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Asymptotic normality of error density estimator in

stationary and explosive autoregressive models

WU Shi-peng1,2 YANG Wen-zhi1 GAO Min1 HU Shu-he1

Abstract. In this paper, we consider the limit distribution of the error density function estima-

tor in the first-order autoregressive models with negatively associated and positively associated

random errors. Under mild regularity assumptions, some asymptotic normality results of the

residual density estimator are obtained when the autoregressive models are stationary process

and explosive process. In order to illustrate these results, some simulations such as confidence

intervals and mean integrated square errors are provided in this paper. It shows that the residual

density estimator can replace the density “estimator” which contains errors.

§1 Introduction

Consider the following first-order autoregressive process

Xi = ρXi−1 + εi, 1 ≤ i ≤ n, (1)

where ε1, . . . , εn are real valued random errors with the unknown probability density function

(p.d.f.) f(x), x ∈ R. Note that the process (1) can be expressed as

Xi =

i−1∑
j=0

ρjεi−j + ρiX0, 1 ≤ i ≤ n. (2)

Without loss of generality, we take X0 = 0 in this paper. It is known that the autoregressive

process {Xi} may be different process if ρ takes different values. For instance,

(i) If |ρ| < 1, then the process {Xi} is a stationary process which can be presented as

Xi =
∞∑
j=0

ρjεi−j , i ≥ 1. (3)
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(ii) If |ρ| = 1, then the process {Xi} is a random walk.

(iii) Let ρ = ρn = 1 + c/bn, where constant c ∈ R and bn is a sequence increasing to ∞ such

that bn = o(n) as n → ∞. If c > 0, then the process {Xi} is a near-explosive process; if

c < 0, then the process {Xi} is a near-stationary process.

(iv) If |ρ| > 1, then the process {Xi} is an explosive process.

For further details of model (1) and its applications, one can refer to Aue and Horváth (2007),

Brockwell and Davis (1991), Phillips and Magdalinos (2007), Magdalinos (2012), Yang et al.

(2018), Oh et al. (2018), Shen and Pang (2020) and the references therein.

In order to make statistical inferences, one might require some knowledge of the density

function f(·) of error sequence {εi, 1 ≤ i ≤ n}, which is assumed to exist in this paper. If the

errors ε1, . . . , εn were observed, then the error density function “estimator”

fn(x) =
1

nhn

n∑
i=1

K
(x− εi

hn

)
, x ∈ R, (4)

could be used to estimate p.d.f. f(x) with an appropriately chosen bandwidth hn and a kernel

density function K(·). However, only the random variables X0, X1, . . . , Xn are observed in

the autoregressive model (1). Thus, in order to obtain an estimator of p.d.f f(x), we modify

definition (4) of fn(x) by plugging in the random variables

ε̂i = Xi − ρ̂nXi−1, 1 ≤ i ≤ n, (5)

instead of ε1, . . . , εn, where ρ̂n = ρ̂n(X0, X1, . . . , Xn) is an estimator of ρ computed by the

observations X0, X1, . . . , Xn. For example, the least squares estimator

ρ̂n =

∑n
i=1 Xi−1Xi∑n
i=1 X

2
i−1

(6)

can be used to estimate ρ. Consequently, the residual kernel-type estimator f̂n(x) of f(x) is

given as

f̂n(x) =
1

nhn

n∑
i=1

K
(x− ε̂i

hn

)
, x ∈ R. (7)

The properties of kernel density estimator fn(x) have been well investigated in the literature.

For example, based on the independent and identically distributed (i.i.d.) sample, Bickel and

Rosenblatt (1973) provided the limit distribution of the L2-norm of density estimator fn(x);

Masry (1986) obtained the asymptotic normality for the recursive probability density estima-

tor under α-mixing sample; Castellana and Leadbetter (1986) considered the consistency and

asymptotic distribution of fn(x) under stationary processes; Roussas (1999), Lu (2001), and

Yang and Hu (2012) investigated the convergence rate, asymptotic normality and Berry-Esseen

bounds for density estimator fn(x) under mixing sample; For more details of density estimator,

one can refer to Fan and Yao (2003), Li and Rcine (2007), etc.

There are many authors that studied the asymptotic properties of residual density f̂n(x)

based on the i.i.d. errors. For example, in the model (1) with |ρ| > 1, Koul and Levental (1989)

proved the weak convergence of the residual empirical process to the Brownian bridge; Lee and

Na (2002) considered the first order autoregressive models (1) with |ρ| < 1 and |ρ| > 1 processes,
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and showed that the difference between the L2-norm between fn(x) and f̂n(x) is so small

that the Bickel-Rosenblatt asymptotic normality for fn(x) also holds for f̂n(x); Horváth and

Zitikis (2004) extended the results of Lee and Na (2002) to Lp-norm; Cheng (2005) considered

the autoregressive model (1) with |ρ| < 1 process and obtained the asymptotic normality of
f̂n(x)−Efn(x)√

Var(fn(x))
; Wang and Yu (2015) obtained that the coefficient based test and the t test have

better power for testing the hypothesis of zero intercept in the explosive process than in the

stationary process. In addition, Liebscher (1999), Cheng (2010) and Cheng and Sun (2008)

considered the residual density estimator f̂n in the nonlinear autoregressive models with i.i.d.

errors.

