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Empirical likelihood for spatial cross-sectional data

models with matrix exponential spatial specification

LIU Yan1,2 RONG Jian-rong2 QIN Yong-song2,∗

Abstract. In this paper, we study spatial cross-sectional data models in the form of matrix

exponential spatial specification (MESS), where MESS appears in both dependent and error

terms. The empirical likelihood (EL) ratio statistics are established for the parameters of the

MESS model. It is shown that the limiting distributions of EL ratio statistics follow chi-square

distributions, which are used to construct the confidence regions of model parameters. Simula-

tion experiments are conducted to compare the performances of confidence regions based on EL

method and normal approximation method.

§1 Introduction

After several decades of development, the theories and applications of spatial econometric

models have become relatively mature. Among them, the computational problems related to

maximum likelihood estimation have always been a research hot spot. However, even with the

rapid development and improvement in the speed and capacity of today’s computers, the huge

volume of spatial data is still an unbearable burden. Therefore, it is an effective way to find a

method to speed up the calculation process. In spatial econometrics, there exist model specifi-

cations that cannot be nested with each other, such as spatial autoregressive (SAR) models and

matrix exponential spatial specification (MESS) models proposed by LeSage and Pace (2007).

LeSage and Pace (2007) propose the use of MESS to describe spatial correlation, which not

only greatly simplifies the log-likelihood function, but also has estimates and inferences similar

to the conventional spatial autoregressive classes of specific targets. The matrix exponential

can replace the spatial autoregressive process. In essence, the exponential decay in space re-

places the geometric decay in the spatial autoregressive process, which has the advantages of

calculation and theory (see Chiu et al. 1996).

In recent years, there has been a lot of research progress about MESS. Han and Lee (2013)

propose to use the J test method to study the selection of SAR and MESS models, and the
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Monte Carlo experiment shows that the J test statistic can distinguish SAR and MESS models

well. Piribauer and Fischer (2014) study the uncertainty of the MESS model on the basis

of LeSage and Pace (2007), and at the same time propose the spatial Durbin model in the

form of matrix exponential. Figueiredo and Silva (2015) extend the MESS model to the panel

form and compare the estimated results of the model with the autoregressive model of the

spatial panel. Debarsy et al. (2015) study the property of large samples of the MESS model

and make a comparative analysis of the MESS and SAR models by using the quasi-maximum

likelihood (QML) method. The study shows that in the case of heteroskedasticity, the QML

estimation results of the MESS model are consistent, while the QML estimation results for SAR

can not be satisfied. In the case of unknown heteroskedasticity, the QML parameter estimation

results of MESS model also satisfy the consistency. Meanwhile, GMM is asymptotically as

efficient as QML when the disturbances are i.i.d. with normal distribution (not just under

homoskedasticity), and GMM can be asymptotically more efficient (not effective) than QML

when the disturbances are not normally distributed (when the moments are properly selected).

Liu (2017) studies the model selection problem of SARAR and MESS, uses the adaptive LASSO

to select variables and estimate parameters at the same time, develops the Vuong type test and

adaptive LASSO program, and supplements the existing spatial model selection method. Zhang

et al. (2019) study QML estimation of spatial panel data model in the case of fixed effects and

heteroskedasticity, in which spatial effects of dependent variables and disturbances take the

form of MESS. The asymptotic properties of QML estimation with large sample and finite

or large T are established. It is shown that the QML estimator (QMLE) can be consistent

and asymptotically normal under unknown heteroscedasticity when the spatial weight matrices

in two MESS processes are commutative. It provides a consistent estimator for the standard

deviation of QMLE under regular conditions and can be used for inference.

In the MESS literature above, there are two main methods of estimation. One is QML

method, and the other is a method with higher computational efficiency, GMM (see Debarsy et

al., 2015; Zhang et al., 2019). When the confidence intervals/regions in the model parameters

is constructed using the above method, the normal approximation (NA) method is usually

applied, and a consistent estimator of the asymptotic covariance of the estimator must be

obtained, which may reduce the accuracy of the interval estimator. In this article, we propose

to construct the confidence region of the parameters in the MESS model using the empirical

likelihood (EL) method introduced by Owen(1988, 1990, 1991). There are many references

about EL method, such as Qin and Lawlees (1994), Chen and Keilegom (2009) and Owen

(2001). The idea of using the EL method in MESS models is to introduce martingale sequences,

which convert the linear-quadratic form of the MESS model’s estimation equations into linear

form. It is worth noting that the estimation equations of other spatial data models also have

the form of linear-quadratic form. By exploring the inherent martingale structures, Qin (2021)

and Jin and Lee (2019) successfully construct the confidence intervals/regions of the spatial

autoregressive model by using EL method. Li et al. (2020) further apply the above methods

to the spatial panel data model. However, we have not seen any published research results on

the the EL method for MESS models. The EL method has the advantage that the shape of

the confidence interval is determined by the sample itself and does not require the estimation

of covariance, which is the main motivation of our current research. The major difference of
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Qin (2021) and this article is the model specification and the advantage of the models studied

in this article is mentioned in the first paragraph.

