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Triple reverse order law for the Drazin inverse∗

WANG Hua1,∗ ZHONG Cheng-cheng1,2

Abstract. In this paper, we investigate the reverse order law for Drazin inverse of three bound-

ed linear operators under some commutation relations. Moreover, the Drazin invertibility of sum

is also obtained for two bounded linear operators and its expression is presented.

§1 Introduction

Generalized inverses such as Moore-Penrose inverse, Drazin inverse and group inverse have

attracted many researchers because of its application in singular differential equations, Markov

chains, statistics, numerical analysis and so on.

It is well known that the reverse order law holds for the ordinary inverse, but is not nec-

essarily true for generalized inverses. So, many authors had studied the reverse order law of

generalized inverses. In [1,7,8,10,11], the authors obtained the conditions for the reverse order

law to hold concerning Moore-Penrose inverse in the finite dimensional space, Hilbert space and

ring. In [5,16,18], the reverse order law of group inverse in the Hilbert space, semigroup and

ring was investigated. The mixed-type reverse order law in the Hilbert space and ring was stud-

ied in [6,14,20,26]. The reverse order law of Drazin inverse was considered in [19,24,25] in the

finite dimensional space, Hilbert space, Banach algebra and ring. In addition, [3,15,21,22,27]

discussed the reverse order law of {1}-, {1,2}-, {1,3}-, {1,4}-, {1,2,3}- and {1,2,4}-inverse.
In [7,11,15,22,24,25], the authors considered the reverse order law for different generalized

inverses of multiple operator and matrix products. To our knowledge, the reverse order law for

Drazin inverses of three operator products has not been studied yet in literature.

This paper contains three parts. The first part is the Drazin invertibility of three bounded

linear operator products, the second is devoted to the reverse order law for the Drazin inverse of

three bounded linear operator products, and the last part deals with the Drazin invertibility of
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sum for two bounded linear operators. We derive the Drazin invertibility of product PQR and

some equivalent conditions for the reverse order law (PQR)D = RDQDPD to hold under some

commutation relations (1) [P, P 2Q] = 0, [P,R] = 0, [R,RQ] = 0, [P,QPQ] = 0, (2) [P, PQ] = 0,

[P,R] = 0, [R,RQ] = 0, respectively. In particular, we obtain that (PQR)D = RDQDPD and

PD, QD, RD all commute if P,Q,R all commute. As special cases, some equivalent conditions

for the reverse order law (PQ)D = QDPD to hold are also presented. Finally, we consider

the equivalent condition that P + Q is Drazin invertible when [P, P 2Q] = 0, [P,QPQ] = 0,

[Q,PQ]Pπ = 0, and the expression of (P +Q)D is also given.

From now on in this paper we will let X and Y denote Banach spaces, and let the set

B(X ,Y) denote the set of all bounded linear operators from X to Y and B(X ,X ) be written

as B(X ). Recall that an operator T ∈ B(X ) is Drazin invertible, if there exists an operator

TD ∈ B(X ) such that

TTD = TDT, TD = T (TD)2 and T k+1TD = T k for some integer k ≥ 0.

Here, TD is the unique Drazin inverse of T , and the smallest integer k, denoted by ind(T ),

is called the index of T . If T is Drazin invertible, then T has the operator matrix form T =[
T1 0

0 N

]
with respect to the invariant space decomposition X = N (Tπ)⊕R(Tπ), where T1

is invertible, N is nilpotent and Tπ = I − TTD.

We need the following results about the Drazin inverse, which will be useful tools for proving

the reverse order law. Moreover, write [P,Q] = PQ−QP .

Lemma 1.1. [12, Theorem 5.5] Let P,Q ∈ B(X ) be Drazin invertible with [P,Q] = 0, then

the operators P,Q, PD, QD all commute and

(PQ)D = QDPD = PDQD.

Lemma 1.2. Let A ∈ B(X ), C ∈ B(X ,Y), D ∈ B(Y), and

M =

[
A 0

C D

]
.