Obviously, the condition of independence of {εi, 1 ≤ i ≤ n} seems to be strong. Therefore,

Kim et al. (2014) extended the result of Cheng and Sun (2008) in the nonlinear autoregressive

model with i.i.d. error terms to the model with stationary α-mixing error terms. Gao et al.

(2022) studied the asymptotic normality of residual density estimator f̂n(x) in the autoregressive

model with the α-mixing errors. In this paper, we go on studying the residual density estimator

f̂n(x) with the associated errors. Now, let us recall some conceptions of association such as

negatively associated (NA) and positively associated (PA).

Definition 1.1 A finite family {ε1, . . . , εn} is said to be NA if for any disjoint subsets A, B

⊂ {1, 2, . . . , n}, and any real coordinatewise nondecreasing functions f on RA, g on RB,

Cov(f(εk, k ∈ A), g(εk, k ∈ B)) ≤ 0,

whenever this covariance is defined. An infinite sequence of random variables {εi, i ≥ 1} is said

to be NA, if every finite subcollection is NA.

Definition 1.2 A finite collection of random variables {ε1, . . . , εn} is said to be PA if for any

two coordinatewise nondecreasing functions f, g: Rn → R,

Cov(f(ε1, . . . , εn), g(ε1, . . . , εn)) ≥ 0,

whenever this covariance is defined. An infinite sequence {εi, i ≥ 1} is said to be PA, if every

finite subcollection is PA.

The concepts of NA and PA were introduced by Joag-Dev and Proschan (1983) and Esary

et al. (1967), respectively. They can be used in many fields such as Gaussian system, survival

analysis system, etc. For more examples and applications, one can refer to Bulinski and Shaskin

(2007), Tan and Yang (2008), Prakasa (2012), Oliveira (2012) and Zhang et al.(2022). Based on

the NA or PA random variables, Roussas (2000) considered the kernel-type density estimator

fn(x) in (4), and obtained asymptotic distribution for density estimator fn(x) of f(x). Inspired

by Roussas (2000) and Cheng (2005), we study the asymptotic distribution of the residual

kernel-type density estimator f̂n(x) in stationary (i.e. |ρ| < 1) and explosive (i.e. |ρ| > 1)

models with association errors (see our main results in Section 3).

The rest of this paper is organized as follows. In Section 2, we list some basic assumptions

for the first-order autoregressive model (1). The main results of asymptotic distributions are

given in Section 3. Some simulations are performed to evaluate the performance of the estimator

f̂n(t) in Section 4. We offer some conclusions in Section 5. The proofs of the main results are

given in Section 6. Finally, some lemmas are presented in the Appendix.
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Throughout the paper, we assume that all limits are taken as n → ∞ unless otherwise

specified. Let
d−→ stand the convergence in distribution. Let OP (·) stand the bounded in

probability and oP (1) stand the tend to 0 in probability. The C,C1, C2 denote some positive

constants not depending on n, which may be different in different places.

§2 Basic assumptions

In this section, we shall list some basic assumptions such as for the density function f(x)

and moment of error, kernel function K(·) and estimator ρ̂n of ρ, which are required for the

limit distribution of residual density estimator f̂n(x) in the model (1).

Assumptions:

(A1) (i) The sequence {εn} is a stationary sequence of identically distributed association ran-

dom variables with unknown marginal bounded probability density function f(·).

(ii) The second-order derivative f ′′(·) exists and is bounded in R.

(iii) Assume that f1,j(x, y) is the joint probability distribution function of random vari-

ables ε1 and ε1+j , which satisfies

|f1,j(x, y)− f(x)f(y)| ≤ C for all x, y ∈ R and j ≥ 1.

(A2) (i) The K(·) is a known kernel density function such that:

K(u) ≤ C, u ∈ R; lim(|u|K(u)) = 0 as |u| → ∞.

(ii) The derivative k(u) = K ′(u) exists and is bounded |k(u)| ≤ C1, u ∈ R.

(iii) Let function K(·) be satisfied∫ ∞

−∞
uK(u)du = 0,

∫ ∞

−∞
u2K(u)du = C2 ̸= 0.

(A3) Let the bandwidth sequence hn tend to 0 and satisfy the requirements:

(i) nh3
n → ∞ as n → ∞.

(ii) nh5
n → 0 as n → ∞.

(A4) (i) Let Eε1 = 0 and Eε21 = σ2
1 < ∞.

(ii) Denote u(n) =
∑∞

j=n |Cov(ε1, εj+1)| and suppose that u(1) < ∞.

(A5) Let 1 < pn < n, 0 < qn < n, be integers tending to ∞ along with n and let kn → ∞ be

defined by kn = ⌊n/(pn + qn)⌋, where ⌊x⌋ stands for the integral parts of x. Then there

is a determination of them for which:

(i) pnkn/n → 1 as n → ∞.

(ii) pnhn → 0 and p2n/(nhn) → 0 as n → ∞.

