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Identifying the best common factor model via exploratory

eactor analysis

HE Bao-hual? TANG Rui? TAGN Qi-yi*

Abstract. Currently, there is no solid criterion for judging the quality of the estimators in
factor analysis. This paper presents a new evaluation method for exploratory factor analysis that
pinpoints an appropriate number of factors along with the best method for factor extraction. The
proposed technique consists of two steps: testing the normality of the residuals from the fitted
model via the Shapiro-Wilk test and using an empirical quantified index to judge the quality of
the factor model. Examples are presented to demonstrate how the method is implemented and

to verify its effectiveness.

81 Introduction

Exploratory factor analysis (EFA) is a collection of procedures for estimating the common
factor, usually determined by the method of parameter estimation and the number of factors
to be retained. For decades, various criteria have been proposed for determining the number
of factors, such as the eigenvalues of the correlation matrix [3,4], kg of the reduced correlation
matrix[8], the measure of sampling adequacy (MSA)[10], the parallel analysis procedure [18],
and some other new sophisticated methods (see [11] and the references therein). Regarding
the technique for extracting the common factor, some commonly used methods are principal
component method (PCM), principal factor method (PFM, with SMC), maximum likelihood
(ML), unweighted least squares (ULS), weighted (generalized) least squares (GLS), and alpha-
factor analysis (AF). Unfortunately, the criteria for judging the quality of a common factor
have not been well defined. That is, these criteria typically focus on the data characteristic
rather than on the statistical test used to assess the model. Furthermore, as [9] explains, there

does not seem to exist a single solution that makes the best “sense”.
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To evaluate the model fit, [2] introduced the chi-squared statistic
Xiz(n—2p+46k+ll>1n|§, (1)
where n is the number of samples, p is the number of variables, k£ < p is the number of common
factors, 3 is the fitted covariance matrix, and S is the sample covariance matrix. However,
this statistic has two drawbacks: it can only be applied via the ML method and it tends to
overestimate the number of factors [16]. As an example in [6], Table 1 shows 4 factors can
barely be extracted by using this test as the p-value = 0.0158 is scarcely bigger than 1% ( but
less than 5%). Using our proposed criteria, we will show that the desired number of factors

should be 3 and that the ML approach is inappropriate.

Table 1. Number of factors that should be extracted per Bartlett’s (1954) goodness-of-fit
statistic, as shown in [10].

% df  P-value
219.27 13 < 0.0001
25.60 7 0.0006
8.29 2 0.0158

=W N R

One alternative method is the root mean square residual (RMS) index [1].

i 23;11 E?j 2)
pp—1)
where the numerator is the sum of the squared residuals in the upper triangle, excluding diagonal
elements. In contrast to Bartlett’s (1954) statistic, the RMS statistic can be used to test the

“consistent” number of factors [19].

RMS =

Thus, residual analysis is of great importance and is used in many procedures designed to
detect various types of disagreement between data and an assumed model[5]. Practice dictates
that in EFA, if the residuals are normally distributed, then the factor model is acceptable.

In this paper, we use the Shapiro-Wilk test [15,17] to examine the normality of the residuals.
We aim to examine whether there is any systematic bias in the residuals of the fitted model,
rather than the general fit index of the magnitude of the residuals between the simulated and
the original correlation matrices. Based on the Shapiro-Wilk test and the RMS statistic, we
propose an index Q for judging the quality of the factor model. Examples are provided to show

the effectiveness and practicality of the criteria as applied to factor analysis.

82 Goodness of Fit

Without loss of generality, ¥ = LL + VU, where L is the matrix of factor loadings and V¥ is
the diagonal matrix of errors, or specific variance. If the reproduced matrix LL' is equal to 3,
the residual matrix should be zero; however, the reality is that ||[X — LL'|| > 0. If & = LL + ¥
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is a good approximation of X, then RMS is close to 0, and the residuals, ¥ — 2, should be
approximately normal.

The Shapiro-Wilk test, as a normality test of residuals has been proved a very useful routine
tool for fitting the goodness of ¥. Let € denote the p?-vector form of the residual matrix U.
Then the Shapiro-Wilk test statistic is given by

_ (Z?; aee(é>)2 )
S (e —e)?

