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Diophantine equations and Fermat’s last theorem for

multivariate (skew-)polynomials

PAN Jie1 JIA Yu-ming2 LI Fang1,∗

Abstract. Fermat’s Last Theorem is a famous theorem in number theory which is difficult

to prove. However, it is known that the version of polynomials with one variable of Fermat’s

Last Theorem over C can be proved very concisely. The aim of this paper is to study the

similar problems about Fermat’s Last Theorem for multivariate (skew)-polynomials with any

characteristic.

§1 Introduction

Fermat’s Last Theorem is a famous theorem in number theory, which is named after the

famous mathematician Pierre de Fermat, who first gave the conjecture in 1637. The theorem

itself is a very simple statement, but it is so difficult that nobody could solve it completely for

358 years until Andrew Wiles gave a complete proof in 1995, for which he was honoured and

received the Fields Medal.

In “Arithmetica”, a book written by the famous Ancient Greek mathematician Diophantus

in the 3rd century A.D., it was stated in Problem II.8 how a given square number can be written

into the sum of two other square numbers. In about 1637, Fermat wrote his Last Theorem in

the margin of Bachet’s edition of the works of Diophantus, which states as follows:

“It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers,

or in general, any power higher than the second, into two like powers. I have discovered a truly

marvellous proof of this, which this margin is too narrow to contain.”

Today we state Fermat’s Last Theorem in this way:

Theorem 1.1 (Fermat’s Last Theorem). The Diophantine equation

xn + yn = zn

has no nontrivial integral solutions for any integer n > 3.
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Fermat only gave the proof of Fermat’s Last Theorem in a special case where n = 4. And

in the following many years, mathematicians figured out the proof for special cases where n =

3, 5, 7. In 1850, Ernst Kummer proved the cases when 2 < n < 100, which extended the results

to a great extent. When it comes to 1922, the English mathematician Louis Mordell posed a

conjecture, the so-called Louis Mordell’s conjecture, by which we can get that the Diophantine

equation xn + yn = zn has at most a finite number of nontrivial primitive integer solutions,

when n > 2. By the year 1983, the conjecture had been solved by Gerd Faltings, a German

mathematician, who won the 1986 Fields Prize for this work. Other mathematicians, such as

Harry Vandiver and Samuel Wagstaff, have extended Kummer’s approach by computational

methods to all primes less than four million by 1993. However, mathematicians still had no

idea how to prove the conjecture for all of the primes.

In about 1955, Goro Shimura and Yutaka Taniyama, two Japanese mathematicians, found

a possible relation between elliptic curves and modular forms, which are two apparently com-

pletely distinct branches of mathematics. This is called the Taniyama-Shimura-Weil theorem,

which makes a great contribution to solving Fermat’s last theorem.

Theorem 1.2 (Taniyama-Shimura-Weil theorem). ([8]) If E is a elliptic curve defined over

Q, and N is its conductor, then there is a new cusp eigenform f of level N , whose Fourier

coefficients cn are integers such that for every prime p not dividing N , cp = ap (where ap is

defined by counting the number of points in E over Fp).

In 1984, Gerhard Frey noted a link between Fermat’s equation and the modularity theorem:

if the pair (a, b, c) is a solution to Fermat’s equation for n > 2, then it could be shown that the

elliptic curve y2 = x(x−an)(x+ bn) would have such unusual properties that it was unlikely to

be modular, thus we can get a contradiction to the modularity theorem, therefore we can see

that all elliptic curves are modular.

At the same time, some mathematicians worked on Fermat’s last theorem on polynomials,

which can be stated as follows:

Theorem 1.3 (Fermat’s last theorem on polynomials). Suppose n is an integer and n > 3.

Then the Diophantine equation

fn(x) + gn(x) = hn(x)

has no nonconstant pairwise coprime polynomial solutions in C[x].

While Fermat’s Last Theorem on integers is extremely difficult to prove, the polynomials

version is easy to solve. It dates back to 1851 when Liouville gave his proof, which involves

integration. Nowadays, there are some easy and basic ways to prove Fermat’s Last Theorem

on polynomials. The easiest version may be the one using Mason-Stothers theorem.

Suppose 0 ̸= f(x) ∈ C[x], we denote

π(f) = the number of distinct roots of f(x).

More specifically, we can write f(x) as

f(x) = c
r∏

i=1

(x− ci)
mi ,
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where c, ci ∈ C, ci ̸= cj ,mj > 1 for i ̸= j ∈ [1, r]. Then π(f) = r.

Theorem 1.4 (Mason-Stothers Theorem). ([6]) Suppose f1(x), f2(x), f3(x) ∈ C[x] with
deg(fi(x)) > 1, i = 1, 2, 3. If f1(x) + f2(x) = f3(x), where f1(x), f2(x), f3(x) are pairwise

coprime. Then

max{deg(f1(x)), deg(f2(x)), deg(f3(x))} 6 π(f1f2f3)− 1.

This theorem can be proved by the basic properties of polynomials, including the divisible

property and the degree of polynomials. The Fermat’s Last Theorem on polynomials is not

hard to prove using this theorem. We omit the proof here, which can be found in relevant

books.