(iii) (1/h3
n)

∑∞
j=qn

|Cov(ε1, ε1+j)| → 0 as n → ∞.
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(A6) For the estimator ρ̂n of ρ, we assume that

(i) n1/2(ρ̂n − ρ) = OP (1), if |ρ| < 1.

(i)∗ |ρ|n(ρ̂n − ρ) = OP (1), if |ρ| > 1.

Remark 2.1. We list some comments on the assumptions.

(R1) The Assumptions (A1)(i)-(iii) are used commonly in the kernel density estimate for the

error sequence {εn, n ≥ 1}. For more details, see Masry (1986), Roussas (2000), Fan and

Yao (2003) and Li and Rcine (2007), etc.

(R2) The Assumptions (A2)(i)-(iii) are the conditions of kernel function K(·). The Assump-

tion (A2)(ii) may be weakened to read as follows: The kernel density function K(·) is

continuous, its left-hand side and right-hand side derivatives exist and are equal except

for a finite number of points, and they are bounded in R. The Assumption (A2)(iii) is

the integrability condition of K. The Assumptions (A2)(i)(ii) are used in many literature

such as Fan and Yao (2003) and Li and Rcine (2007), etc.

(R3) The Assumptions (A3) is the condition for bandwidth {hn, n ≥ 1}. The hn needs to

satisfy the requirements hn ≫ n−1/3 and hn ≪ n−1/5. Here, an ≪ bn denotes that

there exists a constant c > 0 such that an ≤ cbn for n sufficiently large, an ≫ bn is

similar defined. It is easily seen that it is a common condition to study the properties of

kernel-type density estimator.

(R4) The Assumptions (A4)(i)(ii) are the conditions of the moment and covariance for the

error sequence {εn, n ≥ 1}. The similar conditions were used by Roussas (2000) and Qin

et al. (2011) etc.

(R5) The Assumptions (A5)(i)(ii) are easily satisfied, if pn and qn are chosen as follows: with

hn → 0, let pn ∼ h−δ1
n , qn ∼ h−δ2

n (0 < δ2 < δ1 < 1), where xn ∼ yn means xn/yn → 1

as n → ∞. Obviously, kn ∼ nhδ1
n , so that Assumption (A5)(i)(ii) are fulfilled, provided

nh1+2δ1
n → ∞ as n → ∞. Also, the Assumption (A5)(iii) is satisfied for the following forms

of the covariance function. Set Cj = |Cov(ε1, ε1+j)| and let Cj = r0r
j (0 < r < 1, r0 > 0).

Then,

h−3
n

∑
j≥qn

Cj ∼ h−3
n rqn ∼ h−3

n / exp[(− log r)h−δ2
n ],

and this tends to 0, as n → ∞. Thus, Assumption (A5) is satisfied under the condition

that nh1+2δ1
n as n → ∞. Next, let Cj = j0j

−θ (θ > 1, j0 > 0). Then

h−3
n

∑
j≥qn

Cj ∼ h−3+(θ−1)δ2
n → 0, as n → ∞

provided, θ > 1 + 3/δ2. Thus, for this choice of the covariance function, the Assumption

(A5) is satisfied for θ > 1 + 3/δ2 and nh1+2δ1
n → ∞, n → ∞ (0 < δ2 < δ1 < 1); in

fact, it suffices that θ > 4.1, say. It is easily seen that the Assumption (A3) satisfies the

requirement for hn in Assumption (A5). For more details, see Roussas (2000).
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(R6) The Assumptions (A6) is the condition of estimator ρ̂n of ρ in the first order autoregressive

model. For example, Assumption (A6)(i) is for the case |ρ| < 1, i.e. stationary process

and (A6)(ii) is for the case |ρ| > 1, i.e. explosive process. The Assumption (A6) is used

commonly by authors such as Koul and Levental (1989), Lee and Na (2002), Cheng (2005)

and Horváth and Zitikis (2004), etc.

§3 Main results

First, we consider the autoregressive model (1) with stationary process (i.e. |ρ| < 1) and

obtain the asymptotic normality of residuals density estimator f̂n(x) in Theorem 3.1.

Theorem 3.1. Consider the model (1) with |ρ| < 1, where {εn, n ≥ 1} is either NA sequence

or PA sequence. Let the Assumptions (A1)-(A5) and (A6)(i) hold. Then, for x ∈ R,√
nhn(f̂n(x)− f(x))

d−→ N(0, σ2(x)). (8)

where σ2(x) = f(x)
∫∞
−∞ K2(v)dv and assume that x is a point of continuity of f(x) with

f(x) > 0.

Similar to Theorem 3.1, we consider the autoregressive model with explosive process (i.e.

|ρ| > 1) and obtain the following Theorem 3.2.

Theorem 3.2. Consider the model (1) with |ρ| > 1, where {εn, n ≥ 1} is either NA sequence

or PA sequence. Let the Assumptions (A1)-(A5) and (A6)(i)* hold. Then, for x ∈ R,√
nhn(f̂n(x)− f(x))

d−→ N(0, σ2(x)), (9)

where σ2(x) is defined as that in (8).