(1) [13, Lemma 2.4] If two of the operators A,D and M are Drazin invertible, then so is the

third.

(2) [9, Theorem 5.1] If A,D are Drazin invertible, then

MD =

[
AD 0

X DD

]
,

where X =

ind(A)−1∑
i=0

(DD)i+2CAiAπ +Dπ

ind(D)−1∑
i=0

DiC(AD)i+2 −DDCAD.

§2 Drazin invertibility of product

In this section, we will consider the Drazin invertibility of three linear bounded operator

products under some commutation relations, which is necessary to proof the reverse order law.
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Theorem 2.1. Let P,Q,R ∈ B(X ), and P,Q,R, PDQ,RDPDQ be Drazin invertible. If

[P, P 2Q] = 0, [P,R] = 0, [R,RQ] = 0 and [P,QPQ] = 0, then the product PQR is Drazin

invertible.

Proof. Since P is Drazin invertible, P can be written as the operator matrix form

P =

[
P1 0

0 N1

]
(1)

with respect to the space decomposition X = N (Pπ)⊕R(Pπ), where P1 is invertible, Ns
1 = 0,

s = ind(P ) and PD =
[
P−1

1 0
0 0

]
. Let Q and R be decomposed as Q =

[
Q1 Q2

Q3 Q4

]
and R =

[
R1 R2

R3 R4

]
with respect to the above space decomposition. From [P, P 2Q] = 0, we get

P1Q1 = Q1P1, P1Q2 = Q2N1 (2)

and

N2
1Q4N1 = N3

1Q4. (3)

The second equality in (2) implies that

Q2 = P−1
1 Q2N1 = P−2

1 Q2N
2
1 = · · · = P−s

1 Q2N
s
1 = 0,

and hence

Q =

[
Q1 0

Q3 Q4

]
. (4)

Substituting (1) and (4) into the assumption [P,QPQ] = 0, we have

N1Q3P1Q1 +N1Q4N1Q3 = Q3P1Q1P1 +Q4N1Q3P1 (5)

and

N1Q4N1Q4 = Q4N1Q4N1. (6)

From (3) and (6), it follows that (N1Q4)
2k+1 = N2k+1

1 Q2k+1
4 (k ∈ N), which means that N1Q4

is nilpotent. Since P1 is invertible, by (5), we derive that

Q3P1Q1 +Q4N1Q3 = N1(Q3P1Q1 +Q4N1Q3)P
−1
1 = Ns

1 (Q3P1Q1 +Q4N1Q3)(P
−1
1 )s,

and hence

Q3P1Q1 +Q4N1Q3 = 0.

The assumption that PDQ is Drazin invertible means that Q1 is Drazin invertible. Then the

above equality multiplied by (QD
1 )2, together with QD

1 = Q1(Q
D
1 )2, suggests that

Q3P1Q
D
1 = −Q4N1Q3(Q

D
1 )2. (7)

Applying (2) and Lemma 1.1, we see that P1Q
D
1 = QD

1 P1, P−1
1 QD

1 = QD
1 P−1

1 . This and (7)

yield

Q3Q
D
1 = −Q4N1Q3(Q

D
1 )2P−1

1 = −Q4N1(Q3Q
D
1 )P−1

1 QD
1 = (−Q4N1)

kQ3Q
D
1 (P−1

1 QD
1 )k, k ∈ N.

Note that N1Q4 is nilpotent and (Q4N1)
k = Q4(N1Q4)

k−1N1, then Q4N1 is nilpotent. Conse-

quently,

Q3Q
D
1 = 0. (8)

On the other hand, by [P,R] = 0, we can conclude

R =

[
R1 0

0 R4

]
(9)
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with

P1R1 = R1P1, N1R4 = R4N1. (10)

Obviously, R1, R4 are Drazin invertible, and

RD =

[
RD

1 0

0 RD
4

]
. (11)

