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The tangential k-Cauchy–Fueter type operator and

Penrose type integral formula on the generalized complex

Heisenberg group

REN Guang-zhen1 SHI Yun2,∗ KANG Qian-qian1

Abstract. The tangential k-Cauchy–Fueter operator and k-CF functions are counterparts of

the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the the-

ory of several complex variables, respectively. In this paper, we introduce a Lie group that the

Heisenberg group can be imbedded into and call it generalized complex Heisenberg. We inves-

tigate quaternionic analysis on the generalized complex Heisenberg. We also give the Penrose

integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex.

§1 Introduction

The generalized complex Heisenberg group H is the complex space C8 with the multiplication

(y, s) · (ŷ, ŝ) :=
(
y + ŷ, s+ ŝ− 2yTJŷ

)
, (1.1)

where

(y, s) :=

((
y00′ y01′

y10′ y11′

)
,

(
s0′0′ s0′1′

s1′0′ s1′1′

))
∈ C8, (1.2)

and J =

(
0 1

1 0

)
.

In the classical flat case, by complexifying 4-D Minkowski space as C4, one can construct

twistor space by using complex geometry method (cf. [6, 8, 14]). The Penrose transform was

originally used by Eastwood, Penrose and Wells [7] to construct holomorphic solutions to mass-

less field equations over the complexified Minkowski space, and was generalized by Baston [2]

to complexified quaternionic Kähler manifolds. The twistor transformation for the Heisenberg

group is given in [9] and we use the twistor method to study a horizontal ASD equations on

the Heisenberg group [10].
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In this paper, we will use the twistor method to define the α-planes over H. The moduli

space of all α-planes is the twistor space P. Then we have the double fibration

P η←− C8 × CP 1 τ−→ C8.

We will write down a local coordinate chart of the double fibration in this paper.

We can construct a differential complex, the tangential k-Cauchy–Fueter complex, with the

first operator to be the tangential k-Cauchy–Fueter type operator D
(k)
0 :

0→ C∞(Ω,V0)
D

(k)
0−−−→ C∞(Ω,V1)

D
(k)
1−−−→ C∞(Ω,V2)→ 0, (1.3)

for a domain Ω in H, where

Vj :=⊙k−j C2 ⊗ ∧jC2, j = 0, 1 (1.4)

for fixed k = 0, 1, · · · . Here ⊙pC2 is the pth symmetric power of C2. See [11, Theorem 2.1]

and [9, Theorem 1.3] for the similar construction of tangential k-Cauchy-Fueter operator on the

right quaternionic Heisenberg group and Heisenberg group, respectively. It is a generalization of

k-Cauchy-Fueter complex on the quaternionic space Hn (cf. [3–5,12,13] and reference therein).

In Section 2, we introduce the α-planes and the twistor space of the generalized complex

Heisenberg group. In Section 3, we give the definition of the tangential k-Cauchy–Fueter type

operators on the generalized complex Heisenberg group and their basic properties. We also prove

the Penrose-type integral formula on the generalized complex Heisenberg group. In Section 4,

we prove that (1.3) is a complex.

§2 α-planes and the twistor space of the generalized complex

Heisenberg group

The left translation over H is

τ(y′,s′) : (y, s) 7→ (y′, s′) · (y, s), (y, s) ∈ H (2.1)

for fixed (y′, s′) ∈ H. A vector field V over H is called left invariant if for any (y′, s′) ∈ H, we

have

τ(y′,s′)∗V = V,

where τ(y′,s′) is the left translation in (2.1). Define

(VAA′f) (y, s) :=
d

dt
f((y, s) · (teAA′ ,0))

∣∣∣∣
t=0

,

(SA′B′f)(y, s) :=
d

dt
f ((y, s) · (0, teA′B′))

∣∣∣∣
t=0

,

for A,B = 0, 1, where eAB′ (eA′B′) is a vector in C4 with all entries vanishing except for the

(AB′)-entry ((A′B′)-entry) to be 1. We have left invariant vector fields on H:

V00′ :=
∂

∂y00′
− 2y10′S0′0′ − 2y11′S1′0′ , V01′ :=

∂

∂y01′
− 2y10′S0′1′ − 2y11′S1′1′ ,

V10′ :=
∂

∂y10′
− 2y00′S0′0′ − 2y01′S1′0′ , V11′ :=

∂

∂y11′
− 2y00′S0′1′ − 2y01′S1′1′ ,

SA′B′ :=
∂

∂sA′B′
,

(2.2)

where A′, B′ = 0′, 1′. The left invariant horizontal vector fields satisfy the following proposition.
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Proposition 2.1. {VAA′ , SA′B′} spans a non-Abelian subalgebra, whose brackets satisfy

[V00′ , V11′ ] = [V10′ , V01′ ] = −2S0′1′ + 2S1′0′ , (2.3)

and all other brackets vanish.