It is so interesting that Fermats Last Theorem (FLT) on integers is unbelievably difficult

while its polynomial version is quite direct to prove. Therefore we wonder whether there are

similar results for other algebraic objects. In the following, we will discuss the relative properties

of other polynomials, such as multivariate polynomials.

The paper is organized as follows.

In Section 2 we discuss the FLT problem in a polynomial ring in one variable with the help

of Mason-Stothers theorem over an algebraically closed field. In this paper, for a polynomial

f ∈ F [t], we always denote f ′ = df
dt .

Theorem 2.3 Suppose fi ∈ F [t], deg(fi) > 1 for i = 1, 2, 3, f1, f2, f3 are pairwise coprime and

f1 + f2 = f3. If f2f
′
3 − f ′

2f3 ̸= 0, then max{deg(f1), deg(f2), deg(f3)} 6 π(f1f2f3)− 1.

Then we get

Theorem 2.4 For any n > 3, the equation

fn
1 + fn

2 = fn
3

has no non-constant pairwise coprime solution (f1, f2, f3) in F [t] satisfying n(fif
′
j − f ′

ifj) ̸=
0, i ̸= j.

In Section 3, we focus on the FLT problem in a polynomial ring with multiple variables to

get

Theorem 3.3 Let K be an integral domain with char K = 0, then there are no polynomials

f1, f2, f3 ∈ K[x1, x2, · · · , xm−1, xm] with degxj (fi) > 1 satisfying

fn
1 + fn

2 = fn
3 ,

where j ∈ [1,m] and n > 3 is an integer.

As well as for some cases, FLT holds when char K is a prime, see Proposition 3.5. And

then we figure out the solutions of the equation when FLT does not hold.

Theorem 3.7 Assume that K is an integral domain with char K = p, p is a prime, n > 3

and n = pr for some r ∈ N, then all non-constant solutions to the equation fn
1 + fn

2 = fn
3 in

K[x1, x2, · · · , xm−1, xm] are of the form (f1, f2, a(f1 + f2)), where a ∈ K satisfying an = 1.

In Section 4, we talk about the FLT problem in an ore extension or specially in a skew

polynomial ring to obtain certain specific results.

And finally in Section 5, we raise questions of FLT, or more generally, of ABC problem in

an Euclidean integral domain as our further goals.
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§2 Problems about FLT on polynomials in one variable over

algebraically closed field with arbitrary characteristic

In the first section, we show a proof of Fermat’s Last Theorem of polynomials in one variable

over the complex number field, which is a kind of algebraically closed field. Then we wonder

what’s the case for general algebraically closed field. As is known to all, the complex number

field C has the characteristic zero, but for general algebraically closed field, it may have the

characteristic p, where p = 0 or p is a prime. For the latter case, Mason-Stothers Theorem

doesn’t hold, so we will try to figure out when it is right.

Conjecture 2.1 (FLT of Polynomials in one variable over algebraically closed field). Let n > 3

be an integer. Then the equation

fn
1 (x) + fn

2 (x) = fn
3 (x)

has no nonconstant pairwise coprime solutions in F [x], where F is an algebraically closed field.

This conjecture in general is not true. So in the following we will discuss when it is true.

First of all, we can get for some cases the conjecture is true by generalizing the Mason-

Stothers theorem to an algebraically closed field.

Let F be an algebraically closed field, and f(t) be a non-zero polynomial in F [t]. Then

f(t) can be written as f(t) = c
∏r

i=1(t − ci)
mi , as in the field C of complex numbers, where

c, ci ∈ F . Denote by π(f) the number of distinct roots of f(t), then π(f) = r. It is obvious

that π(fg) 6 π(f) + π(g) if fg ̸= 0, and the equality holds if and only if (f, g) = 1. Here and

in the following (f, g) represents the greatest monic common divisor of f and g. We denote f ′

as the derivative of f .

Lemma 2.2. If f(t) ∈ F [t] and deg(f) > 1, then deg(f) 6 deg((f, f ′)) + π(f).

Proof. Suppose

f(t) = c

r∏
i=1

(t− ci)
mi , c, ci ∈ F.

When char F = 0,we can get that

f(t)

(f(t), f ′(t))
= c(t− c1)(t− c2) · · · (t− cr).

Then

deg(f) = deg((f, f ′)) + deg(c

r∏
i=1

(t− ci)) = deg((f, f ′)) + π(f).

When char F = p, where p is a prime. If for any mi, p - mi, then the case is the same as

char F = 0. If there exist mi1 ,mi2 , · · · ,mik such that p | mis , s = 1, 2, · · · , k, then we have

(t− cis)
mis | f ′(t),thus

f(t)

(f(t), f ′(t))
=

c(t− c1)(t− c2) · · · (t− cr)

(t− ci1) · · · (t− cik)
.

It follows that

deg(f) + k = deg((f, f ′)) + π(f),
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namely

deg(f) = deg((f, f ′)) + π(f)− k < deg((f, f ′)) + π(f).

Therefore,

deg(f) 6 deg((f, f ′)) + π(f).

Theorem 2.3 (Mason-Stothers theorem on an algebraically closed field). Suppose fi ∈ F [t],

deg(fi) > 1 for i = 1, 2, 3, f1, f2, f3 are pairwise coprime and f1 + f2 = f3. If f2f
′
3 − f ′

2f3 ̸= 0,

then max{deg(f1), deg(f2), deg(f3)} 6 π(f1f2f3)− 1.