In order to complete the proof, we further decompose R1 and R4, respectively, as

R1 =

[
R11 0

0 R14

]
, R4 =

[
R41 0

0 R44

]
(12)

with respect to the space decompositions N (Pπ) = N (Rπ
1 ) ⊕ R(Rπ

1 ) and R(Pπ) = N (Rπ
4 ) ⊕

R(Rπ
4 ), where R11, R41 are invertible, and R14, R44 are nilpotent. Then

R =


R11 0 0 0

0 R14 0 0

0 0 R41 0

0 0 0 R44

 . (13)

From (10), we deduce that P1 and N1 in (1) have the following operator matrix form

P1 =

[
P11 0

0 P14

]
, N1 =

[
N11 0

0 N14

]
(14)

with

P11R11 = R11P11, P14R14 = R14P14 (15)

and

N11R41 = R41N11, N14R44 = R44N14. (16)

Since P1 is invertible and N1 is nilpotent, P11, P14 are invertible and N11, N14 are nilpotent.

Thus,

P =

[
P1 0

0 N1

]
=


P11 0 0 0

0 P14 0 0

0 0 N11 0

0 0 0 N14

 . (17)

Next we let Q1, Q4 and Q3 have the following operator matrix forms

Q1 =

[
Q11 Q12

Q13 Q14

]
, Q4 =

[
Q41 Q42

Q43 Q44

]
, Q3 =

[
Q31 Q32

Q33 Q34

]
. (18)

Substituting (13) and (18) into the assumption [R,RQ] = 0 yields

R2
11Q11 = R11Q11R11, R2

41Q41 = R41Q41R41,

R2
11Q12 = R11Q12R14, R2

41Q32 = R41Q32R14, R2
41Q42 = R41Q42R44,

R2
14Q13 = R14Q13R11, R2

44Q33 = R44Q33R11, R2
44Q43 = R44Q43R41,

R2
14Q14 = R14Q14R14, R2

44Q44 = R44Q44R44. (19)

Because R11, R41 are invertible, we obtain

R11Q11 = Q11R11, R41Q41 = Q41R41, (20)
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and

Q12 = R−k
11 Q12R

k
14, Q32 = R−k

41 Q32R
k
14, Q42 = R−k

41 Q32R
k
44,

R14Q13 = Rk+1
14 Q13R

−k
11 , R44Q33 = Rk+1

44 Q33R
−k
11 , R44Q43 = Rk+1

44 Q43R
−k
41 ,

k ∈ N, which, by the nilpotence of R14 and R44, imply

Q12 = 0, Q32 = 0, Q42 = 0, R14Q13 = 0, R44Q33 = 0, R44Q43 = 0. (21)

Hence,

Q =


Q11 0 0 0

Q13 Q14 0 0

Q31 0 Q41 0

Q33 Q34 Q43 Q44

 , (22)

and

PQR =

[
P1Q1R1 0

N1Q3R1 N1Q4R4

]
=


P11Q11R11 0 0 0

P14Q13R11 P14Q14R14 0 0

N11Q31R11 0 N11Q41R41 0

N14Q33R11 N14Q34R14 N14Q43R41 N14Q44R44

 . (23)

In order to prove that PQR is Drazin invertible, it is sufficient to show that P1Q1R1 and

N1Q4R4 are both Drazin invertible. Note that Q11 is Drazin invertible, since RDPDQ is

Drazin invertible. Then Q11R11 is Drazin invertible by (20) and Lemma 1.1. Moreover, Q14R14

is nilpotent by the first equality in (19). Hence, Q1R1 =
[
Q11R11 0
Q13R11 Q14R14

]
is Drazin invertible

and

(Q1R1)
D =

[
R−1

11 Q
D
11 0

XQ1R1 0

]
, (24)

where

XQ1R1 = (Q14R14)
π

ind(Q14R14)−1∑
i=0

(Q14R14)
iQ13R11((Q11R11)

D)i+2 = Q13(Q
D
11)