Proof. By direct calculation, we have

[V00′ , V11′ ] =

[
∂

∂y00′
− 2y10′S0′0′ − 2y11′S1′0′ ,

∂

∂y11′
− 2y00′S0′1′ − 2y01′S1′1′

]
=

∂

∂y00′
(−2y00′S0′1′)−

∂

∂y11′
(−2y11′S1′0′) = −2S0′1′ + 2S1′0′ .

Similarly, we have [V10′ , V01′ ] = −2S0′1′ + 2S1′0′ .

Let 1-forms
{
θAA′

, θC
′D′
}
be dual to left invariant vector fields {VAA′ , SC′D′} in (2.2) on H,

i.e. θAA′
(VBB′) = δABδA′B′ , θAA′

(SC′D′) = 0, θC
′D′

(VBB′) = 0, θA
′B′

(SC′D′) = δA′C′δB′D′ ,

where A,B = 0, 1 and A′, B′, C ′, D′ = 0′, 1′. Then for a function u on H, we have

du =
∑
A,A′

VAA′u · θAA′
+
∑
C′,D′

SC′D′u · θC
′D′

.

By the expression of VAA′ in (2.2), we get that θAA′
= dyAA′ and

θ0
′0′ := ds0′0′ + 2y10′dy00′ + 2y00′dy10′ , θ0

′1′ := ds0′1′ + 2y10′dy01′ + 2y00′dy11′ ,

θ1
′0′ := ds1′0′ + 2y01′dy10′ + 2y11′dy00′ , θ1

′1′ := ds1′1′ + 2y11′dy01′ + 2y01′dy11′ .

Exterior differentiation gives us

dθAA′
= 0, dθA

′A′
= 0,

for A = 0, 1, A′ = 0′, 1′, and

dθ1
′0′ = −2θ00

′
∧ θ11

′
− 2θ10

′
∧ θ01

′
= −dθ0

′1′ .

For fixed 0 ̸= (π0′ , π1′) ∈ C2, take

VA := π0′VA0′ − π1′VA1′ , A = 0, 1. (2.4)

We have

[V0, V1] = 0,

by Proposition 2.1. Namely,

span{V0, V1}
is an Abelian Lie subalgebra and an integrable distribution for fixed 0 ̸= (π0′ , π1′) ∈ C2. Their

integral surfaces are hyperplanes, which we also call α-planes. The twistor space P is the moduli

space of all α-planes, which is a 7-D complex manifold. We have the double fibration over 8-D

generalized complex Heisenberg group as follows

P η←− F = C8 × CP 1 τ−→ H ∼= C8.

If we use the nonhomogeneous coordinates, ζ = π0′
π1′

, ζ̃ = π1′
π0′

, the vector field VA in (2.4) can

be rewritten as

VA = π1′V
ζ
A = π0′ Ṽ

ζ̃
A,

where

V ζ
A = ζVA0′ − VA1′ ,

and

Ṽ ζ̃
A = VA0′ − ζ̃VA1′ .
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We can describe α-planes, the integral surfaces of V0, V1, explicitly as follows. C8 ×CP 1 is

the complex manifold with two coordinate charts C8 × C and C8 × C, glued by the mapping

κ : C8 × C \ {0} → C8 × C \ {0} given by

(y, s, ζ) 7−→
(
y, s, ζ−1

)
.

Then if we use the nonhomogeneous coordinates, τ : C8 ×CP 1 −→ C8 is given by (y, s, ζ) −→
(y, s) and

(
y, s, ζ̃

)
−→ (y, s). Let us check that the integral surfaces of V ζ

A and V ζ̃
A lifted to

C8×CP 1 by τ are the fiber of the mapping η : C8×C→ C7 and η̃ : C8×C→ C7, respectively.