Proof. It is easy to get that

(f3, f
′
3) | (f2f ′

3 − f ′
2f3), (f2, f

′
2) | (f2f ′

3 − f ′
2f3), (f1, f

′
1) | (f2f ′

1 − f ′
2f1).

And f1 + f2 = f3 implies that

f2f
′
3 − f ′

2f3 = f2(f
′
1 + f ′

2)− f ′
2(f1 + f2) = f2f

′
1 − f ′

2f1.

Thus (f1, f
′
1) | (f2f

′
3 − f ′

2f3). Since f1, f2, f3 are pairwise coprime, we have
∏3

i=1(fi, f
′
i) |

(f2f
′
3 − f ′

2f3). Because f2f
′
3 − f ′

2f3 ̸= 0, so by Lemma 2.2 we get
3∑

i=1

(deg(fi)− π(fi)) 6
3∑

i=1

deg(fi, f
′
i) = deg(

3∏
i=1

(fi, f
′
i))

6 deg(f2f
′
3 − f ′

2f3) 6 deg(f2) + deg(f3)− 1

It follows that

deg(f1) 6
3∑

i=1

π(fi)− 1 = π(f1f2f3)− 1.

Moreover, since f1 + f2 = f3 and f2f
′
3 − f ′

2f3 ̸= 0, we also have f1f
′
3 − f ′

1f3 = (f3 − f2)f
′
3 −

(f ′
3 − f ′

2)f3 = f ′
2f3 − f2f

′
3 ̸= 0. Then similarly, we get

deg(f2) 6 π(f1f2f3)− 1.

Because f1 + f2 = f3, deg(f3) 6 max{deg(f1), deg2} 6 π(f1f2f3) − 1. Thus in summary,

we get

max{deg(f1), deg(f2), deg(f3)} 6 π(f1f2f3)− 1.

Note that when char F = 0, it can be verified that f2f
′
3 − f ′

2f3 is nonzero because f2 and

f3 are coprime. Then in this case, the Theorem 2.3 becomes usual Mason-Stothers Theorem.

By this theorem, we get that the corollary below

Corollary 2.4 (FLT on polynomials for a special case). For any n > 3, the equation

fn
1 + fn

2 = fn
3

has no non-constant pairwise coprime solution (f1, f2, f3) in F [t] satisfying

n(fif
′
j − f ′

ifj) ̸= 0, i ̸= j.

Proof. By Theorem 2.3, we can get that if

f2
n(fn

3 )
′ − (f2

n)′fn
3 = nfn−1

2 fn−1
3 (f2f

′
3 − f ′

2f3) ̸= 0,



164 Appl. Math. J. Chinese Univ. Vol. 39, No. 1

then

ndeg(f1) = deg(fn
1 ) 6 π(fn

1 f
n
2 f

n
3 )− 1 = π(f1f2f3)− 1 6 deg(f1) + deg(f2) + deg(f3)− 1.

Similarly we can replace f1 by f2 and f3 respectively on the left, then we have

ndeg(fi) 6 deg(f1) + deg(f2) + deg(f3)− 1, i = 1, 2, 3.

Add them together we get

n

n∑
i=1

deg(fi) 6 3

n∑
i=1

deg(fi)− 3.

It contradicts to the fact n > 3.

As we mentioned before, n(fif
′
j − f ′

ifj) ̸= 0, i ̸= j is ensured by the pairwise coprime

condition when F is an algebraically closed field with char F = 0. So in this case FLT holds.

Corollary 2.5. Suppose F is an algebraically closed field with char F = 0 and n > 3. Then

the equation

fn
1 + fn

2 = fn
3

has no non-constant pairwise coprime solution (f1, f2, f3) in F [t].

This corollary is essentially Theorem 1.3.

Now we have proved that the Fermat’s last theorem holds over an algebraically closed field

under the condition n(fif
′
j − f ′

ifj) ̸= 0, i ̸= j. Then what is the case when n(fif
′
j − f ′

ifj) = 0?

In this case FLT does not hold in general, however, when it holds is still not clear to us.

§3 Problems about FLT on multivariate polynomials

In the following, we wonder what is the case for polynomials in m variables. We use another

method to deal with the conjecture for polynomials in m variables. The main tool we adopt is

the degree function of polynomials.

Problem 3.1 (FLT on polynomials in m variables). Let n > 3 be an integer. Does the equation

fn
1 (x1, x2, · · · , xm) + fn

2 (x1, x2, · · · , xm) = fn
3 (x1, x2, · · · , xm)

have nonconstant pairwise coprime solutions in K[x1, x2, · · · , xm] for an integral domain K?

It is not true in general. So we will show in Theorem 3.7 what the solutions are in a certain

situation and also present some cases where the conjecture holds in Theorem 3.3 as well as

Proposition 3.5.