Remark 3.1. In the first order autoregressive model (1) with |ρ| < 1 and i.i.d. errors, Cheng

(2005) obtained asymptotic distribution of the residual kernel-type density estimator f̂n(x)

such that f̂n(x)−Efn(x)√
V ar(fn(x))

d−→ N(0, 1). Based on the association random variables, Roussas (2000)

obtained the asymptotic normality for the kernel-type density estimator fn(x). Inspired by

Cheng (2005) and Roussas (2000), we, under the identically distributed dependent errors such

as NA and PA random variables, consider the autoregressive models with |ρ| < 1 and |ρ| > 1,

and obtain the asymptotic normality results in Theorems 3.1-3.2.

Remark 3.2. The Assumption (A3)(i)(ii) is satisfied for hn ≫ n−1/3 and hn ≪ n−1/5.

Taking hn = n−1/5 log−1 n, we obtain the absolute convergence rate between f̂n(x) and f(x) in

Theorems 3.1 and 3.2.

|f̂n(x)− f(x)| = OP (
1√
nhn

) = OP (n
−2/5 log1/2 n).

Theorem 3.1 with |ρ| < 1 implies that a straight-forward approach to construct a confidence

regions is to use asymptotic normality with a variance estimator. Since f̂n(x) is a consistent

estimator of f(x), so a “plug-in method” is replacing f(x) in the asymptotic variance by its

estimator f̂n(x), leading to the following 1− α confidence interval of f(x):[
f̂n(x)− z1−α/2

√
σ̂2
n(x)

nhn
, f̂n(x) + z1−α/2

√
σ̂2
n(x)

nhn

]
, (10)
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where z1−α/2 denotes the 1− α/2 quantile of the standard normal distribution and

σ̂2
n(x) = f̂n(x)

∫ ∞

−∞
K2(v)dv > 0.

Similarly, we can construct a confidence region for f(t) based on Theorem 3.2 with |ρ| > 1.

Therefore, we provided a unified approach for interval estimation of density function of error in

AR(1) model with |ρ| < 1 and |ρ| > 1. In future research, it is also interested to study a unified

approach that confidence interval estimation of density function of error in AR(1) model to

encompass all situations (ρ take any value).

§4 Simulation

In this section, we conduct some simulation experiments to compare the kernel density

“estimator” fn(x) defined by (4) and estimator f̂n(x) defined by (7) based on errors {εi, i =
1, 2, . . . , n} and residuals {ε̂i, i = 1, 2, . . . , n}, respectively. Since the error sequence {εi, 1 ≤ i ≤
n} is generated by simulation, similar to (10), the (1− α)% confidence region of f(x) by fn(x)

is given by [
fn(x)− z1−α/2

√
σ2
n(x)

nhn
, fn(x) + z1−α/2

√
σ2
n(x)

nhn

]
, (11)

where σ2
n(x) = fn(x)

∫∞
−∞ K2(v)dv and z1−α/2 is defined as that in (10).

The experimental data are generated by the following first order autoregressive time series

models:

Xi = ρXi−1 + εi, i = 1, 2, . . . , n. (12)

where |ρ| < 1 is for stationary process and |ρ| > 1 is for explosive process. Let Nn(µ,Σ) denote

n-dimensional multivariate normal random vector, ϕθ(x) denote the multivariate normal density

with parameters θ = (µ,Σ) and x =d y mean that x and y have the same distribution function.

Then random error vector ε = (ε1, . . . , εn)
′ are drawn from mixture Gaussian distribution (see

Hastie and Tibshirani (1996)), i.e.

ε = (ε1, . . . , εn)
′ =d (1−∆)Nn(µ1,Σn) + ∆Nn(µ2,Σn)

where ∆, Nn(µ1,Σn) and Nn(µ2,Σn) are independent, ∆ ∈ {0, 1}, P (∆ = 1) = 1/2. Thus the

density of random vector ε is

gε(x) =
1

2
ϕθ1(x) +

1

2
ϕθ2(x), (13)

where θ1 = (µ1,Σn) and θ2 = (µ2,Σn). It is easy to check that E(ε) = 1
2 (µ1 + µ2) and

Cov(ε) = Σn. Let

Σn = In −Λ, (14)

where In is n× n unit matrix and Λ = (β|i−j|)1≤i,j≤n,i̸=j with some β ∈ (0, 1). Then we have

that ε = (ε1, ε2, · · · , εn)′ is a NA random vector. Similarly, (ε1, ε2, · · · , εn)′ is a PA random

vector if covariance matrix Σn = In − Λ is replace by Σn = In + Λ for some β ∈ (0, 1). For

more details, see for example Joag-Dev and Proschan (1983) and Bulinski and Shaskin (2007).

In addition, let µ1 = (

n︷ ︸︸ ︷
µ1, · · ·, µ1)

′, µ2 = (

n︷ ︸︸ ︷
µ2, · · ·, µ2)

′ and Σn = In − Λ or Σn = In + Λ. So
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by (13), the random variables ε1, ε2, · · · , εn have the same density function such as

f(x) =
1

2

1√
2π

exp
(
− (x− µ1)

2

2

)
+

1

2

1√
2π

exp
(
− (x− µ2)

2

2

)
, x ∈ R. (15)

Meanwhile, the Gaussian kernel density function is taken by

K(x) =
1√
2π

exp
(
− 1

2
x2

)
, x ∈ R,

where the smoothing parameter hn is taken by hn = n−1/4 which satisfies Assumption (A3).