Proposition 2.2. One piece of the fiber of the mapping η : H× C→W ∼= C7 is given by

ω = η(y, s, ζ) =



η0(y, s, ζ)

η1(y, s, ζ)

η2(y, s, ζ)

η3(y, s, ζ)

η4(y, s, ζ)

η5(y, s, ζ)

η6(y, s, ζ)


=



y00′ + ζy01′ ,

y10′ + ζy11′ ,

s0′0′ + ζs0′1′ ,

s1′0′ + ζs1′1′ ,

s0′0′ + ζ (s0′1′ + s1′0′) + ζ2s1′1′ ,

s0′0′ + s1′1′ + ⟨y0′ ,y0′⟩+ ⟨y1′ ,y1′⟩,
ζ,


∈W,

where

⟨yA′ , yB′⟩ = y0A′y1B′ + y1A′y0B′ ,

for A′, B′ = 0′, 1′. Then τ ◦ η−1(ω) is a 4-D plane parameterized as

y01′ = t0,

y11′ = t1,

s0′1′ = t2,

s1′1′ = t3,

y00′ = ω0 − ζt0,

y10′ = ω1 − ζt1,

s0′0′ = ω2 − ζt2,

s1′0′ = ω3 − ζt3,

with parameters t0, t1, t2, t3 ∈ C. V ζ
0 and V ζ

1 are tangential to this plane, and so it is an α-plane.

Proof. For A = 0, we have

V ζ
0 ωB = (ζV00′ − V01′)ωB =


ζδ0B − ζδ0B = 0, when B = 0, 1,

−2y10′ζ + 2y10′ζ = 0, when B = 2,

−2y11′ζ + 2y11′ζ = 0, when B = 3,

ζ (−2y10′ − 2y11′ζ)−
(
−2y10′ζ − 2y11′ζ

2
)
= 0, when B = 4.

(2.5)

Similarly, for A = 1, we have

V ζ
1 ωB = (ζV10′ − V11′)ωB =


ζδ1B − ζδ1B = 0, when B = 0, 1,

−2y00′ζ + 2y00′ζ = 0, when B = 2,

−2y01′ζ + 2y01′ζ = 0, when B = 3,

ζ (−2y00′ − 2y01′ζ)−
(
−2y00′ζ − 2y01′ζ

2
)
= 0, when B = 4.

(2.6)
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By expressions of VAA′ ’s in (2.2), we have

V00′(ω5) = 2y10′ − 2y10′ = 0, V01′(ω5) = 2y11′ − 2y11′ = 0,

V10′(ω5) = 2y00′ − 2y00′ = 0, V11′(ω5) = 2y01′ − 2y01′ = 0.
(2.7)

So we have

V ζ
A(ω5) = 0.

Note that for a fixed point ω = (ω0, · · · , ω5, ζ) ∈ W , η−1(ω) in C8 × C has fixed last

coordinate ζ. So τ ◦ η−1(ω) is the plane determined by

η0(y, s, ζ) = ω0, · · · , η5(y, s, ζ) = ω5.

The solutions of linear equations


y00′ + ζy01′ = ω0,

y10′ + ζy11′ = ω1,

s0′0′ + ζs0′1′ = ω2,

s1′0′ + ζs1′1′ = ω3,

are given by y01′ = t0, y00′ = ω0 −

t0ζ, y11′ = t1, y10′ = ω1 − t1ζ, s0′1′ = t2, s0′0′ = ω2 − t2ζ, s1′1′ = t3, s1′0′ = ω3 − t3ζ with

parameters t0, t1, t2, t3 ∈ C.

On the other hand, if π0′ ̸= 0, integral surfaces of Ṽ ζ̃
0 and Ṽ ζ̃

1 are fibers of the mapping

η̃ : C8 × C −→ W̃ ∼= C7 given by

ω̃ = η̃
(
y, s, ζ̃

)
=



η̃0

(
y, s, ζ̃

)
η̃1

(
y, s, ζ̃

)
η̃2

(
y, s, ζ̃

)
η̃3

(
y, s, ζ̃

)
η̃4

(
y, s, ζ̃

)
η̃5

(
y, s, ζ̃

)
η̃6

(
y, s, ζ̃

)


=



ζ̃y00′ + y01′ ,

ζ̃y10′ + y11′ ,

ζ̃s0′0′ + s0′1′ ,

ζ̃s1′0′ + s1′1′ ,

ζ̃2s0′0′ + ζ̃ (s0′1′ + s1′0′) + s1′1′ ,

s0′0′ + s1′1′ + ⟨y0′ ,y0′⟩+ ⟨y1′ ,y1′⟩,
ζ̃


∈ W̃ .

