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Higher-order expansions of powered extremes of

logarithmic general error distribution

TAN Xiao-feng LI Li-hui∗

Abstract. In this paper, Let Mn denote the maximum of logarithmic general error distribution

with parameter v ≥ 1. Higher-order expansions for distributions of powered extremes Mp
n are

derived under an optimal choice of normalizing constants. It is shown that Mp
n, when v = 1,

converges to the Fréchet extreme value distribution at the rate of 1/n, and if v > 1 then Mp
n

converges to the Gumbel extreme value distribution at the rate of (log log n)2/(logn)1−
1
v .

§1 Introduction

General error distribution is an extension of the normal distribution. The probability density

function (pdf) of the standardized general error distribution is

gv(x) =
v exp(−(1/2)|x/λ|v)

21+1/vλΓ(1/v)
(1.1)

for v > 0 and x ∈ R, where λ = [2−2/vΓ(1/v)/Γ(3/v)]1/2, and Γ(·) denotes the gamma function.

Let Gv(x) =
∫ x

−∞ gv(s) ds denote the cumulative distribution function (cdf) of the standardized

general error distribution (denoted by GED(v)). Note that GED(2) is the standard normal

distribution and GED(1) means the Laplace distribution.

Probability properties of GED(v) have been studied in recent years. Peng et al. (2009)

established the Mills’ inequalities and Mills’ ratio of GED(v) as v > 1 and Peng et al. (2009) and

Vasudeva et al. (2014) considered the limiting distribution of partial maximum from GED(v)

random variables for v > 0. Vasudeva et al. (2014) further considered the density convergence

of partial maximum; strong stability of partial maximum and asymptotic behaviors of near

maximum and near-maxima sum. Uniform convergence rate of distribution of maximum to its

extreme value distribution was derived by Peng et al. (2010) and Jia and Li (2014) showed

the distributional expansions of partial maximum from GED(v) for v > 0. Li et al. (2018)

considered the moment convergence of powered normal extremes. The work of Peng et al.
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(2010) and Jia and Li (2014) showed that with an optimal normalizing constants convergence

rate of distribution of partial maximum to its limit is proportional to 1/ log n as v ̸= 1, similar

to the case of GED(2), the standard normal case, studied by Hall (1979) and Nair (1981).

In order to improve the convergence rate, Hall (1980) considered the distribution of powered

extreme |Mn|p with Mn denoting the partial maximum of normal random variables, and showed

that the distribution of normalized M2
n converges to the Gumble extreme value distribution at

the rate of 1/(log n)2 under optimal normalizing constants, while the convergence rates are still

the order of 1/ log n for the case of 0 < p ̸= 2. For more details, see Hall (1980) and Leadbetter

at al. (1983). Zhou and Ling (2016) established the higher-order expansions for distributions

and densities of powered extremes from normal samples. Lu and Peng (2018) considered the

higher-order expansions of distribution of powered order statistics of GED(v) random variables,

and showed that the convergence rate can be improved under an optimal normalizing constants.

This short note is to consider the higher order expansions of distribution of powered extremes

of logarithmic general error distribution (written as logGED) random variables. logGED defined

by Liao et al. (2014) is a natural extension of the log-normal distribution. Let η = eξ with ξ

following the GED distribution with parameter v > 0, it is said that η follows the logGED with

parameter v, written as η ∼ logGED(v).

Let fv(x) and Fv(x) denote the pdf and cdf of η respectively. it is easy to check that fv(x)

is given by

fv(x) =
vx−1 exp(−1

2 |
log x
λ |v)

21+1/vλΓ(1/v)
, x > 0, (1.2)

where λ = [2−2/vΓ(1/v)/Γ(3/v)]1/2. Note that the logGED(v) reduces to the logarithmic

Laplace distribution for v = 1 and to the log-normal distribution for v = 2. For v > 1, by the

following Mills’ ratio of logGED(v) due to Liao et al.(2014),

1− Fv(x)

fv(x)
∼ 2λv

v
(log x)1−vx (1.3)

as x → ∞, we can show

lim
n→∞

P
(
Mn − βn

αn
≤ x

)
= Λ(x) = exp(− exp(−x))

with normalizing constants αn and βn given byαn = 21/v exp(21/vλ(logn)1/v)
v(logn)1−1/v ,

βn = exp(21/vλ(log n)1/v)− 21/vλ
v

exp(21/vλ(logn)1/v)
(logn)1−1/v

(
v−1
v log log n+log 2Γ(1/v)

)
.

