0. Then there exists an ε− set E such that

f(z + c)− f(z) = cf ′(z)(1 + o(1))

as z → ∞ in C \E, uniformly in c for |c| ≤ h.

Lemma 6.2. [2, Corollary 2.5] Let f be a transcendental meromorphic function of finite order

ρ(f). For each ε > 0.

m(r,
f(z + c)

f(z)
) = O(rρ(f)−1+ε) = S(r, f),

where S(r, f) = o(T (r, f)) as r → ∞ outside of a possible exceptional set of finite logarithmic

measure.

Lemma 6.3. [2, Theorem 2.1] Let f be a transcendental meromorphic function of finite order

ρ(f). For each ε > 0.

T (r, f(z + c)) = T (r, f) +O(rρ(f)−1+ε) +O(log r).

Furthermore, if ρ(f) < 1, then

T (r, f(z + c)) = T (r, f) + S(r, f),

where S(r, f) is defined as in the Lemma 6.2.

Proof of Theorem 4.11. Suppose on the contrary to the assertion that there exists a tran-

scendental entire solution f of (45) with ρ(f) < 1. We aim for a contradiction. From Lemma

6.1, there exist an ε− set E1, such that for z → ∞ and z∈̄E1, we get

f(z)2 + f (k)(z)f(z) + cf (k)(z)f ′(z)(1 + o(1)) = 1.

Then

1 +
f (k)(z)

f(z)
+

f (k)(z)f ′(z)

f(z)2
=

1

f(z)2
. (76)

From the Wiman-Valiron theory which can be found in [11, p. 51], we see that there exists a

subset E2 ⊂ (1,∞) of finite logarithmic measure such that for all z satisfying |z| = r∈̄E2 and

|f(z)| = M(r, f), we have

f (k)(z)

f(z)
= (

v(r)

z
)k(1 + o(1)), (77)

where v(r) is the central index of f(z). Set E3 = {|z| : z ∈ E1}, then E3 is of finite logarithmic

measure. By (76) and (77), for all z satisfying |z| = r ∈̄[0, 1]
∪
E2

∪
E3 and |f(z)| = M(r, f),

we have

(
v(r)

z
)k(1 + o(1)) + c(

v(r)

z
)k+1 − 1

f(z)2
= −1. (78)

Since f(z) is a transcendental entire function, and

ρ(f) = lim sup
r→∞

log+ v(r)

log r
< 1,

then we have

|v(r)
z

| → 0, | 1

f(z)2
| = | 1

M(r, f)2
| → 0, as z → ∞. (79)



LONG Jian-ren, QIN Da-zhuan. On entire solutions of some Fermat type differential-difference... 85

Combining (78) and (79), we get a contradiction. Hence, the order of transcendental solution

of (45) must be at least one.

By using similar method as in the equation (45), we can also get the same conclusion for

equation (46).

Proof of the Theorem 4.12. Suppose on the contrary to the assertion that there exists a

transcendental entire solution f of (47) with ρ(f) < 1. We aim for a contradiction. From

Lemma 6.1, there exist an ε− set E4, for z → ∞ and z∈̄E4, we get

f(z)2 + cf(z)f ′(z)(1 + o(1)) = 1.

Then

1 +
f ′(z)

f(z)
c(1 + o(1)) =

1

f(z)2
. (80)

From the Wiman-Valiron theory, there exists a subset E5 ⊂ (1,∞) of finite logarithmic measure

such that for all z satisfying |z| = r∈̄E5 and |f(z)| = M(r, f), we have

f ′(z)

f(z)
=

v(r)

z
(1 + o(1)). (81)

Set E6 = {|z| : z ∈ E4}, then E6 is of finite logarithmic measure. Thus, by (80) and (81), for

all z satisfying |z| = r ∈̄[0, 1]
∪
E5

∪
E6 and |f(z)| = M(r, f), we have

c
v(r)

z
(1 + o(1))− 1

f(z)2
= −1. (82)

Since f(z) is a transcendental entire function with ρ(f) < 1, then we get (79) holds. Combining

(79) and (82), we get a condition. Hence, (47) has no transcendental entire solution of order

less than one.

Similarly, we get (48) and (49) also has no transcendental entire solution of order less than

one.