In this paper, we use EL method to construct the MESS model with weight matrix in

exponential form in both dependent variable and error terms, and compare the performance of

confidence intervals based on NA and EL methods through simulation. The results show that

the confidence interval based on EL method can achieve the same effect as that of NA method,

and it is better than NA method in some cases. We find that the execution speed of the EL

method is much faster than the NA method.

The article is organized as follows. Section 2 presents the main results. Results from a

simulation study are reported in Section 3. All the technical details are presented in Section 4.

Some concluding remarks are given in Section 5.

§2 Main Results

In this article, we consider the following MESS model, where MESS appears in the dependent

variable and the error terms, denoted as MESS(1,1). The model is as follows:

eιWnyn = Xnβ + un, eτMnun = ϵn, (1)

where ϵn = (ϵn1, · · · , ϵnn)′ is an n-dimensional vector of i.i.d. random variables with mean zero

and finite variance σ2, yn is an n-dimensional column vector of observed dependent variables,

and Xn = (x1, x2, · · · , xn)′ is the non-random n × k matrix of exogenous variables with the

corresponding regression coefficient vector β. Wn and Mn are n × n spatial weight matrices,

which have zero diagonals and may be the same or different. The quasi log likelihood function

for the MESS(1,1) in model (1) is

Ln(ψ) = −n
2
ln(2π)− n

2
ln(σ2) + ln |eιWn |+ ln |eτMn |

− 1

2σ2
(eιWnyn −Xnβ)

′eτM
′
neτMn(eιWnyn −Xnβ), (2)

where ψ = (θ, σ2)′ with θ = (ι, τ, β′)′. Since |eιWn | = eι·tr(Wn) and |eτMn | = eτ ·tr(Mn) (e.g.,

Chiu et al., 1996), it follows that ln |eιWn | = ln |eτMn | = 0, given that Wn and Mn have zero

diagonals, i.e., wii = mii = 0 for all i. Therefore, the quasi log likelihood function in (2) can

be rewritten as:

Ln(ψ) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(eιWnyn −Xnβ)

′eτM
′
neτMn(eιWnyn −Xnβ). (3)

From (3), the QMLE of θ is obviously the minimization of the function

Tn(θ) = (eιWnyn −Xnβ)
′eτM

′
neτMn(eιWnyn −Xnβ).

In our work, the parameters we are interested in do not include variance parameters. For

given σ2, our aim is to derive the EL statistic of θ in MESS (1,1) model. It is noted that

the QMLE of θ is also the solutions of the estimating equations (4)-(6) below. The first order

derivatives of Tn(θ) with respect to ι, τ , and β are, respectively,

∂Tn(θ)

∂ι
= 2(eτMnWnXnβ)

′ϵn + 2ϵ′ne
−τM ′

nW ′
ne

τM ′
nϵn,

∂Tn(θ)

∂τ
= 2ϵ′nMnϵn,

∂Tn(θ)

∂β
= −2X ′

ne
τM ′

nϵn.
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Setting the above derivatives to zero, we obtain the following estimating equations:

X ′
ne

τM ′
nϵn = 0, (4)

(eτMnWnXnβ)
′ϵn + ϵ′ne

−τM ′
nW ′

ne
τM ′

nϵn = 0, (5)

ϵ′nMnϵn = 0. (6)

We note that when the disturbances ϵni’s are i.i.d. with mean 0 and variance σ2,

E(ϵ′ne
−τM ′

nW ′
ne

τM ′
nϵn) = σ2tr(W ′

ne
τM ′

ne−τM ′
n) = σ2tr(W ′

n) = 0

and E(ϵ′nMnϵn) = σ2tr(Mn) = 0.

As the equations (5) and (6) include the linear-quadratic forms of ϵn, to use the EL method,

we need to change them into the linear forms of martingale difference arrays. Firstly, we let

Hn = eτMnWne
−τMn , H̃n = 1

2 (Hn + H ′
n), and M̃n = 1

2 (Mn + M ′
n). Use h̃ij , m̃ij , ai, bi

to denote the (i, j) element of matrix H̃n, the (i, j) element of matrix M̃n, the i-th column

of the matrix X ′
ne

τM ′
n , the i-th component of the vector (eτMnWnXnβ)

′, respectively, and

adopt the convention that any sum with an upper index of less than one is zero. Secondly, we

introduce two martingale difference arrays as follows. Define the σ-fields: F0 = {ϕ,Ω} ,Fi =

σ (ϵ1, ϵ2, · · · , ϵi) , 1 ≤ i ≤ n. Let

Ỹin = h̃ii
(
ϵ2i − σ2

)
+ 2ϵi

i−1∑
j=1

h̃ijϵj , G̃in = m̃ii

(
ϵ2i − σ2

)
+ 2ϵi

i−1∑
j=1

m̃ijϵj . (7)

Then Fi−1 ⊆ Fi, Ỹin and G̃in are Fi-measurable and E(Ỹin | Fi−1) = 0, and E(G̃in | Fi−1) = 0.