2R−1
11 (25)

by R14Q13 = 0 in (21). In addition, [P1, Q1R1] = 0 follows from the first equalities in (2) and

(10), then P1Q1R1 is Drazin invertible with

(P1Q1R1)
D = (Q1R1)

DP−1
1 = P−1

1 (Q1R1)
D. (26)

In the following, we prove that N1Q4R4 =
[
N11Q41R41 0
N14Q43R41 N14Q44R44

]
is Drazin invertible. In fact,

by (16) and the second equality in (20), we have

(N11Q41R41)
k = (N11Q41)

kRk
41 (k ∈ N).

By (19) and (16), we have

(N14Q44R44)
k = (N14Q44)R

k
44(N14Q44)

k−1 (k ∈ N).

SinceN1Q4 is nilpotent, we obtain thatN11Q41 is nilpotent, which together with the nilpontence

of R44 indicates that N11Q41R41 and N14Q44R44 are nilpotent. Thus, N1Q4R4 is Drazin

invertible with (N1Q4R4)
D = 0. Therefore, by Lemma 1.2, PQR is Drazin invertible and

(PQR)D =

[
(Q1R1)

DP−1
1 0

XPQR 0

]
, (27)
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where

XPQR =

ind(N1Q4R4)−1∑
i=0

(N1Q4R4)
i(N1Q3R1)[(P1Q1R1)

D]i+2. (28)

Replacing the conditions [P, P 2Q] = 0, [P,QPQ] = 0 by [P, PQ] = 0 in Theorem 2.1, we

conclude that N1Q3 = 0 and N1Q4 is nilpotent. Similar to the proof of Theorem 2.1, we have

the following result.

Theorem 2.2. Let P,Q,R ∈ B(X ), and P,Q,R, PDQ,RDPDQ be Drazin invertible. If

[P, PQ] = 0, [P,R] = 0 and [R,RQ] = 0, then the product PQR is Drazin invertible.

The next theorem is a symmetrical formulation of Theorem 2.1.

Theorem 2.3. Let P,Q,R ∈ B(X ), and P,Q,R, PQD, PQDRD be Drazin invertible. If

[Q,PQ2] = 0, [Q,R] = 0, [R,PR] = 0 and [P,QPQ] = 0, then the product PQR is Drazin

invertible.

§3 Reverse order law

In this section, we will investigate the reverse order law for the Drazin inverse of three linear

bounded operator products. As a special case, the reverse order law of the Drazin inverse is

obtained for two linear bounded operator products.

Theorem 3.1. Under the conditions of Theorem 2.1, the following reverse order law state-

ments are equivalent:

(i) (PQR)D = RDQDPD,

(ii) (PQR)DP = RDQDPDP ,

(ii) (PPDQR)D = RDQDPPD.

Proof. From (4) and the Drazin invertibility of Q and Q1, we know that Q4 is Drazin invertible,

and

QD =

[
QD

1 0

XQ QD
4

]
. (29)

Then

RDQDPD =

[
RD

1 QD
1 P−1

1 0

RD
4 XQP

−1
1 0

]
, RDQDPDP =

[
RD

1 QD
1 0

RD
4 XQ 0

]
and

(PQR)DP =

[
(P1Q1R1)

DP1 0

XPQRP1 0

]
=

[
(Q1R1)

D 0

XPQRP1 0

]
by (11), (1), (27) and (26), where

XQ =

ind(Q1)−1∑
i=0

(QD
4 )i+2Q3Q

i
1Q

π
1 +Qπ

4

ind(Q4)−1∑
i=0

Qi
4Q3(Q

D
1 )i+2 −QD

4 Q3Q
D
1 .
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Obviously, it can be seen that

(PQR)D = RDQDPD ⇐⇒

{
(Q1R1)

D = RD
1 QD

1 ,

RD
4 XQ = XPQRP1.