Then the transition function becomes

Φ : W \ {ζ = 0} → W̃ \ {ζ̃ = 0}

(ωk, ω4, ω5, ζ) 7→
(
ω̃k, ω̃4, ω̃5, ζ̃

)
=
(
ζ−1ωk, ζ

−2ω4, ω5, ζ
−1
)
,

where k = 0, 1, 2, 3, which glues W and W̃ to get a complex manifold P. It is the moduli space

of all α-planes, which is our twistor space.

§3 The Penrose integral formula

We denote by ⊙pC2 the p-th symmetric power of C2. Its element is denoted by a 2p-tuple

(fA′
1···A′

p
), A′

1, · · · , A′
p = 0′, 1′, which are invariant under permutations of subscripts. For k =

1, 2, · · · , the tangential k-Cauchy–Fueter operator D
(k)
0 : C1

(
H,⊙kC2

)
→ C0

(
H,⊙k−1C2 ⊗ C2

)
is given by (

D
(k)
0 f

)
A′

2···A′
kA

:=
∑

A′
1=0′,1′

V
A′

1

A fA′
1A

′
2···A′

k
. (3.1)
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Here we use matrices

(εA′B′) =

(
0 1

−1 0

)
and

(
εA

′B′
)
=

(
0 −1
1 0

)
to raise or lower primed indices:

V A′

A =
∑

B′=0′,1′

VAB′εB
′A′

,

i.e.

V 0′

A = VA1′ , V 1′

A = −VA0′ . (3.2)

D
(0)
0 : C∞(H,C)→ C∞(H,∧2C2) is given by(

D
(0)
0 f

)
[AB]

=
∑

A′=0′,1′

VA′[AV
A′

B] f, (3.3)

where A,B = 0, 1, and A′
2, · · · , A′

k = 0′, 1′. Here 2ϕ[AB] := ϕAB −ϕBA for ϕ ∈ C∞(H,C2⊗C2)

is the skew-symmetrization, and we interchange the order of indices and write VA′A := VAA′ ,

since it is convenient for taking skew-symmetrization. Therefore we have
∑

A′=0′,1′

VA′[AV
A′

B] =∑
A′=0′,1′

(
VAA′V A′

B − VBA′V A′

A

)
.

A ⊙kC2-valued distribution f on Ω ⊂ H is called k-CF if D
(k)
0 f = 0 in the sense of distri-

butions. For f holomorphic on C7\C6, where

C6 =
{
ω = (ω0, ω1, · · · , ω6) ∈ C7|ω6 = 0

}
,

we define the Penrose-type integral Pkf ∈ C∞(H,⊙kC2) by

(Pkf)A′
1A

′
2···A′

k
(y, s) :=

∮
|ζ|=1

ζA
′
1+A′

2+···+A′
kf(ω0, ω1, · · · , ω6)dζ. (3.4)

where A′
i = 0′, 1′. In fact, ω is the mapping from H×C to the twistor space P of the generalized

complex Heisenberg group H.

Theorem 3.1. For k = 0, 1, 2, · · · , Pkf is k-CF if f is holomorphic on C7\C6.

Proof. (1) For k = 1, 2, · · · , act VAA′ on both sides of (3.4) and use the chain rule of derivatives

and (2.7) to get,

V00′(Pkf)A′
1···A′

k
(y, s)

=

∮
|ζ|=1

ζA
′
1+···+A′

k

[
∂f

∂ω0
(ω)− 2y10′

(
∂f

∂ω2
(ω) +

∂f

∂ω4
(ω)

)
− 2y11′

(
∂f

∂ω3
(ω) + ζ

∂f

∂ω4
(ω)

)]
dζ,

V01′(Pkf)A′
1···A′

k
(y, s) =

∮
|ζ|=1

ζA
′
1+···+A′

k+1

[
∂f

∂ω0
(ω)− 2y10′

(
∂f

∂ω2
(ω) +

∂f

∂ω4
(ω)

)
− 2y11′

(
∂f

∂ω3
(ω) + ζ

∂f

∂ω4
(ω)

)]
dζ.