Thus {G̃in,Fi, 1 ≤ i ≤ n} and {Ỹin,Fi, 1 ≤ i ≤ n} form two martingale difference arrays and

ϵ′nH̃nϵn − σ2tr(H̃n) =
n∑

i=1

Ỹin, ϵ′nM̃nϵn − σ2tr(M̃n) =
n∑

i=1

G̃in. (8)

Based on (4)-(8), we propose the following EL ration statistic for θ ∈ Rk+2

L (θ) = sup
pi,1≤i≤n

n∏
i=1

(npi) ,

where {pi} satisfy

pi ≥ 0, 1 ≤ i ≤ n,
n∑

i=1

pi = 1,

n∑
i=1

piaiϵi = 0,

n∑
i=1

pi

biϵi + h̃ii
(
ϵ2i − σ2

)
+ 2ϵi

i−1∑
j=1

h̃ijϵj

 = 0,

n∑
i=1

pi

m̃ii

(
ϵ2i − σ2

)
+ 2ϵi

i−1∑
j=1

m̃ijϵj

 = 0.

Let

ωi (θ) =

 aiϵi
biϵi + h̃ii

(
ϵ2i − σ2

)
+ 2ϵi

∑i−1
j=1 h̃ijϵj

m̃ii

(
ϵ2i − σ2

)
+ 2ϵi

∑i−1
j=1 m̃ijϵj


(k+2)×1

,
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where ϵi is the i-th component of eτMn(eιWnyn −Xnβ). By Owen (1990), one can show that

ℓ(θ)=̂− 2 logL(θ) = 2
n∑

i=1

log {1 + λ′(θ)ωi(θ)} , (9)

where λ(θ) ∈ Rk+2 is the solution of following equation:

1

n

n∑
i=1

ωi(θ)

1 + λ′(θ)ωi(θ)
= 0. (10)

Let µj = E(ϵj1), j = 3, 4. Use V ecD(A) to denote the vector formed by the diagonal

elements of a matrix A and ∥a∥ to denote the L2-norm of a vector a. To obtain the asymptotic

distribution of ℓ(θ), we need following assumptions:

A1. {ϵi, 1 ≤ i ≤ n} are i.i.d. with mean 0, variance σ2 > 0 and E|ϵ1|4+η < ∞ for some

η > 0.

A2. Let Wn, Mn and Xn be as described above. They satisfy the following conditions:

(i) The row and column sums of Wn and Mn are uniformly bounded in absolute value. The

diagonal elements of Wn and Mn are zero. (ii) The elements of Xn are uniformly bounded.

A3. There is a constant δ > 0, such that |ι| ≤ δ, |τ | ≤ δ and the true value (ι0, τ0) of (ι, τ)

is in the interior of the parameter space [−δ, δ]× [−δ, δ].
A4. There are constants cj > 0, j = 1, 2, such that

0 < c1 ≤ λmin

(
n−1Σk+2

)
≤ λmax

(
n−1Σk+2

)
≤ c2 <∞,

where λmin(H) and λmax(H) denote the minimum and maximum eigenvalues of the matrix H,

respectively.

Σk+2 = Σ′
k+2 = Cov

{
n∑

i=1

ωi(θ)

}
=

Σ11 Σ12 Σ13

∗ Σ22 Σ23

∗ ∗ Σ33


(k+2)×(k+2)

(11)

where

Σ11 = σ2X ′
ne

τM ′
neτMnXn,Σ12 = σ2X ′

ne
τM ′

neτMnWnXnβ + µ3X
′
ne

τM ′
nV ecD(H̃n),

Σ13 = µ3X
′
ne

τM ′
nV ecD(M̃n),Σ22 = 2σ4tr(H̃2

n) + (µ4 − 3σ4)∥V ecD(H̃n)∥2

+σ2(eτMnWnXnβ)
′eτMnWnXnβ + 2µ3(e

τMnWnXnβ)
′V ecD(H̃n),

Σ23 = (µ4 − 3σ4)V ec′D(H̃n)V ecD(M̃n) + 2σ4tr(H̃nM̃n) + µ3(e
τMnWnXnβ)

′V ecD(M̃n),

Σ33 = (µ4 − 3σ4)∥V ecD(M̃n)∥2+2σ4tr(M̃2
n).

A5. limn→∞
1
nX

′
ne

τM ′
neτMnXn exists and is nonsingular for any τ ∈ [−δ, δ], and the

sequence of the smallest eigenvalues of eτM
′
neτMn is bounded away from zero uniformly in

τ ∈ [−δ, δ].
Remark 1. Conditions A1 to A3 are common assumptions for spatial models. For

example, A1 and A2 , which are used in assumptions 4 and 5 in Lee (2004), A3 and A5 are

used in Assumptions 3 and Assumptions 4 in Debarsy et al. (2015), where A3 is to guarantee

that uniform convergence is possible on a compact parameter space. The analog of 0 < c1 ≤
λmin

(
n−1Σk+2

)
is employed in the assumption of Theorem 1 in Kelejian and Prucha (2001).

From Conditions A1 and A2, it can be seen that λmax

(
n−1Σk+2

)
≤ c2 < ∞. For the sake of

discussion, we put this consequence of A1 and A2 as a part of A4.

We now present the main results.
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Theorem 1. Suppose that Assumptions A1-A5 are satisfied. Then under model (1), as n→ ∞,

ℓ(θ)
d−→ χ2

k+2,

where χ2
k+2 is a chi-squared distributed random variable with k + 2 degrees of freedom.