Proof of the Theorem 4.13. Suppose on the contrary to the assertion that there exists a

transcendental entire solution f of (50) with ρ(f) < 1. We aim for a contradiction. From

Lemma 6.1, there exist an ε− set E7, for z → ∞ and z∈̄E7, we get

f(z)2 + f(z)f ′(z)(2c(1 + o(1)) + 1) + c2f ′(z)2(1 + o(1))2 = 1.

Then

1 + c2(
f ′(z)

f(z)
)2(1 + o(1))2 +

f ′(z)

f(z)
(2c(1 + o(1)) + 1) =

1

f(z)2
. (83)

From the Wiman-Valiron theory, there exists a subset E8 ⊂ (1,∞) of finite logarithmic measure

such that for all z satisfying |z| = r∈̄E8 and |f(z)| = M(r, f), we have (81) holds. Set

E9 = {|z| : z ∈ E7}, then E9 has finite logarithmic measure. Thus, by (81) and (83), for all z

satisfying |z| = r ∈̄[0, 1]
∪
E8

∪
E9 and |f(z)| = M(r, f), we have

(
v(r)

z
)2c2(1 + o(1))2 +

v(r)

z
(2c(1 + o(1)) + 1)− 1

f(z)2
= −1. (84)

Since f is a transcendental entire function with ρ(f) < 1 then we get (79) holds. Combining

(79) and (84), we get a contradiction. Hence, (41) has no transcendental entire solution of order
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less than one.

Similarly, we get (51) and (52) also has no transcendental entire solution of order less than

one.

Proof of the Theorem 4.14. Suppose that f is a transcendental entire solution of (54). By

(54) we get

f(z)f (k)(z)
f(z + c)

f(z)
= 1− f(z).

By the Clunies lemma [11, Lemma 2.4.2], we have

m(r, f (k)(z)
f(z + c)

f(z)
) = S(r, f),

where S(r, f) is defined as in the Lemma 6.2. It follows from this and Lemma 6.2 that

m(r, f (k)(z)) ≤ m(r, f (k) f(z + c)

f(z)
) +m(r,

f(z)

f(z + c)
) = S(r, f),

which is a contradiction. This proof is completed.

Acknowledgements

The authors would like to thank the referees for valuable comments to improve the present

article.

Declarations
Conflict of interest The authors declare no conflict of interest.

References

[1] W Bergweiler, J K Langley. Zeros of difference of meromorphic finctions, Math Proc

Camb Phil Soc, 2007, 142: 133-147.

[2] Y M Chiang, S J Feng. On the Nevanlinna characteristic of f(z + c) and difference

equations in the complex plane, Ramanujian J, 2008, 16: 105-129.

[3] Z X Chen. Growth and zeros of meromorphic solution of some linear difference equations,

J Math Anal Appl, 2011, 373(1): 235-241.

[4] M F Chen, Z S Gao. Entire solutions of a certain type of nonlinear differential-difference

equation, Acta Math Sci Ser A (Chinese Ed), 2016, 36(2): 297-306.

[5] M F Chen, Z S Gao, Y F Du. Existence of entire solutions of some non-linear differential-

difference equations, J Inequal Appl, 2017, 2017(90): 1-17.



LONG Jian-ren, QIN Da-zhuan. On entire solutions of some Fermat type differential-difference... 87

[6] F Gross. On the equation fn + gn = 1, Bull Amer Math Soc, 1966, 72: 86-88.

[7] F Gross. On the equation fn + gn = hn, Amer Math Mon, 1966, 73: 1093-1096.

[8] W K Hayman. Slowly growing integral and subharmonic functions, Comment Math Helv,

1960, 34: 75-84.

[9] W K Hayman. Meromorphic Function, Clarendon Press, Oxford, UK, 1964.

[10] R G Halburd, R J Korhonen. Difference analogue of the lemma on the logarithmic deriva-

tive with applications to difference equations, J Math Anal Appl, 2006, 314: 477-487.

[11] I Laine. Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter,

Berlin/New York, 1993.

[12] K Liu. Meromorphic functions sharing a set with applications to difference equations, J

Math Anal Appl, 2009, 359: 384-393.

[13] K Liu, T B Cao, H Z Cao. Entire solutions of Fermat type differential-difference equations,

Arch Math, 2012, 99: 147-155.

[14] K Liu, L Z Yang. On entire solutions of some differential-difference equations, Comput

Methods Funct Theory, 2013, 13(3): 433-447.
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