(1.4)

For recent work on logGED(v), Yang et al.(2016) studied the asymptotic expansion of the

distribution of the normalized Mn; Chen and Du (2016) derived asymptotic expansions of

density of normalized logGED(v) extremes; Yang and Li (2016) also considered expansions of

distribution of maximum under power normalization. Other related work on extreme value

distributions of given distributions and their associated uniform convergence rates, we refer to

Peng et al. (2010), Liao and Peng (2012), Liao et al. (2013), Liao et al. (2014), Jia et al.

(2015) and references therein.

The rest of this paper is organized as follows. Section 2 provides the main results. Some
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auxiliary results and the proofs of the main results are given in Section 3.

§2 Main results

In this section, we establish the distributions expansions of powered extremes of logarithmic

general error distribution with power index p > 0. Noting the fact from Yang et al. (2016) that

Fv doesn’t belong to any domain of attraction of extreme value distribution as 0 < v < 1, in

this paper we only consider the case v ≥ 1. Throughout the paper, constants αn and βn are

given by (1.4).

Theorem 1. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with common distribution

logGED(v) with v ≥ 1. Let Mn = max(Xk, 1 ≤ k ≤ n) denote the partial maximum, then

(i) for v = 1, with normalizing constants an = (2/n)−p/
√
2, we have

lim
n→∞

P
(
Mp

n ≤ anx
)
= Φ√

2/p(x) = exp(−x−
√

2
p ), x > 0; (2.1)

(ii) for v > 1, with normalizing constants an = pαnβ
p−1
n , bn = βp

n we have

lim
n→∞

P
(
Mp

n ≤ anx+ bn

)
= Λ(x) = exp(− exp(−x)). (2.2)

Remark 1. Equation (2.2) notes that limn→∞ P
(
Mn ≤ (anx+ bn)

1
p

)
= Λ(x), −∞ < x < ∞.

This would mean that the limit law for (Mn) is Gumbel under a non-linear normalization.

When p = 1
2 , the norming sequence reduces to (a2nx

2 + 2anbnx+ b2n), which is quadratic.

Theorem 2. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with common distribution

logGED(v) with v ≥ 1. Let Mn = max(Xk, 1 ≤ k ≤ n) denote the partial maximum, then

(i) for v = 1, with normalizing constants an = (2/n)−p/
√
2, for x > 0 we have

lim
n→∞

n
{
n
(
P(Mp

n ≤ anx)− Φ√
2/p(x)

)
+ k1(x)Φ√

2/p(x)
}
= ω1(x)Φ√

2/p(x), (2.3)

where

k1(x) =
1

2
x

−2
√

2
p , ω1(x) =

1

8
x

−4
√

2
p − 1

3
x

−3
√

2
p ;

(ii) for v > 1, with normalizing constants an = pαnβ
p−1
n , bn = βp

n we have

limn→∞
(logn)1−

1
v

(log logn)2

{
(logn)1−

1
v

(log logn)2

(
P
(
Mp

n ≤ anx+ bn
)
−Λ(x)

)
+kv(x)Λ(x)

}
= ωv(x)Λ(x), (2.4)

where

kv(x) =
2

1
v−1λ(v − 1)2

v3
e−x, ωv(x) =

2
2
v−3λ2(v − 1)4(e−2x − e−x)

v6
.

Remark 2. For v = 1, Theorem 2(i) shows that the convergence rate of P(Mp
n ≤ anx) to the

extreme value distribution Φ√
2/p(x) is proportional to 1/n, while for the case of v > 1, Theorem

2(ii) shows that the convergence rate of P(Mp
n ≤ anx + bn) to the extreme value distribution

Λ(x) is proportional to (log log n)2/(log n)1−1/v.
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§3 Proofs

In order to prove the main results, we need some auxiliary lemmas.