Let zγ(k+2) satisfy P (χ2
k+2 ≤ zγ(k+2)) = γ for 0 < γ < 1. It follows from Theorem 1 that

an EL based confidence region for θ with asymptotically correct coverage probability γ can be

constructed as: {θ : ℓ(θ) ≤ zγ(k + 2)}.

§3 Simulations

Let θ = (ι, τ, β′)′. DenoteWn = eτMnWne
−τMn , and As = A+A′ for any square matrix A. It

can be shown, e.g. Debarsy et al. (2015), that 1
n

∂2Tn(θ)
∂θ∂θ′ = Cn+op(1), where Cn = E( 1n

∂2Tn(θ)
∂θ∂θ′ )

is positive semi-definite, which has the elements:

Cn,ιι = E(
1

n

∂2Tn(θ)

∂ι∂ι
) =

1

n
{σ2tr(Ws

nWs
n) + 2(Wne

τMnXnβ)
′(Wne

τMnXnβ)},

Cn,ιτ = E(
1

n

∂2Tn(θ)

∂ι∂τ
) =

1

n
{σ2tr(Ws

nM
s
n)},

Cn,ιβ′ = E(
1

n

∂2Tn(θ)

∂ι∂β′ ) =
1

n
{−2(eτMnXn)

′Wne
τMnXnβ},

Cn,ττ = E(
1

n

∂2Tn(θ)

∂τ∂τ
) =

1

n
σ2tr(Ms

nM
s
n), Cn,τβ′ = E(

1

n

∂2Tn(θ)

∂τ∂β′ ) = 0,

Cn,ββ′ = E(
1

n

∂2Tn(θ)

∂β∂β′ ) =
2

n
(eτMnXn)

′eτMnXn.

According to Debarsy et al. (2015), if ϵn ∼ N(0, σ2In); τ = 0; or Wn and Mn are commu-

tative, the QMLE θ̂ of θ satisfies:
√
n(θ̂ − θ)

d−→ N(0,Σ), where Σ = 2σ2 limn→∞ C−1
n .

Based on the above asymptotic result, we can obtain the NA based confidence region for θ.

However, we note that the NA method depends on the availability of a consistent estimator of

the asymptotic covariance matrix in practical applications, while the EL method does not.

Using R software, we conducted a small simulation study to compare the finite sample

performances of the confidence regions based on EL and NA methods with confidence level γ =

0.95, and reported the proportion of ℓ(θ) ≤ z0.95(k+2) and (θ̂−θ)′(Σ/n)−1(θ̂−θ) ≤ z0.95(k+2)

respectively in 1,000 replications.

In the simulations, we used the following MESS(1,1) model to generate data:

eιMnyn = Xnβ + un, eτWnun = ϵn,

where yn, Xn were all n×1 vectors. Xn were generated independently from U (1, 5). We selected

β = 3.5, and (ι, τ) were taken as (−2,−1), (−2, 1), (2,−1), (2, 1), respectively, and ϵ′ns were i.i.d.

from N (0, 1), t (5) and χ2
4 − 4, respectively. For the contiguity weight matrix Wn = (Wij), we

tookWij = 1, if spatial units i and j were neighbor by queen contiguity rule, Wij = 0 otherwise

(Anselin, 1988, P.18). In addition, we took Mn = Wn. We considered five ideal cases of

spatial units: n = m×m regular grid with m = 7, 10, 13, 16, 20, denoting Wn as grid49, grid100,

grid169, grid256, and grid400, respectively. A transformation is often used in applications to

normalize Wn to have row sums equal to one. We also reported the mean, standard deviation

(SD) and root mean square errors (RMSE) of the 1, 000 EL and NA estimators θ̂ to show the

parameter estimates were close. The results of simulations are reported in Tables 1-4.
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As shown in Table 1, when the error term follows a normal distribution and the number of

spatial units is large enough, the confidence region coverage probabilities based on NA and EL

are very close to the nominal level of 0.95. In general, the two methods have good coverage

when the sample size is large. Tables 2 and 3 reflect the same trend. It is worth noting

that when the error term follows t or chi-square distribution, the coverage probabilities of the

confidence regions based on NA method are far inferior to that of the confidence regions based

on EL method. In addition, the execution speed of the EL method is much faster than the

NA method. Table 4 reports the simulation results of mean, SD and RMSE for MESS model

(ι0 = −2, τ0 = −1, β0 = 3.5). From the results, we can see that both the EL and NA estimators

perform well and both estimators are close with a larger sample size n = 400.

Although MESS eliminates logarithmic determinant in NA method, it still brings time

trouble to the simulation with covariance in the form of matrix exponent. Because EL method

does not need to calculate covariance and its computational efficiency is better than NA method,

thus EL method is recommended in constructing confidence regions of parameters.

Table 1. Coverage probabilities of the NA and EL confidence regions with ϵi ∼ N(0, 1).