3.1 For the case when characteristic is 0

Lemma 3.2. Let K be an integral domain with char K = 0, then there are no polynomials

f1, f2, f3 ∈ K[x] with deg(fi) > 1 satisfying

fn
1 + fn

2 = fn
3 ,

where n > 3 is an integer.
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Proof. Since K is an integral domain, we can embed K in its field of fractions QK. Moreover,

QK can be further embedded in an algebraically closed field QK. Then we have the inclusion

K ↪→ QK ↪→ QK. We have char QK = char K = 0 and by Proposition 2.5 there are no

polynomials f1, f2, f3 ∈ QR[x] with deg(fi) > 1 satisfying fn
1 + fn

2 = fn
3 (n > 3). Therefore

there exist no polynomials f1, f2, f3 ∈ K[x] with deg(fi) > 1 satisfying

fn
1 + fn

2 = fn
3 (n > 3).

Theorem 3.3. Let K be an integral domain with char K = 0, then there are no polynomials

f1, f2, f3 ∈ K[x1, x2, · · · , xm] with degxj (fi) > 1 satisfying

fn
1 + fn

2 = fn
3 ,

where j ∈ [1,m] and n > 3 is an integer.

Proof. Without loss of generality we assume j = m. Denote R = K[x1, x2, · · · , xm−1], then we

can get that R is an integral domain with char R = char K = 0 and

K[x1, x2, · · · , xm] = R[xm].

Then by Lemma 3.2 we can get the conclusion.

In particular, FLT holds when K is a field with char K = 0, which is a generalization of

Theorem 1.3 in multiple variables, that is,

Corollary 3.4. Let K be a field with char K = 0, then there are no polynomials f1, f2, f3 ∈
K[x1, x2, · · · , xm] with degxj (fi) > 1 satisfying

fn
1 + fn

2 = fn
3 ,

where i = 1, 2, 3, j ∈ [1,m] and n > 3 is an integer.

3.2 For the case when the characteristic is a prime

When char K = p is a prime, we also get some results in the following special cases.

Proposition 3.5. Let K be an integral domain with char K = p, where p is a prime, n > 3

is an integer and there is no r ∈ N such that n = pr. Then there are no non-constant solution

f1, f2, f3 ∈ K[x1, x2, · · · , xm] of the equation

fn
1 + fn

2 = fn
3

satisfying one of the following conditions:

(a) f1 ∈ K[x1, x2, · · · , xm−1] with degxm(fi) > 1 for i = 2, 3;

(b) degxm
(fi) > 1 for i = 1, 2, 3, degxm

(f1) ̸= degxm
(f2) and f1, f2 are both irreducible;

(c) degxm(fi) > 1 for i = 1, 2, 3, degxm(f1) = degxm(f2) and degxm(f3 − f2) ̸= degxm(f1).

Proof. Let R = K[x1, x2, · · · , xm−1], then

K[x1, x2, · · · , xm] = K[x1, x2, · · · , xm−1][xm] = R[xm].
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(a) Suppose there are polynomials f1 ∈ R, f2, f3 ∈ R[xm] with deg(fi) > 1, i = 2, 3 such

that fn
1 + fn

2 = fn
3 (n > 3), then

fn
1 = fn

3 − fn
2 = (f3 − f2)(f3

n−1 + f3
n−2f2 + · · ·+ f2

n−1).

It follows that (f3 − f2) | fn
1 . Denote a = f3 − f2 ̸= 0, then

fn
1 + fn

2 = fn
3 = (f2 + a)n = fn

2 +

(
n

1

)
afn−1

2 + · · ·+
(

n

n− 1

)
an−1f2 + an.

So

fn
1 =

(
n

1

)
af2

n−1 + · · ·+
(

n

n− 1

)
an−1f2 + an.

Since a ̸= 0 and n ̸= pr for any r ∈ N, there is i ∈ [1, n− 1] such that
(
n
i

)
̸= 0. It follows that

degxm(

(
n

1

)
af2

n−1 + · · ·+
(

n

n− 1

)
an−1f2 + an) > 1,

which contradicts to the assumption that degxm(f1) = 0.

(b) Without loss of generality, assume degxm(f1) > degxm(f2).

Suppose that there are polynomials f1, f2, f3 ∈ K[x1, x2, · · · , xm] satisfying degxm(fi) > 1

for i = 1, 2, 3, degxm(f1) ̸= degxm(f2), f1, f2 are both irreducible such that fn
1 +fn

2 = fn
3 . Then

we have

fn
1 = fn

3 − fn
2 = (f3 − f2)(f3

n−1 + f3
n−2f2 + · · ·+ f2

n−1).

Therefore, (f3 − f2) | fn
1 . Denote g = f3 − f2 ̸= 0. Because degxm(f1) > degxm(f2), so

degxm(g) > 0. Hence g = f1
k for some positive integer k since f1 is irreducible.

If k = 1, then f1 + f2 = f3, which induces

fn
1 + fn

2 = (f1 + f2)
n = fn

1 +

(
n

1

)
f2f1

n−1 + · · ·+
(

n

n− 1

)
f2

n−1f1 + fn
2 .

Therefore, (
n

1

)
f2f1

n−1 + · · ·+
(

n

n− 1

)
f2

n−1f1 = 0.

But degxm(f1) > degxm(f2), so

degxm(

(
n

1

)
f2f1

n−1 + · · ·+
(

n

n− 1

)
f2

n−1f1) = degxm(

(
n

i

)
f i
2f1

n−i) > 0,

where i is the minimal positive integer satisfying
(
n
i

)
̸= 0 (the existence of such i is ensured by

the assumption that there is no r ∈ N such that n = pr). This leads to a contradiction.