For the plug-in and bootstrap methods of selection hn, one can refer to Chen (2017) and the

references therein. It is easy to calculate
∫
R
K2(x)dx = 1

2
√
π
. Finally, we can construct error

density “estimator” fn(x) by (4) and obtain the residuals density estimator f̂n(x) using the

least squares estimator ρ̂n defined by (6) of ρ and residuals ε̂1, . . . , ε̂n.

Now, we consider the stationary model (12) with ρ = 0.8, take n = [50, 100, 150, 200],

µ1 = −2, µ2 = 2 in (15) and choose β = 0.3 in Σn = In −Λ for NA structure errors defined by

(14). By 1000 replications, we obtain the confidence intervals for kernel-type density estimators

fn(x) and f̂n(x) at the confidence level 1− α = 0.95, which are shown in Figs 1-4.

Figure 1. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the stationary
model with ρ = 0.8, NA errors and n = 50.

From the Figs 1-4, it can be seen that the confidence intervals of f(x) by fn(x) and f̂n(x) will

narrow as sample n increases. Meanwhile, the fitted curves of fn(x) and f̂n(x) will approach to

the true function f(x) as sample n increases. In addition, the fitted curves of fn(x) and f̂n(x)

are close to the true curve f(x). Thus, in stationary model, the residual density estimator f̂n(x)

can replace density “estimator” fn(x). Similarly, in the explosive model (12) with ρ = 1.1, Figs

5-8 show the confidence intervals of f(x) by fn(x) and f̂n(x) at the confidence level 1−α = 0.95.

By Figs 5-8, it can be also seen that the confidence intervals of f(x) by fn(x) and f̂n(x) will

narrow as sample n increases. Meanwhile, the fitted curves of fn(x) and f̂n(x) will approach

to the true function f(x) as sample n increases. Thus, in explosive model, the residual density

estimator f̂n(x) is a effective estimator and can replace density “estimator” fn(x). In addition,

we take different β = [0.1, 0.2] in Σn = In −Λ for NA structure errors and β = [0.1, 0.2, 0.3] in
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Figure 2. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the stationary
model with ρ = 0.8, NA errors and n = 100.

Figure 3. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the stationary
with ρ = 0.8, with NA errors and n = 150.

Σn = In + Λ for PA structure errors, and have some similar results of Figs 1-8 in stationary

and explosive models. Due to limitation of space, we didn’t give these Figs in this paper.

To make an accurate comparison among the estimators of density function, we calculate the

mean integrated square error (MISE) for the kernel-type density “estimator” fn(x) and residual

kernel-type density estimator f̂n(x), which are respectively defined by

MISE(fn) = E

∫ b

a

(
fn(x)− f(x)

)2

dx and MISE(f̂n) = E

∫ b

a

(
f̂n(x)− f(x)

)2

dx.

For the different β = [0.1, 0.2, 0.3], the errors were set NA structure with Σn = In − Λ

and PA structure with Σn = In + Λ. If ρ = 0.8, then {Xi} is a stationary process, and if

ρ = 1.1, {Xi} is an explosive process. We perform 1000 replications and compute the mean of∫ 6

−6

(
fn(x) − f(x)

)2

dx and
∫ 6

−6

(
f̂n(x) − f(x)

)2

dx, respectively. Thus, the MISEs of fn(x)

and f̂n(x) is summarized in Table 1.

In Table 1 with NA errors and PA errors, we can see that both MISE(fn) and MISE(f̂n)
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Figure 4. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the stationary
with ρ = 0.8, with NA errors and n = 200.

Figure 5. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the explosive
model with ρ = 1.1, NA errors and n = 50.

will going to be smaller as the sample n increases in first order autoregressive model (12) with

ρ = 0.8 and ρ = 1.1. Moreover, the MISE(f̂n) is very close to MISE(fn). Therefore, when n

is large enough, residual density estimator f̂n(x) can replace density “estimator” fn(x) to make

statistical inferences; in effect, if n = 200, then f̂n(x) is very close to fn(x) in the simulation of

this paper.

§5 Conclusions

In this paper, we consider the residual kernel density estimator f̂n(x) in the autoregressive

models (1) with |ρ| < 1 and |ρ| > 1. In practice, the errors always were not independent in the

models. Thus, in our autoregressive model (1), the errors are association (NA or PA) random

variables. This work extends the the range of applications of the first-order autoregressive

model. We obtain the asymptotic normality results for the residual density estimator f̂n(x)

of error density f(x) in Theorems 3.1.-3.2., which extend some results of Cheng (2005) and
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Figure 6. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the explosive
model with ρ = 1.1, NA errors and n = 100.

Figure 7. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the explosive
model with ρ = 1.1, NA errors and n = 150.