In the following, we show that (Q1R1)
D = RD

1 QD
1 implies XPQR = 0. If (Q1R1)

D = RD
1 QD

1 ,

then Q13Q
D
11 = 0 by (24), (25) and RD

1 QD
1 =

[
R−1

11 QD
11 0

0 0

]
. From (8) and

Q3Q
D
1 =

[
Q31Q

D
11 0

Q33Q
D
11 +Q34XQ1 Q34Q

D
14

]
, (30)

where

XQ1 =

ind(Q11)−1∑
i=0

(QD
14)

i+2Q13Q
i
11Q

π
11 +Qπ

14

ind(Q14)−1∑
i=0

Qi
14Q13(Q

D
11)

i+2 −QD
14Q13R11Q

D
11

=

ind(Q11)−1∑
i=0

(QD
14)

i+2Q13Q
i
11Q

π
11 −QD

14Q13R11Q
D
11,

we have Q31Q
D
11 = 0, Q34Q

D
14 = 0, Q33Q

D
11 + Q34XQ1 = 0, and we further obtain Q33Q

D
11 = 0

according to Q34XQ1 = 0. Thus, by (26),

Q3R1(P1Q1R1)
D = Q3R1R

D
1 QD

1 P−1
1 =

[
Q31Q

D
11 0

Q33Q
D
11 0

]
P−1
1 = 0, (31)

which implies XPQR = 0 in (28). Therefore,

(PQR)D = RDQDPD ⇐⇒

{
(Q1R1)

D = RD
1 QD

1

RD
4 XQ = 0

⇐⇒ (PQR)DP = RDQDPDP

⇐⇒ (PPDQR)D = RDQDPPD.

Similar to the proof of Theorem 3.1, we obtain the reverse order law associated with Theorem

2.2.

Theorem 3.2. Under the conditions of Theorem 2.2, the following reverse order law state-

ments are equivalent:

(i) (PQR)D = RDQDPD,

(ii) (PQR)DP = RDQDPDP ,

(ii) (PPDQR)D = RDQDPPD.

If [P,Q] = 0, [P,R] = 0 and [Q,R] = 0, then Q3 = 0 in (4), and so the next result is

obtained directly from Theorem 2.1 and Theorem 3.1.

Corollary 3.1. Let P , Q, R ∈ B(H) be Drazin invertible. If [P,Q] = 0, [P,R] = 0 and

[Q,R] = 0, then PQR is Drazin invertible, and

(i) (PQR)D = RDQDPD,

(ii) PD, QD, RD are commutative.
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In Theorems 2.1, 2.2, 3.1 and 3.2, if R = I, then we can obtain the results on the Drazin

invertibility of PQ and its reverse order law.

Corollary 3.2. Let P, Q ∈ B(H), and P, Q, PDQ be Drazin invertible. If P,Q satisfy

(1) [P, P 2Q] = 0, [P,QPQ] = 0, or (2) [P, PQ] = 0, then PQ is Drazin invertible, and the

following reverse order law statements are equivalent:

(i) (PQ)D = QDPD,

(ii) (PQ)DP = QDPDP ,

(iii) (PPDQ)D = QDPPD.

The next theorem is a symmetrical formulation of Theorem 3.1.

Theorem 3.3. Under the conditions of Theorem 2.3, the following reverse order law state-

ments are equivalent:

(i) (PQR)D = RDQDPD,

(ii) Q(PQR)D = QRDQDPD,

(ii) (PQQDR)D = RDQQDPD.

§4 Drazin invertibility of P +Q

Combing with the proof of Theorem 2.1, we can describe the Drazin invertibility of sum of

two bounded linear operators. Related results can be founded in [2,4,23].