Otherwise if k > 2, we can get that

f1
n−k = f3

n−1 + f3
n−2f2 + · · ·+ f2

n−1.

And degxm(f3) = degxm(f1) > degxm(f2) since fn
1 + fn

2 = fn
3 . It follows that

degxm(f3
n−1 + f3

n−2f2 + · · ·+ f2
n−1) = (n− 1)deg(f3) > (n− k)deg(f1) = deg(f1

n−k),

which also leads to a contradiction.

(c) Assume that there are polynomials f1, f2, f3 ∈ K[x1, x2, · · · , xm] satisfying degxm(fi)

> 1 for i = 1, 2, 3, degxm(f1) = degxm(f2), degxm(f3−f2) ̸= degxm(f1) such that fn
1 +fn

2 = fn
3 .

Then we have

fn
1 = fn

3 − fn
2 = (f3 − f2)(f3

n−1 + f3
n−2f2 + · · ·+ f2

n−1).

Therefore, (f3 − f2) | fn
1 . Denote g = f3 − f2.
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If degxm(g) < degxm(f1) = degxm(f2), since

fn
1 + fn

2 = fn
3 = (g + f2)

n = gn +

(
n

1

)
f2g

n−1 + · · ·+
(

n

n− 1

)
fn−1
2 g + fn

2 ,

then

fn
1 = gn +

(
n

1

)
f2g

n−1 + · · ·+
(

n

n− 1

)
fn−1
2 g.

Thus

degxm(fn
1 ) = degxm(gn +

(
n

1

)
f2g

n−1 + · · ·+
(

n

n− 1

)
fn−1
2 g) = degxm(

(
n

n− i

)
fn−i
2 gi),

where i is the minimal positive integer satisfying
(

n
n−i

)
̸= 0 (the existence of such i is ensured

by the assumption that there is no r ∈ N such that n = pr). So

ndegxm
(f1) = (n− i)degxm

(f2) + idegxm
(g) < ndegxm

(f1),

which is impossible.

If degxm(g) > degxm(f1), then we have degxm(f3) > degxm(f1) = degxm(f2). On the other

hand, however, because fn
1 + fn

2 = fn
3 , we can get that

degxm(fn
3 ) = degxm(fn

1 + fn
2 ) 6 max{degxm(fn

1 ), degxm(fn
2 )} = degxm(fn

1 ),

which leads to a contradiction.

In the proposition above, if the condition degxm(f3 − f2) ̸= degxm(f1) is replaced by

degxm(g) = degxm(f1) = degxm(f2), then we can get g = af1 when f1 is irreducible, where

a ∈ K is a unit, since g | f1, i.e, f3 = af1 + f2. Therefore, in this case if the equation

fn
1 + fn

2 = fn
3 has a solution, say (f1, f2, f3), then either f1 is reducible or there is a unit a ∈ K

satisfying af1 + f2 = f3.

In particular, the above results hold for polynomial rings with one variable. In the second

section, we discuss about the FLT problem when fif
′
j − f ′

ifj ̸= 0 for i ̸= j with the help of

Mason-Stothers Theorem. While in this section, we use the degree function to get more results.

In the above discussion, we mainly focus on cases where char K = 0 or char K = p and

there is no r ∈ N such that n = pr. However, FLT does not hold when char K = p and n = pr

for some r ∈ N. In this case, it can be checked that
(
n
1

)
f1f2

n−1 + · · · +
(

n
n−1

)
fn−1
1 f2 = 0.

Therefore, fn
1 + fn

2 = (f1+ f2)
n, which means that (f1, f2, f1+ f2) is a solution to the equation

fn
1 + fn

2 = fn
3 for any f1, f2 ∈ K[x1, · · · , xm]. So in the following result, we want to figure out

all possible solutions in this specific case.

Lemma 3.6. Assume f, g ∈ K[x] are two polynomials and K is an algebraically closed field.

If there is n ∈ Z>0 such that fn = gn, then f = ag for some a ∈ K satisfying an = 1.

Proof. Suppose f = a1(x − x1)
k1(x − x2)

k2 · · · (x − xs)
ks , where a1, x1, · · · , xs ∈ K, and

k1, · · · , ks are positive integers. If fn = gn, then f | gn and g | fn, hence the roots of f are the

same with those of g. Therefore we can assume that g = a2(x− x1)
p1(x− x2)

p2 · · · (x− xs)
ps .

By fn = gn we can get pi = ki for any i ∈ [1, s] and an1 = an2 . So f = ag, where a = a2

a1
.

As we said before, an integral domain can be naturally embedded in an algebraically closed

field, so in the above lemma we can only assume K is an integral domain. Hence by similar

way, we can get the same conclusion for polynomials in m variables.
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Theorem 3.7. Assume that K is an integral domain with char K = p, p is a prime, n > 3

and n = pr for some r ∈ N, then all non-constant solutions to the equation fn
1 + fn

2 = fn
3 in

K[x1, x2, · · · , xm−1, xm] are of the form (f1, f2, a(f1 + f2)), where a ∈ K satisfying an = 1.