Roussas (2000). In order to check our results, some simulations of fitted curves, confidence

intervals and MISE of f̂n(x) and fn(x) are illustrated in Section 4. The results indicate that

the residual estimator f̂n(x) can replace the “estimator” fn(x). In addition, there are at least

three directions to extend this work. First, Phillips and Magdalinos (2007) and Oh et al. (2018)

studied the limit properties for ρ̂n in the mildly explosive autoregressive model

Xi = ρnXi−1 + εi, i = 1, 2, . . . , n,

where ρn = c + c/bn, bn → ∞, X0 = oP (
√
bn), c ∈ R and ε1, . . . , εn are i.i.d. random errors

or strictly stationary and ergodic α-mixing errors, and obtained some limit distribution for

least squares estimator ρ̂n defined by (6). Thus, it is interesting to study the asymptotic

properties of residual density estimator f̂n(x) in the mildly explosive autoregressive model with

dependent errors. Second, the paper considers the first-order autoregressive models, which are

fundamental model in time series analysis. Cheng and Sun (2008), Cheng (2010) and Liebscher
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Figure 8. 95% confidence intervals and fitted curves for f(x) by fn(x) and f̂n(x) in the explosive
model with ρ = 1.1, NA errors and n = 200.

(1999) investigated the nonlinear autoregressive time series model with i.i.d. errors

Xi = g(Xi−1, Xi−2, . . . , Xi−p|θ) + εi, i = p+ 1, . . . , n,

where the autoregressive function g : Rp → R is a measurable function and θ = (θ1, . . . , θq)
′ ∈

Θ ⊂ Rq is the vector of parameters of the autoregressive model. Thus, the research of the

residual density estimator for nonlinear autoregressive is also interesting. More challenging

work remains on other time series models such as binomial AR(1) models (see Weiss and

Kim (2013)), single-index varying-coefficient model (see Guo et al. (2018)) and Threshold

autoregression model (see Caner and Hansen (2001)), etc. Third, the distribution function F (x)

of error sequence ε1, . . . , εn is also fundamental function in statistics research, Cheng (2015) and

Cheng (2018) studied the consistency for the residual empirical distribution function estimator

F̄n(x) defined by

F̄n(x) =
1

n

n∑
i=1

I(ε̂i ≤ x), x ∈ R,

in nonlinear autoregressive model and first-order autoregressive model, where I(·) denotes the
indicator function. On the other hand, the smooth residual distribution estimator of F (x) can

be defined by

F̂n(x) =
1

n

n∑
i=1

K
(x− ε̂i

hn

)
, x ∈ R,

where K(·) denotes the kernel distribution function. Thus, it is interested to study the proper-

ties of F̂n(x) in various models in future research work.

§6 The proofs of main results

Lemma 6.1. Consider the model (1) with |ρ| < 1, where {εn, n ≥ 1} is either NA sequence

or PA sequence. Let assumptions (A1)(i), (A2)(i)(ii), (A4)(i) and (A6)(i) be satisfied. For
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Table 1. The MISE of stationary and explosive models.

β n
stationary model explosive model

MISE(fn) MISE(f̂n) MISE(fn) MISE(f̂n)
0.1 50 0.0130 0.0140 0.0126 0.0143

100 0.0076 0.0079 0.0077 0.0081
150 0.0058 0.0060 0.0058 0.0059
200 0.0046 0.0048 0.0048 0.0049

0.2 50 0.0123 0.0136 0.0128 0.0142
NA 100 0.0077 0.0081 0.0078 0.0081
Case 150 0.0059 0.0062 0.0059 0.0060

200 0.0046 0.0048 0.0046 0.0047
0.3 50 0.0124 0.0134 0.0121 0.0141

100 0.0073 0.0078 0.0073 0.0077
150 0.0056 0.0058 0.0056 0.0058
200 0.0046 0.0047 0.0046 0.0048

0.1 50 0.0131 0.0140 0.0131 0.0146
100 0.0080 0.0082 0.0078 0.0081
150 0.0061 0.0063 0.0059 0.0061
200 0.0047 0.0048 0.0049 0.0051

0.2 50 0.0130 0.0137 0.0133 0.0143
PA 100 0.0080 0.0082 0.0081 0.0083
Case 150 0.0060 0.0060 0.0059 0.0061

200 0.0049 0.0049 0.0050 0.0051
0.3 50 0.0137 0.0140 0.0139 0.0152

100 0.0085 0.0085 0.0084 0.0087
150 0.0063 0.0063 0.0060 0.0061
200 0.0050 0.0050 0.0050 0.0051

x ∈ R, if nh2
n → ∞, then

|f̂n(x)− fn(x)| = OP (
1

nh2
n

). (16)

Proof. According to (1) and (5), it follow that

ε̂i − εi = −(ρ̂n − ρ)Xi−1, 1 ≤ i ≤ n. (17)