(ι, τ) Wn =Mn NA EL (ι, τ) Wn =Mn NA EL
(−2,−1) grid49 0.910 0.912 (−2, 1) grid49 0.852 0.873

grid100 0.914 0.924 grid100 0.914 0.928
grid169 0.940 0.936 grid169 0.922 0.932
grid256 0.938 0.932 grid256 0.960 0.956
grid400 0.943 0.952 grid400 0.957 0.938

(2,−1) grid49 0.900 0.876 (2, 1) grid49 0.880 0.858
grid100 0.920 0.934 grid100 0.912 0.916
grid169 0.944 0.952 grid169 0.906 0.932
grid256 0.952 0.934 grid256 0.952 0.944
grid400 0.954 0.956 grid400 0.960 0.948

Table 2. Coverage probabilities of the NA and EL confidence regions with ϵi ∼ t(5).

(ι, τ) Wn =Mn NA EL (ι, τ) Wn =Mn NA EL
(−2,−1) grid49 0.888 0.822 (−2, 1) grid49 0.860 0.886

grid100 0.890 0.904 grid100 0.904 0.912
grid169 0.932 0.936 grid169 0.916 0.924
grid256 0.940 0.940 grid256 0.956 0.960
grid400 0.933 0.956 grid400 0.930 0.948

(2,−1) grid49 0.892 0.838 (2, 1) grid49 0.870 0.886
grid100 0.904 0.906 grid100 0.922 0.926
grid169 0.930 0.936 grid169 0.936 0.942
grid256 0.928 0.943 grid256 0.938 0.950
grid400 0.946 0.954 grid400 0.942 0.952
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Table 3. Coverage probabilities of the NA and EL confidence regions with ϵi + 4 ∼ χ2(4).

(ι, τ) Wn =Mn NA EL (ι, τ) Wn =Mn NA EL
(−2,−1) grid49 0.894 0.862 (−2, 1) grid49 0.846 0.864

grid100 0.896 0.916 grid100 0.908 0.920
grid169 0.928 0.936 grid169 0.914 0.948
grid256 0.930 0.940 grid256 0.924 0.955
grid400 0.942 0.956 grid400 0.922 0.936

(2,−1) grid49 0.844 0.866 (2, 1) grid49 0.838 0.888
grid100 0.886 0.914 grid100 0.888 0.894
grid169 0.912 0.924 grid169 0.922 0.926
grid256 0.925 0.932 grid256 0.932 0.940
grid400 0.944 0.950 grid400 0.930 0.956

§4 Proofs

Lemma 1. Suppose that Assumptions A1-A5 are satisfied. Then as n→ ∞,

Zn = max
1≤i≤n

∥ωi(θ)∥ = op(n
1/2) a.s., (12)

Σ
−1/2
k+2

n∑
i=1

ωi(θ)
d−→ N(0, Ik+2), (13)

n−1
n∑

i=1

ωi(θ)ω
′
i(θ) = n−1Σk+2 + op(1), (14)

n∑
i=1

∥ωi(θ)∥3 = Op(n), (15)

where Σk+2 is given in (11).

Proof. The proof of this lemma is similar to that of Lemma 3 in Qin (2021). However, there

are a few differences in detail. To make things clear, we here present the detailed proof of this

lemma.

Note that

Zn ≤ max
1≤i≤n

∥aiϵi∥+ max
1≤i≤n

|biϵi+h̃ii
(
ϵ2i − σ2

)
+2ϵi

i−1∑
j=1

h̃ijϵj |+ max
1≤i≤n

|m̃ii

(
ϵ2i − σ2

)
+2ϵi

i−1∑
j=1

m̃ijϵj |.

By Conditions A1 and A2, we have

max
1≤i≤n

∥aiϵi∥ = max
1≤i≤n

∥ai∥op(n1/4) = op(n
1/4),

max
1≤i≤n

∥biϵi∥ = max
1≤i≤n

∥bi∥op(n1/4) = op(n
1/4),

max
1≤i≤n

|h̃ii
(
ϵ2i − σ2

)
| = max

1≤i≤n
|h̃ii|op(n1/2) = op(n

1/2),

max
1≤i≤n

|ϵi
i−1∑
j=1

h̃ijϵj | ≤ ( max
1≤i≤n

|ϵi|)2 · max
1≤i≤n

(
i−1∑
j=1

|h̃ij |) = op(n
1/2).

Similarly,

max
1≤i≤n

|m̃ii

(
ϵ2i − σ2

)
| = op(n

1/2), max
1≤i≤n

|ϵi
i−1∑
j=1

m̃ijϵj | = op(n
1/2).
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Table 4. The mean, (SD) and [RMSE] for MESS model based on EL and NA estimations.