£t order statistic and € is the sample mean of the residuals. The constants ag

where €(y) is the

are determined by

Ty -1
m-V
(alaa2a"'7an) = ) (4)
vmTV-1V-1m
where m = (my, ma,...,my,)7 is the vector of expected values of standard normal order statis-

tics and V is the corresponding covariance matrix.
In order to use the Shapiro-Wilk test for normality, first compute $—3. Let r;; and o;; de-
note the elements of the matrices 3 and ¥, respectively. Then we apply a similar transformation

as [7] by converting the elements of the covariance matrices via

’ 1 1+ Tij ’ 1 1+ Oij
ro=gh(ory) md o =g (=22) ®
which then yield “more normal” residuals per
e;j:r;j_agjv 1< j<p. (6)

After testing for normality, the next step is to evaluate the accuracy of the model. Based
on the Shapiro-Wilk statistic, W, we propose the combination index, @, for judging the quality
of the factor model. Define the index as

Q=W(@{ —Fk-RMS)>. (7)
Note that @ is composed of two parts: the W statistic measures the normality of the residuals
and the term 1 — k- RM .S measures the accuracy of the model. The closer to normality the data
are, the smaller the W statistic will be. That is, the test rejects the hypothesis of normality
for large W. Thus, if the residuals satisfy the normality assumption and since the root mean
square is typically much less than 1/k, the Q-index is usually less than one. Furthermore, the
greater the value of (), the better the model fits the data. This follows because as the fit of the

model improves, the RMS term converges to zero, which implies that @) approaches W.

83 Monte Carlo Simulation

In the simulation study, we generate 1000 data sets with a three typical distributions:
1) o ~ Ng(06,%). It’s Multivariate normal distribution Ng(0g,X).
2) x ~ Mtg(0g,X). It’s Multivariate t-distribution Mtg(0g,X)
3) v~ GAMMA(0g,X) It’s Centerized Gamma distribution, i.e. Gamma(X)-E(Gamma(X))

where 0, is a g-dimensional zero vector and ¥ is the sample correlation covariance matrix. Since
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Y is symmetric, let ¢+ < j and

1 ifi=yj
a= (i,j=1,..,6)
0.75—0.1]i —j| ifi#j
Not surprisingly, the distributions in Normals(e.g.Gaussian and t-distribution, see Table 2 and

Table 3) do not need Fishers z transformation below:

Table 2. the results of the residual analysis(Gaussian distribution).

PCM MLM PFM
m| W P Q W P Q W P Q
2 | 0.9484 | 0.4993 | 0.6856 | 0.8890 | 0.0648 | 0.8397 | 0.8627 | 0.0264 | 0.7650
3 10.9396 | 0.3779 | 0.5910 | 0.9241 | 0.2224 | 0.9986 | 0.8627 | 0.0264 | 0.7184
4 | 0.9386 | 0.3646 | 0.5376 | 0.8466 | 0.0155 | 0.6787 | 0.8627 | 0.0264 | 0.6732
Table 3. The results of the residual analysis(t-distribution).
PCM MLM PFM
m| W P Q W P Q W P Q
2 | 0.9755 | 0.9299 | 0.7521 | 0.6674 | 0.0001 | 0.9568 | 0.9776 | 0.9501 | 0.9276
3 | 0.9318 | 0.2877 | 0.8247 | 0.8781 | 0.4445 | 0.9991 | 0.9776 | 0.9501 | 0.9030
4 | 0.8641 | 0.0277 | 0.8018 | 0.6285 | 0.0001 | 0.9799 | 0.8633 | 0.7493 | 0.8894

However, Non-normal(e.g.Gamma distribution) do need Fishers z transformation: From
Table 4, we can see none of methods meet the normality (in the sense of significance level 5%):

Table 4. the results of the residual analysis(before Fishers z transfor-mation).