(3.5)

So we have

V00′(Pkf)1′A′
2···A′

k
(y, s) = V01′(Pkf)0′A′

2···A′
k
(y, s),

which is equivalent to ∑
A′

1=0′,1′

V
A′

1
0 (Pkf)A′

1A
′
2···A′

k
(y, s) = 0,
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by (3.2). Similarly, for A = 1,

V10′(Pkf)A′
1···A′

k
(y, s)

=

∮
|ζ|=1

ζA
′
1+···+A′

k

[
∂f

∂ω1
(ω)− 2y00′

(
∂f

∂ω2
(ω) +

∂f

∂ω4
(ω)

)
− 2y01′

(
∂f

∂ω3
(ω) + ζ

∂f

∂ω4
(ω)

)]
dζ,

V11′(Pkf)A′
1···A′

k
(y, s) =

∮
|ζ|=1

ζA
′
1+···+A′

k+1

[
∂f

∂ω1
(ω)− 2y00′

(
∂f

∂ω2
(ω) +

∂f

∂ω4
(ω)

)
− 2y01′

(
∂f

∂ω3
(ω) + ζ

∂f

∂ω4
(ω)

)]
dζ.

(3.6)

Then by (3.2) and (3.6), we have∑
A′

1=0′,1′

V
A′

1
1 (Pkf)A′

1A
′
2···A′

k
(y, s) = 0.

Namely, D
(k)
0 (Pkf)(y, s) = 0 by (3.1).

(2) For k = 0, by (3.2) and the brackets in (2.3), we have

2
∑

A′=0′,1′

VA′[AV
A′

B] =
∑

A′=0′,1′

VA′AV
A′

B −
∑

A′=0′,1′

VA′BV
A′

A

= VA0′VB1′ − VA1′VB0′ − VB0′VA1′ + VB1′VA0′

= 2(VA0′VB1′ − VB0′VA1′)− [VA0′ , VB1′ ] + [VB0′ , VA1′ ].

So for A = 0, B = 1,

2
∑

A′=0′,1′

VA′[0V
A′

1] = 2(V00′V11′ − V10′V01′).

By (3.5) and (3.6), we have

V00′V11′(Pkf)A′
1···A′

k
(y, s) =

∮
|ζ|=1

ζA
′
1+···+A′

k+1

{
−2
(

∂f

∂ω2
(ω) +

∂f

∂ω4
(ω)

)
+

[
∂2f

∂ω0∂ω1
(ω)− 2y10′

(
∂2f

∂ω2∂ω1
(ω) +

∂2f

∂ω4∂ω1
(ω)

)
− 2y11′

(
∂2f

∂ω3∂ω1
(ω) + ζ

∂2f

∂ω4∂ω1
(ω)

)]
− 2y00′

[
∂2f

∂ω0∂ω2
(ω)− 2y10′

(
∂2f

∂ω2
2

(ω) +
∂2f

∂ω4∂ω2
(ω)

)
− 2y11′

(
∂2f

∂ω3∂ω2
(ω) + ζ

∂2f

∂ω4∂ω2
(ω)

)]
− 2y00′

[
∂2f

∂ω0∂ω4
(ω)− 2y10′

(
∂2f

∂ω2∂ω4
(ω) +

∂2f

∂ω2
4

(ω)

)
− 2y11′

(
∂2f

∂ω3∂ω4
(ω) + ζ

∂2f

∂ω2
4

(ω)

)]
− 2y01′

[
∂2f

∂ω0∂ω3
(ω)− 2y10′

(
∂2f

∂ω2∂ω3
(ω) +

∂2f

∂ω4∂ω3
(ω)

)
− 2y11′

(
∂2f

∂ω2
3

(ω) + ζ
∂2f

∂ω4∂ω3
(ω)

)]
−2y01′ζ

[
∂2f

∂ω0∂ω4
(ω)− 2y10′

(
∂2f

∂ω2∂ω4
(ω) +

∂2f

∂ω2
4

(ω)

)
− 2y11′

(
∂2f

∂ω3∂ω4
(ω) + ζ

∂2f

∂ω2
4

(ω)

)]}
dζ,

and

V10′V01′(Pkf)A′
1···A′

k
(y, s) =

∮
|ζ|=1

ζA
′
1+···+A′

k+1

{
−2
(

∂f

∂ω2
(ω) +

∂f

∂ω4
(ω)