Wn = Mn ι0 = −2 τ0 = −1 β0 = 3.5

ϵi ∼ N(0, 1) n = 49
EL -1.993(0.034)[0.034] -1.035(0.344)[0.340] 3.493(0.065)[0.064]
NA -2.001(0.040)[0.040] -0.991(0.298)[0.317] 3.497(0.085)[0.085]

n = 100
EL -1.996(0.031)[0.031] -0.963(0.206)[0.209] 3.500(0.070)[0.070]
NA -2.000(0.027)[0.027] -0.945(0.201)[0.208] 3.499(0.066)[0.066]

n = 400
EL -1.999(0.014)[0.013] -1.010(0.051)[0.046] 3.498(0.024)[0.023]
NA -2.000(0.012)[0.011] -0.993(0.100)[0.093] 3.499(0.029)[0.027]

ϵi ∼ t(5) n = 49
EL -2.003(0.123)[0.122] -1.010(0.350)[0.348] 3.478(0.168)[0.168]
NA -2.000(0.043)[0.043] -0.926(0.299)[0.307] 3.499(0.092)[0.092]

n = 100
EL -1.999(0.050)[0.048] -0.942(0.217)[0.223] 3.500(0.107)[0.106]
NA -1.999(0.035)[0.035] -0.968(0.186)[0.188] 3.498(0.089)[0.089]

n = 400
EL -2.007(0.016)[0.016] -1.049(0.079)[0.084] 3.483(0.022)[0.025]
NA -1.999(0.018)[0.018] -0.993(0.102)[0.102] 3.499(0.038)[0.039]

ϵi + 4 ∼ χ2(4) n = 49
EL -1.994(0.251)[0.251] -1.031(0.384)[0.384] 3.465(0.283)[0.284]
NA -2.001(0.108)[0.108] -0.914(0.303)[0.314] 3.487(0.224)[0.224]

n = 100
EL -1.997(0.160)[0.161] -0.958(0.279)[0.280] 3.490(0.184)[0.186]
NA -2.002(0.074)[0.074] -0.954(0.201)[0.202] 3.493(0.176)[0.176]

n = 400
EL -1.999(0.011)[0.018] -1.000(0.126)[0.121] 3.501(0.093)[0.091]
NA -1.999(0.037)[0.037] -0.990(0.106)[0.106] 3.497(0.103)[0.103]

Thus Zn = op(n
1/2), and (12) is proved.

We now prove (13). For any given l = (l′1, l2, l3)
′ ∈ Rk+2 with ∥l∥ = 1, where l1 ∈

Rk, l2, l3 ∈ R. Then

l′ωi(θ) =l
′
1aiϵi + l2{biϵi + h̃ii

(
ϵ2i − σ2

)
+ 2ϵi

i−1∑
j=1

h̃ij,1ϵj}

+ l3{m̃ii

(
ϵ2i − σ2

)
+ 2ϵi

i−1∑
j=1

m̃ijϵj}

=(l′1ai + l2bi)ϵi + (l2h̃ii + l3m̃ii)(ϵ
2
i − σ2) + 2ϵi

i−1∑
j=1

(l2h̃ij + l3m̃ij)ϵj .

Thus
n∑

i=1

l′ωi(θ) =
n∑

i=1

(l′1ai + l2bi)ϵi +
n∑

i=1

(l2h̃ii + l3m̃ii)(ϵ
2
i − σ2)

+ 2
n∑

i=1

i−1∑
j=1

(l2h̃ij + l3m̃ij)ϵiϵj .
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Denote

Qn =

n∑
i=1

n∑
j=1

uijϵiϵj +

n∑
i=1

νiϵi,

where

uii = l2h̃ii + l3m̃ii, uij = l2h̃ij + l3m̃ij(i ̸= j), νi = l′1ai + l2bi.

Then

Qn =
n∑

i=1

l′ωi(θ) =
n∑

i=1

{uii(ϵ2i − σ2) +
i−1∑
j=1

uijϵiϵj + νiϵi}.

We firstly try to obtain the variance of Qn. It can be shown that
n∑

i=1

n∑
j=1

u2ij =

n∑
i=1

{(l2h̃ii + l3m̃ii)
2 +

∑
i ̸=j

(l2h̃ij + l3m̃ij)
2}

= l22tr(H̃
2
n) + l23tr(M̃

2
n) + 2l2l3tr(H̃nM̃n),

n∑
i=1

u2ii =

n∑
i=1

(l2h̃ii + l3m̃ii)
2

= l22∥V ecD(H̃n)∥2 + l23∥V ecD(M̃n)∥2

+ 2l2l3V ec
′
D(H̃n)V ecD(M̃n),

n∑
i=1

ν2i =
n∑

i=1

(l′1ai + l2bi)
2

= l′1(

n∑
i=1

aia
′
i)l1 + l22

n∑
i=1

bib
′
i + 2l′1(

n∑
i=1

aib
′
i)l2

= l′1{eτMnXn}′eτMnXnl1 + l22{eτMnWnXnβ}′eτMnWnXnβ

+ 2l′1l2{eτMnXn}′eτMnWnXnβ,
and

n∑
i=1

uiiνi =

n∑
i=1

(l2h̃ii + l3m̃ii)(l
′
1ai + l2bi)

= l′1l2

n∑
i=1

h̃iiai + l22

n∑
i=1

h̃iibi + l′1l3

n∑
i=1

m̃iiai + l2l3

n∑
i=1

m̃iibi

= l′1l2{eτMnXn}′V ecD(H̃n) + l22{eτMnWnXnβ}′V ecD(H̃n)

+ l′1l3{eτMnXn}′V ecD(M̃n) + l2l3{eτMnWnXnβ}′V ecD(M̃n).