Theorem 4.1. Let P,Q ∈ B(X ), and P,Q, PDQ be Drazin invertible. If [P, P 2Q] = 0,

[P,QPQ] = 0 and [Q,PQ]Pπ = 0, then P + Q is Drazin invertible if and only if I + PDQ is

Drazin invertible, and

(P +Q)D = α+ β + ((I − (P +Q)Pπβ)
∞∑
k=0

(P +Q)kPπQαk+2 − βQα, (32)

where

α = PD(I + PDQ)QQD +

∞∑
i=0

(PD)i+1(−Q)iQπ,

β =

∞∑
i=0

(QD)i+1(−P )iQQDPπ +

∞∑
i=0

(QDPπ)i+2PQπ(P +Q)iPπ.

Proof. From the proof of Theorem 2.1, (1) and (4) are the matrix form of P andQ, respectively.

Then, substituting (1) and (4) into the assumption [Q,PQ]Pπ = 0, we get

N1Q
2
4 = Q4N1Q4. (33)

In the proof of Theorems 2.1, we have shown Q1 and Q4 are Drazin invertible, then Q1 and Q4

can be written as

Q1 =

[
Q11 0

0 Q14

]
, Q4 =

[
Q41 0

0 Q44

]
(34)

with respect to the space decompositions N (Pπ) = N (Qπ
1 ) ⊕ R(Qπ

1 ) and R(Pπ) = N (Qπ
4 ) ⊕

R(Qπ
4 ), whereQ11, Q41 are invertible andQ14, Q44 are nilpotent. LetQ3 have the corresponding
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matrix form Q3 =
[
Q31 Q32

Q33 Q34

]
. From (8) and Q3Q

D
1 =

[
Q31Q

−1
11 0

Q33Q
−1
11 0

]
, it is obvious that Q31 =

0, Q33 = 0, and hence

Q3 =

[
0 Q32

0 Q34

]
. (35)

Thus,

Q =


Q11 0 0 0

0 Q14 0 0

0 Q32 Q41 0

0 Q34 0 Q44

 . (36)

Under the previous space decompositions of N (Pπ) and R(Pπ), by P1Q1 = Q1P1 and (33), we

have

P1 =

[
P11 0

0 P14

]
, (37)

and

N1 =

[
N11 N12

0 N14

]
(38)

with

P11Q11 = Q11P11, P14Q14 = Q14P14 (39)

and

N14Q
2
44 = Q44N14Q44, N11Q41 = Q41N11, N12Q44 = 0. (40)

Since P1 is invertible and N1 is nilpotent, P11, P14 are invertible and N11, N14 are nilpotent.

Thus,

P =


P11 0 0 0

0 P14 0 0

0 0 N11 N12

0 0 0 N14

 , (41)

and then

P+Q=

[
P1 +Q1 0

Q3 N1 +Q4

]
=


P11 +Q11 0 0 0

0 P14 +Q14 0 0

0 Q32 N11 +Q41 N12

0 Q34 0 N14 +Q44

. (42)

The second equality in (39) means that P−1
14 Q14 is nilpotent, because P14 is invertible and Q14

is nilpotent. Then I + P−1
14 Q14 is invertible and (I + P−1

14 Q14)
−1 =

∑∞
i=0 P

−i
14 (−Q14)

i, and we

further see that P14 +Q14 is invertible and

0⊕ (P14 +Q14)
−1 ⊕ 0⊕ 0 = 0⊕ (I + P−1

14 Q14)
−1P−1

14 ⊕ 0⊕ 0

= 0⊕
∞∑
i=0

P−i
14 (−Q14)

iP−1
14 ⊕ 0⊕ 0

=

∞∑
i=0

(PD)i+1(−Q)iQπ. (43)
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Similarly, from the second equality in (40), we can conclude that N11 +Q41 is invertible and

0⊕ 0⊕ (N11 +Q41)
−1 ⊕ 0 = 0⊕ 0⊕ (I +Q−1

41 N11)
−1Q−1

41 ⊕ 0

= 0⊕ 0⊕
∞∑
i=0

Q−i
41 (−N11)

iQ−1
41 ⊕ 0

=
∞∑
i=0

(QD)i+1(−P )iQQDPπ. (44)