Proof. First we can prove all the non-constant triples (f1, f2, a(f1 + f2)) are solutions to the

equation fn
1 + fn

2 = fn
3 , where f1, f2 ∈ K[x1, x2, · · · , xm−1, xm] and a ∈ K satisfying an = 1.

In fact,

an(f1 + f2)
n = fn

2 +

(
n

1

)
f1f2

n−1 + · · ·+
(

n

n− 1

)
fn−1
1 f2 + fn

1 = fn
1 + fn

2

since char K = p, p is a prime, and n = pr for some r ∈ N.
Next we prove all non-constant solutions to the equation fn

1 +fn
2 = fn

3 inK[x1, x2, · · · , xm−1,

xm] satisfying the relation f3 = a(f2 + f1), where a ∈ K satisfying an = 1. Since char K = p,

p is a prime, and n = pr for some r ∈ N, then(
n

1

)
f1f2

n−1 + · · ·+
(

n

n− 1

)
fn−1
1 f2 = 0.

So if fn
1 + fn

2 = fn
3 , then fn

3 = (f1 + f2)
n. Therefore, by lemma 3.6, f3 = a(f1 + f2), where

a ∈ K satisfying an = 1.

§4 Problems about FLT on skew polynomial rings

Skew polynomial rings are one of the most active and important study objects in noncom-

mutative algebra. Noether and Schmeidler are the first to consider this kind of rings and it is

later systematically studied by Ore in 1933 both in the context of differential equations and

as operators on finite fields. Skew polynomial rings are so important since they are used to

characterize various kinds of radicals such as Jacobson radical, Baer radical, and Krull dimen-

sions of such rings. They are also applied to constructing finite dimensional algebras as well as

classifying all valuations of these algebras. Moreover, they are also applied in solving ordinary

differential equations, control theory and Coding theory.

In this section, we would like to discuss FLT problem on skew polynomial rings.

Definition 4.1. Suppose R is an associative ring with identity 1, α is an nonzero endomorphism

of R. We call the map δ : R → R an α-derivation on R if δ satisfies the relations below:

δ(a+ b) = δ(a) + δ(b), δ(ab) = δ(a)b+ α(a)δ(b),

in which a, b ∈ R.

Definition 4.2. Let R be an associative ring with identity 1, α is an nonzero endomorphism

of R and δ is an α-derivation on R. The ring

R[x;α, δ] = {
n∑

i=0

aix
i | ai ∈ R,n ∈ N}

is called an Ore extension if the addition is defined as usual and the multiplication is defined

subject to the relation

xr = α(r)x+ δ(r),

for all r ∈ R.
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If δ = 0, then R[x;α] = R[x;α, 0] is called a skew polynomial ring.

If α = IdR the identity map, then R[x; δ] = R[x; IdR, δ] is called a differential operator

ring.

If δ = 0 and α is the identity map in R[x;α, δ], then the relation xr = α(r)x+ δ(r) reduces

to xr = rx. In this case the Ore extension degenerates to a general polynomial ring. In this

section, by monic polynomial we mean the summand monomial of this polynomial with largest

x-degree having coefficient 1 when it is represented in the form rxk for r ∈ R, k ∈ N.

Lemma 4.3. Assume that R is an associative ring with identity 1, R[x;α, δ] is an ore extension

satisfying 2x ̸= 0 and n ≥ 3 is an integer. If fn
1 + fn

2 = fn
3 holds for monic polynomials

fi ∈ R[x;α, δ] for i = 1, 2, 3, then we can get deg(fi) = deg(f3) > deg(fj), where {i, j} = {1, 2}.

Proof. If deg(f1) = deg(f2), then because x ̸= 0 and fn
1 + fn

2 = fn
3 , f3 can not be a monic

polynomial. Hence there must be deg(fi) = deg(f3) > deg(fj), where {i, j} = {1, 2}.

Lemma 4.4 (Algebra of differential operators). ([5]) Suppose R is an algebra over a field K

and δ is a derivation of R. Then in the algebra R[x, δ] of differential operators associated to δ,

for any integer n > 0 and any element r ∈ R we have

xnr =

n∑
k=0

(
n

k

)
δk(r)xn−k.

Definition 4.5. We call a solution (f1, f2, f3) to the Diophantine equation fn
1 + fn

2 = fn
3 in

R[x;α, δ] trivial if either fn
1 = 0 or fn

2 = 0.

Proposition 4.6. Suppose R is an integral domain with identity 1, char R = 0, n > 3 an

integer. Then, the Diophantine equation fn
1 + fn

2 = fn
3 has only trivial solutions for f1, f2, f3 ∈

R[x;α, δ] satisfying fi is a monic polynomial for i = 1, 2, 3 if one of the following conditions is

satisfied:

(i) δ = 0 and α(r) = mr for any r ∈ R and some m ̸= 2, 3 ∈ R;

(ii) α = IdR.

Proof. (i) Suppose (f1, f2, f3) is a solution to the Diophantine equation

fn
1 + fn

2 = fn
3

where fi ∈ R[x;α] is a monic polynomial for i = 1, 2, 3. Then by Lemma 4.3, without loss of

generality we have

deg(f1) = deg(f3) > deg(f2).