Thus the variance of Qn is

σ2
Qn

= 2
n∑

i=1

n∑
j=1

u2ijσ
4 +

n∑
i=1

ν2i σ
2 +

n∑
i=1

{u2ii(µ4 − 3σ4) + 2uiiνiµ3} = l′Σk+2l,

where Σk+2 is given in (11). From Condition A4, one can see that n−1σQn ≥ c1 > 0. By

Lemma 1 in Qin (2021) or Theorem 1 in Kelejian and Prucha (2001), we have

Qn − E(Qn)

σQn

d−→ N(0, 1).

Noting that E(Qn) = 0, we thus have (13).
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Next we will prove (14). i.e.,

n−1
n∑

i=1

{l′ωi(θ)}2 = n−1σ2
Qn

+ op(1). (16)

Let

Gin = l′ωi(θ) = uii(ϵ
2
i − σ2) + 2

i−1∑
j=1

uijϵiϵj + νiϵi = uii(ϵ
2
i − σ2) +Riϵi, (17)

where Ri = 2
∑i−1

j=1 uijϵj + νi. Let F0 = {ϕ,Ω} ,Fi = σ (ϵ1, ϵ2, · · · , ϵi) , 1 ≤ i ≤ n. Then

{Gin,Fi, 1 ≤ i ≤ n} form a martingale difference array. Note that

n−1
n∑

i=1

{l′ωi(θ)}2 − n−1σ2
Qn

= n−1
n∑

i=1

(
G2

in − EG2
in

)
= n−1

n∑
i=1

{
G2

in − E
(
G2

in | Fi−1

)
+ E

(
G2

in | Fi−1

)
− EG2

in

}
= n−1Sn1 + n−1Sn2, (18)

where

Sn1 =

n∑
i=1

{
G2

in − E(G2
in | Fi−1)

}
, Sn2 =

n∑
i=1

{
E
(
G2

in | Fi−1

)
− EG2

in

}
.

And then we need to prove that

n−1Sn1 = op (1) , (19)

and

n−1Sn2 = op (1) . (20)

Obviously, it is sufficient to prove n−2E
(
S2
n1

)
→ 0 and n−2E

(
S2
n2

)
→ 0 separately. Since

G2
in = u2ii

(
ϵ2i − σ2

)2
+R2

i ϵ
2
i + 2uiiRi

(
ϵ2i − σ2

)
ϵi,

then

E
(
G2

in | Fi−1

)
= u2iiE

(
ϵ2i − σ2

)2
+R2

i σ
2 + 2uiiRiµ3.

It follows that

n−2E
(
S2
n1

)
= n−2

n∑
i=1

E
{
G2

in − E
(
G2

in | Fi−1

)}2

= n−2
n∑

i=1

E
[
u2ii

{(
ϵ2i − σ2

)2 − E
(
ϵ2i − σ2

)2 }
+R2

i (ϵ
2
i − σ2) + 2uiiRi

(
ϵ3i − σ2ϵi − µ3

) ]2
≤ Cn−2

n∑
i=1

E
[
u4ii

{(
ϵ2i − σ2

)2 − E
(
ϵ2i − σ2

)2}2 ]
+Cn−2

n∑
i=1

E
{
R4

i

(
ϵ2i − σ2

)2}
+ Cn−2

n∑
i=1

E
{
u2iiR

2
i

(
ϵ3i − σ2ϵi − µ3

)2}
. (21)

By Conditions A1, we have the following

n−2
n∑

i=1

E
[
u4ii

{(
ϵ2i − σ2

)2 − E
(
ϵ2i − σ2

)2}2 ]
≤ Cn−2

n∑
i=1

u4ii ≤ Cn−2
n∑

i=1

∣∣∣l2h̃ii + l3m̃ii

∣∣∣4 ≤ Cn−1 → 0, (22)
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and

n−2
n∑

i=1

E
{
R4

i

(
ϵ2i − σ2

)2} ≤ Cn−2
n∑

i=1

E
( i−1∑

j=1

uijϵj + νi

)4

≤ Cn−2
n∑

i=1

E
( i−1∑

j=1

uijϵj

)4

+ Cn−2
n∑

i=1

ν4i ≤ Cn−2
n∑

i=1

i−1∑
j=1

u4ijµ4 + Cn−2
n∑

i=1

( i−1∑
j=1

u2ijσ
2
)2

+Cn−2
n∑

i=1

(l′1ai + l2bi)
4 ≤ Cn−1 → 0. (23)

Similarly, we can prove that

n−2
n∑

i=1

E
{
u2iiR

2
i

(
ϵ3i − σ2ϵi − µ3

)2} → 0. (24)

From (21)-(24), we have n−2E
(
S2
n1

)
→ 0. Furthermore,

EG2
in = E

{
E
(
G2

in | Fi−1

)}
= u2iiE

(
ϵ2i − σ2

)2
+ σ2E

(
R2

i

)
+ 2uiiµ3E (Ri)

= u2iiE
(
ϵ2i − σ2

)2
+ σ2

(
4

i−1∑
j=1

u2ijσ
2 + ν2i

)
+ 2uiiµ3νi.