For x ∈ R, by (4), (7) and Taylor’s expansion to K(·), we obtain that

|f̂n(x)− fn(x)| =
∣∣∣ 1

nhn

n∑
i=1

[
K(

x− ε̂i
hn

)−K(
x− εi
hn

)
]∣∣∣ = 1

nhn

∣∣∣ n∑
i=1

[εi − ε̂i
hn

k(ηix)
]∣∣∣

≤ |ρ̂n − ρ|
nh2

n

∣∣∣ n∑
i=1

Xi−1k(ηix)
∣∣∣ := Ln(x), (18)

where k(x) is the first-order derivative of K(x) and ηix is a random quantity between (x−ε̂i)/hn

and (x− εi)/hn. Now, we consider the term
∣∣∣ n∑
i=1

Xi−1k(ηix)
∣∣∣ in (18). Let x+ = max(x, 0) and

x− = max(−x, 0) and denote Yi = k(ηix), 1 ≤ i ≤ n. Since Yi = Y +
i − Y −

i , it has
n∑

i=1

Xi−1Yi =

n∑
i=1

Xi−1Y
+
i −

n∑
i=1

Xi−1Y
−
i . In addition, we sort Y +

1 , . . . , Y +
n by Y +

(1) ≤ . . . ≤ Y +
(n) and denote the

corresponding parts X0, . . . , Xn−1 as X∗
(0), . . . , X

∗
(n−1). Similarly, we sort Y −

1 , . . . , Y −
n by Y −

(1) ≤
. . . ≤ Y −

n and denote the corresponding parts X0, . . . , Xn−1 as X∗∗
(0), . . . , X

∗∗
(n−1). Moreover, by
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Lemma A.3. with the assumption (A2)(i), we obtain that

max
1≤k≤n

∣∣∣ k∑
i−1

Xi−1

∣∣∣ = OP (n
1/2).

Thus, using Abel inequality(see Mitrinovic (1970)), it has∣∣∣ n∑
i=1

Xi−1k
(x− εi

hn

)∣∣∣ =
∣∣∣ n∑
i=1

Xi−1Yi

∣∣∣ ≤ ∣∣∣ n∑
i=1

X∗
(i−1)Y

+
(i)

∣∣∣+ ∣∣∣ n∑
i=1

X∗∗
(i−1)Y

−
(i)

∣∣∣
≤ 5 max

1≤k≤n
Y +
(k) max

1≤k≤n

∣∣∣ k∑
i=1

X∗
(i−1)

∣∣∣+ 5 max
1≤k≤n

Y −
(k) max

1≤k≤n

∣∣∣ k∑
i=1

X∗∗
(i−1)

∣∣∣
≤ C max

1≤k≤n

∣∣∣ k∑
i=1

Xi−1

∣∣∣ = OP (n
1/2). (19)

Combining this and assumption (A.5)(i), we have

Ln(x) = OP (
1

nh2
n

). (20)

Therefore, by (18) and (20), we obtain

|f̂n(x)− fn(x)| = OP (
1

nh2
n

). (21)

We complete the proof of Lemma 6.1.

Lemma 6.2. (Corollary 2.1. of Roussas (2000)) Let the assumptions (A1), (A2), (A3), (A4)

and (A5) be satisfied, where {εi, i ≥ 1} is either NA sequence or PA sequence. Then, for x ∈ R,√
nhn(fn(x)− f(x))

d−→ N(0, σ2(x)), (22)

where σ2(x) = f(x)
∫∞
−∞ K2(v)dv with f(x) > 0.

Lemma 6.3. Consider the model (1) with |ρ| > 1, where {εi, i ≥ 1} is either NA sequence

or PA sequence. Let the assumption (A1)(i), (A2)(i)(ii), (A4)(i) and (A6)(i)* be satisfied. If
logn
nhn

→ 0, then, for x ∈ R,

|f̂n(x)− fn(x)| = OP (
log n

nhn
). (23)

Proof. Let an = ⌊a log n⌋ with some large enough positive constant a, where ⌊x⌋ denotes the

largest integer not exceeding x. According to (4) and (7), we have

|f̂n(x)− fn(x)| ≤
1

nhn

n−an∑
i=1

∣∣∣K(
x− ε̂i
hn

)−K(
x− εi
hn

)
∣∣∣+ 1

nhn

n∑
i=n−an+1

∣∣∣K(
x− ε̂i
hn

)−K(
x− εi
hn

)
∣∣∣

:= Hn1(x) +Hn2(x). (24)

Now, we shall prove the convergence rates of two terms on the right-hand side of (24). By

the boundness of k(·) in (A2)(ii), (17) and (2), it is easy to establish that

Hn1(x) =
1

nhn

n−an∑
i=1

∣∣∣K(
x− ε̂i
hn

)−K(
x− εi
hn

)
∣∣∣ ≤ C

nh2
n

n−an∑
i=1

|ε̂i − εi| ≤
C|ρ̂− ρ|
nh2

n

n−an∑
i=1

|Xi−1|

≤ C|ρ|n|ρ̂n − ρ|
nh2

n|ρ|an

( 1

|ρ|n−an

n−an∑
i=1

∣∣∣ i−1∑
j=0

ρjεi−1−j

∣∣∣).
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By Assumption (A1)(i), (A4)(i) and |ρ| > 1, we obtain that

E
( 1

|ρ|n−an

n−an∑
i=1

∣∣∣ i−1∑
j=0

ρjεi−1−j

∣∣∣) ≤ 1

|ρ|n−an

n−an∑
i=1

i−1∑
j=0

|ρj |E|εi−1−j | ≤
C1|ρ|n−an

|ρ|n−an
= O(1)

which implies

1

|ρ|n−an

n−an∑
i=1

|
i−1∑
j=0

ρjεi−1−j | = OP (1).