Assume

f1 = xt + a1x
t−1 + a2x

t−2 + · · ·+ at−1x+ at,

f2 = xs + c1x
s−1 + c2x

s−2 + · · ·+ cs−1x+ ct,

f3 = xt + b1x
t−1 + b2x

t−2 + · · ·+ bt−1x+ bt,

where ai, bi, ci ∈ R. Then,

(xt + a1x
t−1 + a2x

t−2 + · · ·+ at−1x+ at)
n + (xs + c1x

s−1 + c2x
s−2 + · · ·+ cs−1x+ ct)

n

= (xt + b1x
t−1 + b2x

t−2 + · · ·+ bt−1x+ bt)
n.
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We can compute the coefficient of xnt−1 in fn
1 as follows

a1x
t−1(xt)n−1 + xta1x

t−1(xt)n−2 + · · ·+ (xt)n−1a1x
t−1

=a1x
nt−1 +mta1x

nt−1 + · · ·+mnt−ta1x
nt−1

=(1 +mt +m2t + · · ·+mnt−t)a1x
nt−1.

In the same way, we can get the coefficient of xnt−1 in fn
3 , which is (1 +mt +m2t + · · · +

mnt−t)b1, then it follows that

(1 +mt +m2t + · · ·+mnt−t)a1x
nt−1 = (1 +mt +m2t + · · ·+mnt−t)b1x

nt−1.

Since R is an integral domain with char R = 0, we have a1x = b1x.

And in the same way we can get a2 = b2. In fact, we just need to compute the coefficients

of xnt−2 in fn
1 and fn

3 respectively. By comparing the coefficients we have

(F1(m)a21 + F2(m)a2)x
nt−2 = (F1(m)b21 + F2(m)b2)x

nt−2,

where F1(m), F2(m) are polynomials of m with positive coefficients. Since a1x = b1x, it follows

that F2(m)a2x = F2(m)b2x. Because R is an integral domain with char R = 0, so a2x = b2x.

In this way, we can get aix = bix for all i = 1, 2, · · · , t successively. Therefore, f1 = f3, and

(f2)
n = 0, i.e, (f1, f2, f3) is a trivial solution.

(ii) Consider R[x; IdR, δ]. Suppose (f1, f2, f3) is a solution to the Diophantine equation

fn
1 + fn

2 = fn
3

where fi ∈ R[x; idR, δ] is a monic polynomial for i = 1, 2, 3. Then by Lemma 4.3, without loss

of generality we have

deg(f1) = deg(f3) > deg(f2).

Denote

f1 = xt + a1x
t−1 + a2x

t−2 + · · ·+ at−1x+ at,

f2 = xs + c1x
s−1 + c2x

s−2 + · · ·+ cs−1x+ ct,

f3 = xt + b1x
t−1 + b2x

t−2 + · · ·+ bt−1x+ bt,

where ai, bi, c ∈ R. Then,

(xt + a1x
t−1 + a2x

t−2 + · · ·+ at−1x+ at)
n + (xs + c1x

s−1 + c2x
s−2 + · · ·+ cs−1x+ ct)

n

= (xt + b1x
t−1 + b2x

t−2 + · · ·+ bt−1x+ bt)
n.

We can compute the coefficient of xnt−1 in fn
1 as follows

a1x
t−1(xt)n−1 + xt · a1xt−1 · (xt)n−2 + · · ·+ (xt)n−1 · a1xt−1

= a1x
nt−1 +

t∑
k=0

(
t

k

)
δk(a1)x

nt−1−k +
2t∑

k=0

(
2t

k

)
δk(a1)x

nt−1−k + · · ·

+

(n−1)t∑
k=0

(
(n− 1)t

k

)
δk(a1)x

nt−1−k.

We first compute the coefficient of xnt−1. It equals

(1 +

(
t

0

)
+

(
2t

0

)
+ · · ·+

(
(n− 1)t

0

)
)a1 = na1,

Thus by comparing the coefficients in both sides we get na1 = nb1, and then a1 = b1 since R is

an integral domain with char R = 0. And in the same way we can get a2 = b2. In fact, we can
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compute the coefficients of xnt−2 in fn
1 and fn

3 respectively as(
n

2

)
tδ(a1) +

(
n

2

)
a21 + na2 =

(
n

2

)
tδ(b1) +

(
n

2

)
b21 + nb2.

Since a1 = b1, it follows that na2 = nb2. Then a2 = b2. In this way, we can get ai = bi for

all i = 1, 2, · · · , t successively. Therefore, f1 = f3, and cn = 0, i.e, (f1, f2, f3) is a trivial

solution.

In Proposition 4.6, we talk about the case where α(r) = mr. We can similarly define a

relation yx = qxy in K⟨x, y⟩ over a field K. This leads to the following definition of the

quantum planes.

Definition 4.7. We call the quotient algebra Kq[x, y] = K⟨x, y⟩/Iq the quantum plane, where

Iq is the two-sided ideal generated by the element yx− qxy.

In the definition above, when q = 1, we get the usual commutative relation yx = xy, which

corresponds to classical plane geometry; when q ̸= 1, the algebra Kq[x, y] is non-commutative,

which corresponds to the quantum plane.

Lemma 4.8. ([5]) Suppose α is the automorphism of the polynomial ring K[x] determined by

α(x) = qx, then the algebra Kq[x, y] is isomorphic to the Ore extension K[x][y;α, 0].