PCM MLM PFM
\\% P Q \W% P Q A% P Q
0.4512 | <0.0001 | 0.3145 | 0.6417 | <0.0001 | 0.6514 | 0.6172 | 0.0021 | 0.4789
0.9349 | 0.0352 | 0.8460 | 0.4526 | 0.0001 | 0.3992 | 0.6658 | <0.0001 | 0.5752
0.8202 0.0132 0.5523 | 0.7243 | <0.0001 | 0.6879 | 0.9345 | <0.0001 | 0.6486

w8

Table 4 is the results of the residual analysis before Fishers z transfor-mation. We can see
none of methods meet the normality, as all p-values are less than 0.05, so we do the Fishers z
transformation and then the Shapiro-Wilks test. The W and Q values are below.

Finally, from all the tables above we can confirm that k=3 is an optimal choice.However,
by comparing the other methods, we find the methods of PCM perform well for distributions
in Normals, while MLM for Non- normals .



28 Appl. Math. J. Chinese Univ. Vol. 39, No. 1

Table 5. The results of the residual analysis(After Fishers z transformation).

PCM MLM PFM
W P Q W P Q W P Q
0.9147 | <0.0001 | 0.6149 | 0.0846 | 0.0033 | 0.4267 | 0.6139 | <0.0001 | 0.5124
0.9528 | 0.1277 | 0.8247 | 0.4623 | <0.0001 | 0.4076 | 0.7095 | <0.0001 | 0.6111
0.7432 | 0.0001 | 0.4561 | 0.5412 | <0.0001 | 0.4165 | 0.9714 | 0.0001 | 0.6937

w8

84 Examples

4.1 Simulated Population Correlation Matrix

To illustrate the method, we begin with an artificial example presented by [13]. The example
uses a modified version of simulation methods developed by [20]. The correlations among 12
measured variables were constructed as arising from effects of three major common factors and
50 minor factors simulated to represent a type of model error. The data generating parameters

are shown in Table 6.

Table 6. Data generating parameters for simulated population correlation matrix as provided
by [18].

Major Domain Factors

Variable 1 2 3 Uniqueness Minor Variance
1 .95 0 0 .000 .098
2 .95 0 0 .000 .098
3 .95 0 0 .000 .098
4 .95 0 0 .000 .098
5 .95 0 0 .000 .098
6 0 .70 0 413 .098
7 0 .70 0 413 .098
8 0 .70 0 413 .098
9 0 .70 0 413 .098
10 0 0 .50 .653 .098
11 0 0 .50 .653 .098
12 0 0 .50 .653 .098

The three major domain factors are clearly of unequal strength. Under the simulation
method, variance in each measured variable not accounted for by these three major factors was
attributed partly to a unique factor for each measured variable with the remainder attributable
to effects of the 50 minor factors. Using the parameters in Table 6, [13] generated the population
correlation matrix in Table 7.

We determine the Shapiro-Wilk test statistic for four different factor estimation methods,
namely PCM, PFM (with SMC), ULS, and ML. The test statistics with p-values and the
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Table 7. Simulated Population Correlation Matrix per [13] based on parameters in Table 6.

1 2 3 4 5 6 7 8 9 10 11 12
1.00
.94 1.00

.87 .88 1.00

.89 .90 .95 1.00

.96 .94 .89 .86 1.00

-.01 -.01 .06 .08 -.04 1.00

-06 -.06 .06 .03 -.06 .53 1.00

.00 -.06 -.04 .02 -.06 .49 .52 1.00

-.01 .05 -.02 -.06 .04 .45 .45 .42 1.00

.06 .07 -.02 .02 .05 .02 -.06 -.04 .02 1.00

.04 .05 -.05 -.06 .07 -.05 -.05 -.04 .05 .29  1.00

.01 -.06 -.02 -.07 .04 -.06 .00 .02 .00 .21 .27  1.00

—_ =
DS ©0-1o Uk wi e

corresponding Q index values are shown in Table 8.

Table 8. Shapiro-Wilk statistic for 4 factor estimation methods, with corresponding p-values
and Q indices. Only PFM and ULS satisfy the normality assumption. Note that they also have
the largest emprircal quantified index values.