Thus,

n−2E
(
S2
n2

)
= n−2E

[ n∑
i=1

{
E
(
G2

in | Fi−1

)
− EG2

in

} ]2
= n−2E

[ n∑
i=1

{
R2

i σ
2 − σ2

(
4

i−1∑
j=1

u2ijσ
2 + ν2i

)
+ 2uiiµ3 (Ri − νi)

}]2
= n−2

n∑
i=1

E
[
σ2

{(
2

i−1∑
j=1

uijϵj

)2

− 4

i−1∑
j=1

u2ijσ
2
}
+ 4

( i−1∑
j=1

uijϵj

)
νiσ

2 + 2uiiµ3

(
2

i−1∑
j=1

uijϵj

)]2
≤ Cn−2

n∑
i=1

E
{
σ2

( i−1∑
j=1

uijϵj

)2

−
i−1∑
j=1

u2ijσ
2
}2

+ Cn−2
n∑

i=1

E
{( i−1∑

j=1

uijϵj

)
νiσ

2
}2

+Cn−2
n∑

i=1

E
{
2uiiµ3

( i−1∑
j=1

uijϵj

)}2

. (25)

Note that

n−2
n∑

i=1

E
[
σ2

{( i−1∑
j=1

uijϵj

)2

−
i−1∑
j=1

u2ijσ
2
}]2

≤ n−2σ4
n∑

i=1

E
( i−1∑

j=1

uijϵj

)4

≤ Cn−2
n∑

i=1

i−1∑
j=1

u4ijµ4 + Cn−2
n∑

i=1

( i−1∑
j=1

u2ijσ
2
)2

≤ Cn−1 → 0, (26)

n−2
n∑

i=1

E
{( i−1∑

j=1

uijϵj

)
νiσ

2
}2

= n−2σ6
n∑

i=1

ν2i

i−1∑
j=1

u2ij ≤ Cn−2 → 0, (27)

and

n−2
n∑

i=1

E
{
2uiiµ3

( i−1∑
j=1

uijϵj

)}2

= 4µ2
3σ

2n−2
n∑

i=1

u2ii

i−1∑
j=1

u2ij ≤ Cn−1 → 0, (28)
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where we have used Conditions A1 and A2. Form (25)-(28), we have n−2E(Sn2)
2 → 0. The

proof of (14) is thus completed.

Finally, we prove (15). Note that
n∑

i=1

E∥ωi(θ)∥3 ≤
n∑

i=1

E∥aiϵi∥3 +
n∑

i=1

E
∣∣∣biϵi + h̃ii(ϵ

2
i − σ2) + 2ϵi

i−1∑
j=1

h̃ijϵj

∣∣∣3
+

n∑
i=1

E
∣∣∣m̃ii(ϵ

2
i − σ2) + 2ϵi

i−1∑
j=1

m̃ijϵj

∣∣∣3. (29)

Combining Conditions A1 and A2, we have
n∑

i=1

E∥aiϵi∥3 ≤ Cn
(

max
1≤i≤n

∥ai∥
)3

E |ϵi|3 = O (n) , (30)

n∑
i=1

E
∣∣∣biϵi + h̃ii(ϵ

2
i − σ2) + 2ϵi

i−1∑
j=1

h̃ijϵj

∣∣∣3
≤ C

n∑
i=1

E |biϵi|3 + C
n∑

i=1

E
∣∣∣h̃ii(ϵ2i − σ2)

∣∣∣3 + C
n∑

i=1

E
∣∣∣2ϵi i−1∑

j=1

h̃ijϵj

∣∣∣3
≤ C

n∑
i=1

E |biϵi|3 + C

n∑
i=1

E
∣∣∣h̃ii(ϵ2i − σ2)

∣∣∣3
+C

n∑
i=1

E |ϵi|3
i−1∑
j=1

E
∣∣∣h̃ijϵj∣∣∣3 + C

n∑
i=1

E |ϵi|3
{ i−1∑

j=1

E
(
h̃ijϵj

)2 }3/2

= O (n) . (31)

Similarly,
n∑

i=1

E
∣∣∣m̃ii(ϵ

2
i − σ2) + 2ϵi

i−1∑
j=1

m̃ijϵj

∣∣∣3 = O (n) . (32)

From (29)-(32), one can prove that
n∑

i=1

E ∥ωi(θ)∥3 = O (n) . (33)

Using (33) and Markov inequality, we have
∑n

i=1 ∥ωi(θ)∥3 = Op (n). Thus (15) is proved.

Proof of Theorem 1. Using Lemma 1 and following the proof of Theorem 1 in Qin (2021),

one can show that Theorem 1 holds true.

§5 Conclusions

In this paper, we study EL method for spatial cross-sectional data models in the form of

MESS. By using the QML method and then changing the quadratic forms of the error terms

into the linear forms of martingale difference arrays to derive the estimating functions for the

EL method, the EL ratio statistics are established for the parameters of the MESS model. The

limiting distributions of EL ratio statistics are then obtained and we use this result to construct

the confidence regions of model parameters. Simulation results show that the computational
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efficiency of EL method is better than NA method and thus EL method is recommended in

constructing confidence regions of parameters. We will study EL method for spatial panel data

models in the form of MESS in our future work.
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