Lemma 1. Let {Xn, n ≥ 1} be a sequence of i.i.d. logGED(v) random variables with common

distribution Fv(x), v ≥ 1. Let Fp,v(x) = P (Xp
n ≤ x), for large x we have

(i) if v = 1, 1− Fp,1(x) =
1
2x

−
√
2/p;

(ii) if v > 1, 1− Fp,v(x) = c(x) exp
(
−
∫ x

e
g(t)
f(t) dt

)
, where

c(x) → (λp)v−1e
− 1

2(λp)v

21/vΓ(1/v)
, f(x) = 2x(λp)v

v(log x)v−1 with f(x)′ → 0,

g(x) = 1 + 2(v−1)(λp)v

v(log x)v → 1

as x → ∞.

Proof. For the case of v = 1, λ = 2−1/2 and elementary calculation to get the result. For v > 1,

Fp,v(x) = Fv(x
1
p ) and apply (1.3) to get the distributional tail representation. The proof is

complete.

Lemma 2. Let Fv(x) and fv(x) respectively denote the cdf and pdf of logGED(v) with v > 1,

with normalizing constants an = pαnβ
p−1
n , bn = βp

n, for large x we have

1− Fv((anx+ bn)
1
p )

=n−1e−x
(
1+

( 1v − 1)(1+x−log 2Γ( 1v )+
1
2 (x−log 2Γ( 1v ))

2)+(1− 1
v )

2(1+x−log 2Γ( 1v )) log log n

log n

− ( v−1
v )3(log logn)2

2 logn +
2λ(v−1)

v2 (log 2Γ( 1
v )−x) log logn+

λ(v−1)2

v3 (log logn)2+λ
v (px2+(log 2Γ( 1

v ))
2)

(2 logn)1−
1
v

+
2

1
v λv−1(2x−(2+x) log 2Γ( 1v ))

(log n)1−
1
v

+
2

2
v−3λ2(v − 1)4(log log n)4

v6(log n)2−
2
v

+o(
(log log n)4

(log n)2−
2
v

)
)
. (3.1)

Proof. Noting that fv(x) = gv(log x)/x, Fv(x) = Gv(log x), by (3.1) of Lemma 1 in Jia and Li

(2014), for v > 1 and large x we have

1− Fv(x) =
2λv

v

{
1 + 2(v−1 − 1)λv(log x)−v + 4(v−1 − 1)(v−1 − 2)λ2v(log x)−2v

+ 8(v−1−1)(v−1−2)(v−1−3)λ3v(log x)−3v+O((log x)−4v)
}
(log x)1−vxfv(x). (3.2)

Let

Bv,n = exp(2
1
v λ(log n)

1
v ), Av,n =

v − 1

v
log log n+ log 2Γ(

1

v
), Cv,n = 1− 2

1
v λ

v(log n)1−
1
v

Av,n,

then

αn =
2

1
v λBv,n

v(log n)1−
1
v

, βn = Bv,nCv,n.

By the Tailor’s expansion, we can get

C−1
v,n = 1+ 2

1
v λ(v−1) log logn

v2(logn)1−
1
v

+
2

1
v λ log 2Γ( 1

v )

v(log)1−
1
v

+ 2
2
v λ2(v−1)2(log logn)2

v4(logn)2−
2
v

+ o( (log logn)2

(logn)2−
2
v
), (3.3)
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C−2
v,n = 1 + 21+

1
v λ(v−1) log logn

v2(logn)1−
1
v

+
21+

1
v λ log 2Γ( 1

v )

v(log)1−
1
v

+ 3·2
2
v λ2(v−1)2(log logn)2

v4(logn)2−
2
v

+ o( (log logn)2

(logn)2−
2
v
), (3.4)

C−3
v,n = 1+ 3·2

1
v λ(v−1) log logn

v2(logn)1−
1
v

+
3·2

1
v λ log 2Γ( 1

v )

v(log)1−
1
v

+ 6·2
2
v λ2(v−1)2(log logn)2

v4(logn)2−
2
v

+ o( (log logn)2

(logn)2−
2
v
), (3.5)

and

logCv,n

= 2
1
v λ(log n)