W P-value Q
PCM 0.8307 < 0.0001 0.5135
PFM 0.9844 0.5766  0.8224
ULS 0.9790 0.3249 0.8311
ML  0.5987 < 0.0001 0.4193

It is apparent that the normality assumption is only satisfied by PFM and ULS. Furthermore,
as depicted in Table 9, PFM and ULS estimate the true major domain factors the best, whereas
PCM somewhat overestimates factors 2 and 3 and the maximum likelihood method performs
poorly when extracting the third factor. This observation agrees with the result given by [13].

Hence, this example shows that the best extraction methods were the ones whose residuals
were normally distributed, as shown via Shapiro-Wilk hypothesis tests. This corresponds to

the methods with the largest empirical quantified index values.

4.2 Semantic Differential Rating of Words

In a study conducted by [6], semantic differential ratings were obtained based on the fol-
lowing 8 scales: (1) friendly/unfriendly, (2) good/bad, (3) nice/awful, (4) brave/not brave, (5)
big/little, (6) strong/weak, (7) moving/still, and (8) fast/slow. They measured the connotative
meaning of 487 words as provided by fifth-grade students and studied the mean semantic dif-
ferential ratings. For one list of 292 words, the intercorrelations among the ratings are provided
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Table 9. Factor loadings obtained for the 4 extraction methods obtained via oblique rotation.
PFM and ULS retrieve the major factor loading fairly well, whereas PCM slightly overestimates
the loadings for factors 2 and 3 and ML poorly estimates the loadings for factor 3.

PCM PFM ULS ML

1 2 3 1 2 3 1 2 3 1 2 3
X1 0.97 -0.02 0.05 | 0.96 -0.02 0.08 | 0.96 -0.02 0.07 | 0.96 -0.02 0.15
X2 0.97 -0.02 0.03 | 0.96 -0.02 0.06 | 0.96 -0.03 0.05 | 0.95 -0.02 0.09
X3 0.95 0.03 -0.06 | 0.95 003 -0.10 | 0.94 0.03 -0.09 | 0.96 0.03 -0.10
X4 0.96 0.03 -0.08 | 0.95 003 -0.13 | 0.95 0.03 -0.11 | 0.97 0.01 -0.25
X5 0.97 -0.04 0.08 | 0.96 -0.04 0.13 | 0.96 -0.04 0.11 | 0.96 -0.02 0.28
X6 0.02 0.80 -0.05| 0.02 0.69 -0.06 | 002 0.72 -0.05 | 0.03 0.71 -0.18
X7 | -0.02 0.81 -0.06 | -0.01 o0.71 -0.08 | -0.01 0.74 -0.07 | -0.01 0.74 -0.12
X3 -0.03 0.78 -0.02 | -0.03 0.69 -0.03 | -0.03 0.69 -0.03 | -0.02 0.67 -0.11
Xo 0.00 0.73 0.10 0.00 0.65 0.11 0.00 0.62 0.09 | -0.01 0.67 0.23
X10 | 004 -0.01 0.69 | 0.03 -0.01 0.44 | 0.03 -0.01 0.45 | 0.04 -0.02 0.06
X11 0.01 -0.02 0.76 | 0.01 -0.02 0.52 | 0.01 -0.02 0.63 | 0.00 -0.02 0.25
X112 | -0.03 0.00 0.67 | -0.03 0.00 0.45 | -0.02 0.00 0.42 | -0.02 0.00 0.21

in Table 10.

Table 10. Correlation matrix of mean semantic differential ratings for a list of 292 words based
on 8 scales.

1 2 3 4 ) 6 7 8
1.00
95 1.00
96 .98 1.00
.68 .70 .68 1.00
33 .35 31 52 1.00
.60 .63 .61 .79 .61  1.00
21 A9 .19 43 31 42 1.00
B30 .31 31 b7 .29 .57 .68 1.00

0 O Uik Wi

[19] points out that the reduced correlation matrix (kg = 4) is dominated by one root and
that, while Kaiser’s[10] measure of sampling adequacy suggest 2 factors is sufficient, despite
small residuals, the 2-factor solution is statistically a poor fit. Furthermore, they note that the
3-factor solution appears to result in a sing factor that tries to explain more than 100% of the
common variance. Thus, they declare that the data set is inappropriate for factor analysis.