)
+

[
∂2f

∂ω1∂ω0
(ω)− 2y00′

(
∂2f

∂ω2∂ω0
(ω) +

∂2f

∂ω4∂ω0
(ω)

)
− 2y01′

(
∂2f

∂ω3∂ω0
(ω) + ζ

∂2f

∂ω4∂ω0
(ω)

)]
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− 2y10′

[
∂2f

∂ω1∂ω2
(ω)− 2y00′

(
∂2f

∂ω2
2

(ω) +
∂2f

∂ω4∂ω2
(ω)

)
− 2y01′

(
∂2f

∂ω3∂ω2
(ω) + ζ

∂2f

∂ω4∂ω2
(ω)

)]
− 2y10′

[
∂2f

∂ω1∂ω4
(ω)− 2y00′

(
∂2f

∂ω2∂ω4
(ω) +

∂2f

∂ω2
4

(ω)

)
− 2y01′

(
∂2f

∂ω3∂ω4
(ω) + ζ

∂2f

∂ω2
4

(ω)

)]
− 2y11′

[
∂2f

∂ω1∂ω3
(ω)− 2y00′

(
∂2f

∂ω2∂ω3
(ω) +

∂2f

∂ω4∂ω3
(ω)

)
− 2y01′

(
∂2f

∂ω2
3

(ω) + ζ
∂2f

∂ω4∂ω3
(ω)

)]
−2y11′ζ

[
∂2f

∂ω1∂ω4
(ω)− 2y00′

(
∂2f

∂ω2∂ω4
(ω) +

∂2f

∂ω2
4

(ω)

)
− 2y01′

(
∂2f

∂ω3∂ω4
(ω) + ζ

∂2f

∂ω2
4

(ω)

)]}
dζ.
So we have (

D
(0)
0 Pkf

)
[AB]

=
∑

A′=0′,1′

VA′[AV
A′

B] (Pkf) = 0.

The theorem is proved.

§4 The tangential k-Cauchy-Fueter type complex over H

The second differential operator in (1.3) is as follows. D
(k)
1 : C∞(Ω,⊙k−1C2 ⊗ C) →

C∞(Ω,⊙k−1C2 ⊗ C2) is given by(
D

(k)
1 f

)
A0A1A′

1···A′
k−2

= 2
∑

A′=0′,1′

V A′

[A0
fA1]A′A′

1···A′
k−2

. (4.1)

The following proposition holds directly by (2.3) and (3.2).

Proposition 4.1.
[
V A′

A , V B′

B

]
= 0 except for[

V 1′

0 , V 0′

1

]
=
[
V 1′

1 , V 0′

0

]
= 2S0′1′ − 2S1′0′ .

In particular, we have [
V 0′

A , V 1′

B

]
+
[
V 1′

A , V 0′

B

]
= 0, (4.2)

for any A,B = 0, 1.

Lemma 4.1.

V
(A′

[A V
B′)
B] = 0,

for any A,B = 0, 1 and A′, B′ = 0′, 1′.

Proof. Note that

2V A′

[A V A′

B] = V A′

A V A′

B − V A′

B V A′

A =
[
V A′

A , V A′

B

]
= 0,

by Proposition 4.1, and

2V 0′

[AV 1′

B] + 2V 1′

[AV 0′

B] = V 0′

A V 1′

B − V 0′

B V 1′

A + V 1′

A V 0′

B − V 1′

B V 0′

A =
[
V 0′

A , V 1′

B

]
+
[
V 1′

A , V 0′

B

]
= 0,

by (4.2). The lemma is proved.

Now we can check (1.3) to be a complex by direct calculation.

Theorem 4.1. (1.3) is a complex, i.e.

D
(k)
1 ◦D

(k)
0 = 0.
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Proof. For A,B = 0, 1 and A′
3, · · · , A′

k = 0′, 1′, we have(
D

(k)
1 ◦D

(k)
0 f

)
ABA′

3···A′
k

=2
∑

A′=0′,1′

V A′

[A

(
D

(k)
0 f

)
B]A′A′

3···A′
k

=2
∑

A′,B′=0′,1′

V A′

[A V B′

B] fB′A′A′
3···A′

k

=2
∑

A′,B′=0′,1′

V
(A′

[A V
B′)
B] fB′A′A′

3···A′
k
= 0,

by Lemma 4.1 and fB′A′A′
3···A′

k
= fA′B′A′

3···A′
k
.
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