Substituting (34) and (38) into (3) and (6), we get

N3
14Q44 = N2

14Q44N14, N14Q44N14Q44 = Q44N14Q44N14,

which, together with (40), imply thatN14+Q44 is nilpotent. Then, N1+Q4 =
[
N11+Q41 N12

0 N14+Q44

]
is Drazin invertible, and

(N1 +Q4)
D =

(N11 +Q41)
−1

∞∑
i=0

((N11 +Q41)
−1)i+2N12(N14 +Q44)

i

0 0

 . (45)

Thus, from (42) and (39), it can be seen that

P +Q is Drazin invertible ⇐⇒ P1 +Q1 is Drazin invertible

⇐⇒ P11 +Q11 is Drazin invertible

⇐⇒ I + P−1
11 Q11 is Drazin invertible

⇐⇒ I + PDQ is Drazin invertible.

Next, we are going to give the expression of (P +Q)D. By (42) and Lemma 1.2, we get

(P +Q)D =

[
(P1 +Q1)

D 0

X3 (N1 +Q4)
D

]
, (46)

where

X3 =

∞∑
i=0

((N1 +Q4)
D)i+2Q3(P1 +Q1)

i(P1 +Q1)
π

+ (N1+Q4)
π

∞∑
i=0

(N1+Q4)
iQ3((P1+Q1)

D)i+2−(N1+Q4)
DQ3(P1+Q1)

D. (47)

Notice that

(P1 +Q1)
D =

[
(P11 +Q11)

D 0

0 (P14 +Q14)
−1

]
(48)

and

(P11 +Q11)
D ⊕ 0⊕ 0⊕ 0 = P−1

11 (I + P−1
11 Q11)

D ⊕ 0⊕ 0⊕ 0 = PD(I + PDQ)DQQD, (49)

then it follows from (43) and (49) that[
(P1 +Q1)

D 0

0 0

]
= PD(I + PDQ)DQQD +

∞∑
i=0

(PD)i+1(−Q)iQπ , α. (50)

On the other hand, (6) implies that N1Q4N1Q
D
4 = QD

4 N1Q4N1. Substituting (34), (38) and
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(40) into this equality yields N11N12 = 0. Then, in (45),
∞∑
i=0

((N11 +Q41)
−1)i+2N12(N14 +Q44)

i =
∞∑
i=0

(Q−1
41 )

i+2N12(N14 +Q44)
i,

and hence

(N1 +Q4)
D =

(N11 +Q41)
−1

∞∑
i=0

(Q−1
41 )

i+2N12(N14 +Q44)
i

0 0

 . (51)

This and (44) give[
0 0

0 (N1 +Q4)
D

]
=

∞∑
i=0

(QD)i+1(−P )iQQDPπ+

∞∑
i=0

(QDPπ)i+2PQπ(P+Q)iPπ , β. (52)

Due to (51), (35) and (48), we have

(N1 +Q4)
DQ3(P1 +Q1)

π = 0.

Note that (P1 +Q1)(P1 +Q1)
π = (P1 +Q1)

π(P1 +Q1). Then X3 in (47) can be simplified as

X3 = (N1 +Q4)
π

∞∑
i=0

(N1 +Q4)
iQ3((P1 +Q1)

D)i+2 − (N1 +Q4)
DQ3(P1 +Q1)

D. (53)

Again, (P +Q)Pπ =
[
0 0
0 N1+Q4

]
and PπQPPD =

[
0 0
Q3 0

]
. So, from (53), we get[

0 0

X3 0

]
= (I − (P +Q)Pπβ)

∞∑
i=0

(P +Q)iPπQPPDαi+2 − βPπQPPDα. (54)

Therefore, by(46), (50), (52) and (54), it follows that

(P +Q)D = α+ β + (I − (P +Q)Pπβ)
∞∑
i=0

(P +Q)iPπQPPDαi+2 − βPπQPPDα.