1
v

[
− log 2Γ( 1

v )

v logn − (v−1) log logn
v2 logn − 2

1
v
−1λ(v−1)2(log logn)2

v4(logn)2−
1
v

− 2
1
v
−1λ(log 2Γ( 1

v ))
2

v2(logn)2−
1
v

− 2
1
v λ(v−1) log 2Γ( 1

v ) log log n

v3(logn)2−
1
v

+ 2
2
v λ2(v−1)3(log logn)3

3v6(logn)3−
2
v

+ o
(

(log logn)3

(logn)3−
2
v

)]
. (3.6)

Combining (3.3)–(3.5) we have

1

p
log

(
1 +

2
1
v λpx

v(log n)1−
1
v Cv,n

)

= 2
1
v λ(log n)

1
v

[ x

v log n
+

2
1
v λ(v − 1)x log log n

v3(log n)2−
1
v

+
2

1
v λ log 2Γ( 1v )x− 2

1
v−1λpx2

v2(log n)2−
1
v

+
2

2
v λ2(v − 1)2x(log log n)2

v5(log n)3−
2
v

+ o
( (log log n)2
(log n)3−

2
v

)]
. (3.7)

Let

Dp,v(x) = (anx+ bn)
1
p = Bv,nCv,n

(
1 +

2
1
v λpx

v(log n)1−
1
v Cv,n

) 1
p

. (3.8)

Applying (3.3) and (3.4), we can get

Dp,v(x) = Bv,n

[
1 +

2
1
v λ(x−log 2Γ( 1

v ))

v(logn)1−
1
v

− 2
1
v λ(v−1) log logn

v2(logn)1−
1
v

+ (1−p)2
2
v
−1λ2x2

v2(logn)2−
2
v

+ o( 1

(logn)2−
2
v
)
]
.(3.9)

Combining (3.6),(3.7) and (3.8), we have

logDp,v(x)

= 2
1
v λ(log n)

1
v

[
1 +

x− log 2Γ( 1v )

v log n
− (v − 1) log log n

v2 logn
+

2
1
v λ(v − 1)(x− log 2Γ( 1v )) log log n

v3(log n)2−
1
v

− 2
1
v−1λ(v − 1)2(log log n)2

v4(log n)2−
1
v

+D1(x) +
2

2
v λ2(v − 1)3(log log n)3

3v6(log n)3−
2
v

+ o
( (log log n)3
(log n)3−

2
v

)]
, (3.10)

where D1(x) =
2

1
v λ log 2Γ( 1

v )x−2
1
v
−1λpx2−2

1
v
−1λ(log 2Γ( 1

v ))
2

v2(logn)2−
1
v

. Hence,

(logDp,v(x))
1−v

= 2
1−v
v λ1−v(log n)

1−v
v

[
1+

(1−v)(x−log 2Γ( 1
v ))

v logn + (v−1)2 log logn
v2 logn +

2
1
v λ(v−1)2(log 2Γ( 1

v )−x) log logn

v3(logn)2−
1
v

+2
1
v
−1λ(v−1)3(log logn)2

v4(logn)2−
1
v

+(1−v)D1(x) +
(v−1)3(log logn)2

2v3(logn)2 + o( (log logn)2

(logn)2 )
]
. (3.11)

Further, applying (3.10) we have

1 + 2(v−1 − 1)λv(logDp,v(x))
−v = 1 + v−1−1

logn + (v−1−1)(v−1) log logn
v(logn)2 + o( log log n

(logn)2 ) (3.12)
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and

fv(Dp,v(x))

=
v

21+
1
v λΓ( 1v )

Dp,v(x)
−1 exp(− 1

2λv
(logDp,v(x))

v)

=
vB−1

v,n

2
1
v λ

n−1e−x(log n)
v−1
v

[
1+

2
1
v λ(v−1)(1−x+log 2Γ( 1

v )) log logn

v2(logn)1−
1
v

+ 2
1
v
−1λ(v−1)2(log logn)2

v3(logn)1−
1
v

−D2(x)−
(v−1)3(log logn)2

2v3 logn +
(x−log 2Γ( 1

v ))(v−1)2 log logn

v2 logn − (v−1)(x−log 2Γ( 1
v ))

2

2v logn

+2
2
v
−3λ2(v−1)4(log logn)4

v6(logn)2−
2
v

+ o( (log logn)4

(logn)2−
2
v
)
]
, (3.13)

where

D2(x) =
2

1
v λ log 2Γ( 1v )x− 2

1
v−1λpx2 − 2

1
v−1λ(log 2Γ( 1v ))

2 − 2
1
v λ(x− log 2Γ( 1v ))

v(log n)1−
1
v

.