Consequently, by (A6)(i)* and |ρ| > 1, it follow that

Hn1(x) = OP (
1

nh2
n|ρ|an

). (25)

Next, we estimate the term of Hn2(x) in (24). By the bounded of K(·) in (A2)(i) and an =

⌊a log n⌋, it follows that

Hn2(x) ≤
1

nhn

n∑
i=n−an+1

(∣∣∣K(
x− ε̂i
hn

)
∣∣∣+ ∣∣∣K(

x− εi
hn

)
∣∣∣) = O(

an
nhn

), a.s. (26)

Finally, using the (24) - (26), |ρ| > 1 and an = ⌊a log n⌋ with large enough positive constant a,

we obtain that

|f̂n(x)− fn(x)| = OP (
1

nh2
n|ρ|an

) +O(
logn

nhn
) = OP (

log n

nhn
).

This complete the proof of Lemma 6.3.

Proof of Theorem 3.1. For x ∈ R, we decompose the difference f̂n(t)− f(t) into two parts,√
nhn(f̂n(x)− f(x)) =

√
nhn(f̂n(x)− fn(x)) +

√
nhn(fn(x)− f(x)). (27)

By Lemma 6.2, we known that the second term on the right-hand side of (27) converges in

distribution to a normal random variable. Thus, we only need to prove that
√
nhn(f̂n(x)−fn(x))

converges to 0 in probability. Combining assumption (A3) and Lemma 6.1, it follow that√
nhn|f̂n(x)− fn(x)| = OP (

1√
nh3

n

) = oP (1), (28)

since nh3
n → ∞. Therefore, by Slutsky’s theorem and Lemma 6.2, we obtain that (8), which

completes the the proof of Theorem 3.1.

Proof of Theorem 3.2. Similar to the proof of Theorem 3.1. By Lemma 6.3 and |ρ| > 1, we

obtain √
nhn|f̂n(x)− fn(x)| = OP (

log n√
nhn

) = oP (1). (29)

Combining this with Lemma 6.2, we obtain that (9).

§7 Auxiliary lemma

Lemma A.1 (Shao (2000)). Let p ≥ 1 and {εi, i ≥ 1} be a sequence of mean zero NA random

variables with E|εi|p < ∞ for every 1 ≤ i ≤ n. Then

E
(

max
1≤k≤n

∣∣∣ k∑
i=1

εi

∣∣∣p) ≤ 23−p
n∑

i=1

E|εi|p for 1 < p ≤ 2;

(30)
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E
(

max
1≤k≤n

∣∣∣ k∑
i=1

εi

∣∣∣p) ≤ 2(15p/ ln p)p
( n∑

i=1

E|εi|p +
( n∑

i=1

Eε2i

)p/2)
for p > 2.

Lemma A.2 (Newman and Wright (1981)). Let {εi, i ≥ 1} be centred, square-integrable and

PA random variables. Then

E
(

max
1≤k≤n

∣∣∣ k∑
i=1

εi

∣∣∣2) ≤ V ar
( n∑

i=1

εi

)
.

Remark A.2. Let {εi, i ≥ 1} be stationary, centred, square-integrable and PA random vari-

ables. Denote u(n) =
∑∞

j=n Cov(ε1, εj+1) and suppose that u(1) < ∞. Then

E
(

max
1≤k≤n

∣∣∣ k∑
i=1

εi

∣∣∣2) ≤ C
n∑

i=1

V ar(εi),

where C is a positive constant not depending on n.

Lemma A.3. Consider the model (1) with |ρ| < 1. where {εi, i ≥ 1} is either identical

distribution PA sequence or NA sequence. Let assumption (A1)(i), (A4)(i) and (A4)(ii) be

satisfied. Then

E
(

max
1≤k≤n

∣∣∣ k∑
i=1

Xi

∣∣∣2) ≤ Cn,

where C is a positive constant that does not depend on n.

Proof. The proof is inspired by Theorem 3.2 of Horváth and Zitikis (2004). By (A1)(i),

(A4)(i) and (A4)(ii), it is easy to check that the conditions of maximal inequalities of NA in

Lemma A.1. and PA in Remark A.2. are satisfied. Then, by (3) and Hölder inequality, |ρ| < 1

and Lemma A.1. for NA case, we obtain that

E
(

max
1≤k≤n

∣∣∣ k∑
i=1

Xi

∣∣∣2) = E
(

max
1≤k≤n

∣∣∣ k∑
i=1

∞∑
j=0

ρjεi−j

∣∣∣2) = E
(

max
1≤k≤n

∣∣∣ ∞∑
j=0

ρj
k∑

i=1

εi−j

∣∣∣2)

≤ E
(( ∞∑

j=0

|ρ|j/2|ρ|j/2 max
1≤k≤n

|
k∑

i=1

εi−j |
)2)

≤
( ∞∑

j=0

|ρ|j
)( ∞∑

j=0

|ρ|jE
∣∣∣ max
1≤k≤n

k∑
i=1

εi−j

∣∣∣2) ≤ Cn.

The proof of PA case is similar, so we omit its details here.
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