Taking into account βPπ = β and PPDα = α, we have

(P +Q)D = α+ β + (I − (P +Q)Pπβ)

∞∑
k=0

(P +Q)kPπQαk+2 − βQα.

In the following, some special cases of Theorem 4.1 are given.

Corollary 4.1. Let P, Q ∈ B(H), and P,Q, PDQ be Drazin invertible. If [P, PQ] = 0,

[Q,PQ] = 0 and [P,QPQ] = 0, then P + Q is Drazin invertible if and only if I + PDQ is

Drazin invertible. In this case,

(P +Q)D = α+ β + ((I − (P +Q)Pπβ)
∞∑
k=0

(P +Q)kPπQ(PD)k+2

− α2
1QPπQPD − (QDPπ)4P 2QπQPπQPD,

where α, β are defined in Theorem 4.1, and α1 =
∑∞

i=0(Q
D)i+1(−P )iQQDPπ.

Proof. By the assumptions and the proof of Theorem 4.1, it follows that N1Q3 = 0 and

Q3Q1 = 0. Then, from (35), (38) and (34), we have

N11Q32 +N12Q34 = 0, N14Q34 = 0 (55)
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and

Q32Q14 = 0, Q34Q14 = 0. (56)

By (45),

(N1 +Q4)
DQ3=

(N11 +Q41)
−1

∞∑
i=0

((N11 +Q41)
−1)i+2N12(N14 +Q44)

i

0 0

[
0 Q32

0 Q34

]
.

From (40) and (55), it can be seen that

N12(N14 +Q44)Q34=0, N12(N14 +Q44)
2Q34=N12N14Q44Q34, N12(N14 +Q44)

iQ34=0, i ≥ 3.

Thus,

(N1 +Q4)
DQ3

=

[
0 (N11 +Q41)

−1Q32 + (N11 +Q41)
−2N12Q34 + (N11 +Q41)

−4N12N14Q44Q34

0 0

]
.

Note that

(N11 +Q41)
−1Q32 + (N11 +Q41)

−2N12Q34 = (N11 +Q41)
−2(N11Q32 +Q41Q32 +N12Q34)

= (N11 +Q41)
−2Q41Q32

and N11N12 = 0, we then obtain

(N1 +Q4)
DQ3 =

[
0 (N11 +Q41)

−2Q41Q32 +Q−4
41 N12N14Q44Q34

0 0

]
.

In addition, (56) implies Q32(P14+Q14)
−1 = Q32P

−1
14 and Q34(P14+Q14)

−1 = Q34P
−1
14 . Hence,

(N1+Q4)
DQ3(P1+Q1)

D =

[
0 (N11+Q41)

−2Q41Q32P
−1
14 +Q−4

41 N12N14Q44Q34P
−1
14

0 0

]
.

In view of (44), we get[
0 0

(N1 +Q4)
DQ3(P1 +Q1)

D 0

]
= α2

1QPπQPD + (QDPπ)4P 2QπQPπQPD,

where α1 =
∑∞

i=0(Q
D)i+1(−P )iQQDPπ. Also, Q3(P1 +Q1)

D = Q3P
−1
1 . Therefore,

(P +Q)D = α+ β + ((I − (P +Q)Pπβ)
∞∑
k=0

(P +Q)kPπQ(PD)k+2

− α2
1QPπQPD − (QDPπ)4P 2QπQPπQPD.

If [P,Q] = 0, thenQ3 = 0, N12 = 0, X3 = 0 in Theorem 4.1, whence β =
∑∞

i=0(Q
D)i+1(−P )i

Pπ in (52). So, we obtain the result as follows.

Corollary 4.2. Let P, Q ∈ B(H) is Drazin invertible. If [P,Q] = 0, then P +Q is Drazin

invertible if and only if I + PDQ is Drazin invertible. In this case,

(P +Q)D = α+ β = PD(I + PDQ)QQD +
∞∑
i=0

(PD)i+1(−Q)iQπ +
∞∑
i=0

(QD)i+1(−P )iPπ.
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