To test their assertion, we investigated the normality of the residuals and the ) values for
the same methods used in the previous example.

Per Table 11, only one scenario met the normality assumption at the 5% level of significance.
It should also be observed that the 3-factor solution obtained via ULS also has the largest value
for Q. Therefore, ULS with three factors yields the best solution.

Applying ULS and extracting 3 factors, we get the factor loading matrix and specific variance
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Table 11. Results of Shapiro-Wilk test on the fitted model of the semantic attributes. The
asterisk denotes the normality assumption is satisfied (p > 0.05). The 3-factor solution via
ULS appears to be the best model since it has the largest @-index value.

PCM PFM ULS ML
W Q W Q W Q W Q
21 0.9023 0.6504 | 0.9061 0.7273 | 0.8821  0.7103 | 0.6170 0.4769
0.8802 0.6574 | 0.8510 0.7428 | 0.9822* 0.9279 | 0.8084 0.7528
4| 0.8529 0.6656 | 0.8510 0.7084 | 0.6857  0.6642 | 0.8552 0.8350

w

as shown in Table 12.

Table 12. Loading matrix of the semantic attributes data using oblique rotation. Most of the
variability is explained by the 3 factors. Factors 1, 2 and 3 appear to represent a person’s level
of kindness, courage, and movement, respectively.

Factor Loadings

Variable 1 2 3 Specific Variance
friendly /unfriendly 0.9492 0.0234 -0.0042 0.0985
good/bad 0.9585 0.0616  -0.0320 0.0765
nice/awful 1.0150 -0.0369 0.0124 -0.0317
brave/not brave 0.3117 0.5446 0.1512 0.5834
big/little -0.1649 0.8993 -0.1719 0.1344
strong/weak 0.1085 0.8105 0.0483 0.3290
moving/still -0.1121  0.1605 0.6160 0.5822
fast/slow 0.0067  -0.0797 1.0464 -0.1013
Eigenvalues 2.9985 1.8001  1.5304

Cumulative % of explained variability =~ 37.48 59.98 79.11

According to the eigenvalues, the three factors explain around 79% of the variability in the
model. Furthermore, careful inspection of the factor loadings enables us to describe that factor
1 is a measure of an individual’s propensity for kindness. Factor 2, which consists primarily of
the attributes brave/not brave, big/little, and strong/weak, might represent a person’s courage

or strength of character. Similarly, the third factor appears to represent movement or one’s

pace of life.

85 Conclusion and Discussion

Unlike current subjective or unquantifiable criteria used to identify common factors, the
criteria we propose can be used to judge whether the data are suitable for EFA, which specifically
determines an appropriate method of factor extraction, and the number of the common factors.
In addition, the method proposed in this paper does not easily leads to systematic bias. Since
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the @ index is related not only to the magnitude of the residuals (i.e. RMS), but also to the
structure of the model (i.e. W), it naturally emphasizes the best factor extraction methods to
use for a given data set, and even ranks them (i.e. larger @ is better).

Residual analysis can detect the systematic bias in a model, for any parameter bias in the
estimation of a common factor model will be reflected in the abnormality of the residuals.
Therefore, checking the normality of the residuals is particularly suitable for exploratory factor
analysis. In order to apply the method to CFA (confirmatory factor analysis), further study
is needed. It is also important to recognize the limitation that the use of the Q-index is most
appropriate when RM S << 1/k. While the examples presented in this paper and other datasets
that we have applied our method to have satisfied this requirement, the root mean square is
not necessarily bounded above by 1/k. Further research is needed to determine under what
scenarios or how frequently this requirement would not be met.

Measures of model fit are also one of the most important aspects of structural equation
modeling (SEM). There are already dozens of model fit indices in the process of structural
equation modeling [14,21]. However, how to determine the adequacy of an SEM remains difficult
and unsolved due to the conflicting opinions on which model best fits the observed data. Use
of our proposed Q-index in conjunction with checking for normality distributed residuals would
help alleviate this problem.
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