Combining (3.2), (3.9) and (3.11)-(3.13) we obtain (3.1).

Proof of Theorem 1. (i) For v = 1, Lemma 1(i) implies

lim
t→∞

1− Fp,1(tx)

1− Fp,1(t)
= x

−
√

2
p

for x > 0. Thus by Proposition 1.11 in Resnick (1987), we have Fp,1(x) ∈ D(Φ√
2/p). By the

definition of logGED(v) we know that Mp
n = max1≤k≤n X

p
k . With an = ( 2n )

− p√
2 we have

lim
n→∞

P(Mp
n ≤ anx) = Φ√

2
p

(x).

(ii) For v > 1, by Corollary 1.7 in Resnick (1987), Lemma 1(ii) showed that Fp,v(x) ∈ D(Λ).

Note Mp
n = max1≤k≤n X

p
k . Applying (3.1), we observe that

n
(
1− Fp,v(anx+ bn)

)
= n

(
1− Fv((anx+ bn)

1
p )
)
→ e−x,

the desired result follows.

Proof of Theorem 2. (i) For v = 1, under normalizing constants an = ( 2n )
−p√

2 , we have

P
(
Mp

n ≤ anx
)
− Φ√

2
p

(x) = (1− 1

n
x−

√
2

p )n − Φ√
2

p

(x)

=
[
exp

(
n log(1− 1

n
x−

√
2

p ) + x−
√

2
p

)
− 1
]
Φ√

2
p

(x)

=
[
exp

(
− 1

2n
x− 2

√
2

p − 1

3n2
x− 3

√
2

p + o(
1

n2
)
)
− 1
]
Φ√

2
p

(x)

=
[
− 1

2n
x−

2
√

2
p +

1

n2
(
1

8
x−

4
√

2
p − 1

3
x−

3
√

2
p )+o(

1

n2
)
]
Φ√

2
p

(x). (3.14)

Thus (2.3) follows from (3.14).

(ii) For v > 1, under normalizing constants an = pαnβ
p−1
n and bn = βp

n, applying (3.1) we

have

−n(1− Fv(Dp,v(x))) + e−x

=
(
− 2

1
v−1λ(v − 1)2(log log n)2

v3(log n)1−
1
v

− 2
2
v−3λ2(v − 1)4(log log n)4

v6(log n)2−
2
v

+ o(
(log log n)4

(log n)2−
2
v

)
)
e−x.
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For sufficient large n, we conclude

P
(
Mp

n ≤ anx+ bn

)
− Λ(x)

= Fn
v (Dp,v(x))− Λ(x)

=
[
exp(n logFv(Dp,v(x)) + e−x)− 1

]
Λ(x)

=
[
−n
(
1−Fv(Dp,v(x))

)
+e−x+

[−n
(
1−Fv(Dp,v(x))

)
+e−x]2

2 +o
(
n2(1−Fv(Dp,v(x)))

2
)]
Λ(x)

=

[(
− 2

1
v
−1λ(v−1)2(log logn)2

v3(logn)1−
1
v

− 2
2
v
−3λ2(v−1)4(log log n)4

v6(logn)2−
2
v

+ o( (log logn)4

(logn)2−
2
v
)
)
e−x

+1
2

(
− 2

1
v
−1λ(v−1)2(log logn)2

v3(logn)1−
1
v

− 2
2
v
−3λ2(v−1)4(log logn)4

v6(logn)2−
2
v

+ o( (log logn)4

(logn)2−
2
v
)
)2
e−2x

+ o
( (log logn)4

(logn)2−
2
v

)]
Λ(x)

=
[
− 2

1
v
−1λ(v−1)2e−x(log logn)2

v3(logn)1−
1
v

+ 2
2
v
−3λ2(v−1)4(e−2x−e−x)(log logn)4

v6(logn)2−
2
v

+o( (log logn)4

(logn)2−
2
v

]
Λ(x). (3.15)

Thus (2.4) follows from (3.15).
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