According to the above lemma, we can regard a quantum planeKq[x, y] as a skew polynomial

ring. Thus the results about skew polynomial rings naturally hold for quantum planes. So we

state the following result without proof.

Corollary 4.9. Suppose Kq[x, y] is a quantum plane with char K = 0 and n > 3 is an integer.

Then the Diophantine equation fn
1 + fn

2 = fn
3 has only trivial solutions for monic polynomials

in kq[x, y] satisfying degy(fi) > 1 for i = 1, 3 and f2 ∈ k[x].

Similarly we can induce the results to the algebra Mq(2), whose definition is as follows.

Definition 4.10. ([5]) The algebra Mq(2) is the quotient of the free algebra K[a, b, c, d] by the

two-sided ideal Jq generated by the six relations below

ba = qab, db = qbd,

ca = qac, dc = qcd,

bc = cb, ad− da = (q−1 − q)bc.

We have

A0 = K ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 = Mq(2),

where

A1 = K[a], A2 = K[a, b]/(ba− qab), A3 = K[a, b, c]/(ba− qab, ca− qac, cb− bc).

Then we can get some basic results for A1, A2, A3, A4 = Mq(2).

Lemma 4.11. ([5], Lemma IV.4.2) There is an isomorphism between A2 and the Ore extension

A1[b, α1, 0], where α1 is the automorphism of A1 determined by α1(a) = qa.
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Lemma 4.12. ([5], Lemma IV.4.3) The algebra A3 is isomorphic to the algebra A2[c;α2, 0],

where α2 is the automorphism of A2 determined by α2(a) = qa, and α2(b) = b.

Lemma 4.13. ([5], Lemma IV.4.5) The algebra A4 = Mq(2) is isomorphic to the Ore extension

A3[d;α3, δ], where α3 is the automorphism of A3 determined by α3(a) = a, α3(b) = qb, α3(c) =

qc, and δ is an endomorphism of A3 on the basis {aibjck}i,j,k>0 by δ(bjck) = 0 and

δ(aibjck) = (q − q−1)
1− q2i

1− q2
ai−1bj+1ck+1.

Thus we have the following corollary.

Corollary 4.14. Suppose A2 is the algebra defined as above. If char K = 0 and n > 3 is

an integer, then the Diophantine equation fn
1 + fn

2 = fn
3 has only trivial solutions for monic

polynomials in A2 satisfying degb(fi) > 1 for i = 1, 3 and f2 ∈ A1.

And since A3
∼= A2[c;α2, 0], we can get the analogous result as above.

When R is an integral domain with char R = p a prime, if p - k for any k = 2, 3, · · · , n, by
the similar discussion, we can prove an analogous result.

Proposition 4.15. Suppose R is an integral domain with identity 1, char R = p a prime and

R[x; idR, δ] is a differential operator ring. If p - k for any k = 2, 3, · · · , n, then the Diophantine

equation fn
1 +fn

2 = fn
3 has only trivial solutions for monic polynomials in R[x; idR, δ] satisfying

deg(fi) > 1 for i = 1, 3 and f2 ∈ R.

§5 Some discussion about FLT and ABC Conjecture on Euclidean

domain

As we know, the ring of polynomials over a field is a special case of Euclidean domain, thus

we wonder how about the FLT problem in an Euclidean domain. We first give the definitions

of degree function and Euclidean domain.

Definition 5.1. A degree function is a map deg : D−{0} → R+ ∪{0} satisfying the following

two properties:

(i) deg converts mutiplication to addition, namely, deg(ab) = deg(a) + deg(b);

(ii) deg detects the unit of the integral domain, namely, deg(a) = 0 if and only if a is a unit.

As two easy examples, we consider the ring of integers Z, and the ring of polynomials F [x],

where F is a field. It’s easy to check that deg(a) = log(|a|) in Z and the ordinary degree

function in F [t] satisfy the above two conditions, thus they are both degree functions.

Definition 5.2. An integral domain D with degree function is called a Euclidean integral

domain if it satisfies any one of the following two conditions for all a, b ∈ D − {0}:
(i) a = bq for some q, namely b divides a;

(ii) a = bq + r with deg(r) < deg(b), where r is the remainder.
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It is obvious to see, the ring of integers Z, and the ring of polynomials F [x] we mentioned

above are Euclidean domain.

Conjecture 5.3 (FLT on Euclidean domain). Suppose R is a Euclidean domain. Then there

are no a1, a2, a3 ∈ R with deg(ai) > 0 such that

an1 + an2 = an3 ,

where n > 3 is an integer.

This conjecture is not true in general, since the ring of polynomials over a field is also a

Euclidean domain and the conjecture is not true in this case as we explained in the second

section. But what we care about is that when the conjecture is true and when not.

Conjecture 5.4 (ABC Conjecture on Euclidean domain). Suppose R is a Euclidean domain

and φ is a function of R. Given ε > 0, there exists C(ε) > 0, such that for any non-zero relative-

ly coprime elements a, b, c ∈ R with a + b = c, we have max{φ(a), φ(b), φ(c)} 6 C(ε)N0(abc),

where N0(m) = φ(
∏

p|m p) is the image of the product of the prime factors of m with mutiplicity

1 under the function φ.
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