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Differentially private SGD with random features

WANG Yi-guang1 GUO Zheng-chu2,∗

Abstract. In the realm of large-scale machine learning, it is crucial to explore methods for

reducing computational complexity and memory demands while maintaining generalization per-

formance. Additionally, since the collected data may contain some sensitive information, it is

also of great significance to study privacy-preserving machine learning algorithms. This paper

focuses on the performance of the differentially private stochastic gradient descent (SGD) algo-

rithm based on random features. To begin, the algorithm maps the original data into a low-

dimensional space, thereby avoiding the traditional kernel method for large-scale data storage

requirement. Subsequently, the algorithm iteratively optimizes parameters using the stochastic

gradient descent approach. Lastly, the output perturbation mechanism is employed to introduce

random noise, ensuring algorithmic privacy. We prove that the proposed algorithm satisfies the

differential privacy while achieving fast convergence rates under some mild conditions.

§1 Introduction

The stochastic gradient descent (SGD) method is one of the most popular methods to handle

large scale datasets. Compared to the gradient descent method, it demonstrates comparable

performance while significantly reducing the computational burden at each iteration. The

reduction in computational burden is achieved by computing the gradient using only a single

training example instead of traversing through all training examples. Recently, it has gained

significant attention and popularity due to its wide applications in training neural networks

[4, 27]. There is a large literature in learning theory on the analysis of performance of SGD,

e.g., see [4, 7, 9, 15, 17–19, 32] and references therein. Moreover, since the training examples

may contain some sensitive information, such as medical data, financial data and web search

histories. Many machine learning models inadvertently reveal sensitive information during the

training process, thus violating privacy even if private details are removed from the data. For

instance, even after the removal of names, genders, and addresses, re-identification remains

possible since the remaining features may still create a unique signature.

Therefore, it is also of great significance to study privacy-preserving machine learning al-

gorithms. In this paper, we use (ϵ, δp)-differential privacy to measure the privacy which is
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proposed in [10] and has recently received a significant amount of attention due to its resilience

against known attacks and broad applicability. The mathematical description of differential

privacy tells us that a statistical procedure satisfies (ϵ, δp)-differential privacy if changing a sin-

gle data point does not affect the output distribution too much. This property makes it difficult

for adversaries to infer the value of any specific data point from the algorithm’s output [6, 11].

In this paper, we are interested in studying differentially private SGD based on random

features. Random features [21] are proposed to overcome the memory bottleneck that prevents

large scale applications of kernel methods [1,23]. This breakthrough has paved the way for the

widespread adoption of kernel methods in a variety of large-scale learning tasks. We consider

the least square regression problem, which aims at learning a functional relation f from training

examples that can make predictions for new observations. Let X be a compact metric space

and Y ⊂ R, ρ is a Borel probability distribution on Z = X × Y. For a function f : X 7→ Y,
and (x, y) ∈ X × Y, f(x) represents the prediction of y based on x, the prediction error is

measured by the least square error (f(x)− y)2. The regression problem aims at estimating an

ideal function which minimizes the following generalization error

E(f) =
∫
X×Y

(f(x)− y)2dρ (1)

where the minimization is intended over all measurable functions. The regression function is

the minimizer of the generalization error E(f) and is given by

fρ(x) =

∫
Y
ydρ(y|x), x ∈ X (2)

where ρ(·|x) is the conditional distribution of ρ at x. Since ρ is unknown, we learn a function

f from samples (xi, yi)
n
i=1 drawn from ρ independently to approximate the target function fρ.

In this paper, we are interested in functions of the form

f(x) = ⟨w, ϕM (x)⟩, ∀x ∈ X , (3)

here ⟨·, ·⟩ denotes the inner product in RM , w ∈ RM , M ∈ N and the random feature map

ϕM : X 7→ RM is defined as

ϕM (x) =
1√
M

(ψ(x, ν1), · · · , ψ(x, νM ))⊤, ∀x ∈ X (4)

where ν1, · · · , νM ∈ Ω are drawn independently according to some distribution π. We assume

the function ψ : X×Ω → R is continuous and there exists constant κ ≥ 1 such that |ψ(x, ν)| ≤ κ

for any x ∈ X , ν ∈ Ω.

The coefficient w can be learned based on the examples {(xi, yi)}ni=1 by the following SGD

method, ŵ0 = 1, and for 1 ≤ t ≤ T,

ŵt+1 = ŵt − η(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit), (5)

here η > 0 is the step size, and it is drawn uniformly from {1, 2, · · · , n}.
In this paper, we develop SGD based on random features for approximating fρ while guar-

anteeing differential privacy. To this end, we use the output perturbation mechanism [6,10,11]

based on the sensitivity method to achieve the differential privacy, in which random noise is

added to the SGD output iterates ŵT+1, therefore, the differentially private estimator is of

the form f̂priv(·) = ⟨ŵpriv, ϕM (·)⟩ after T iterations. See details in algorithm 1. And the

performance of algorithm 1 can be measured by the following excess generalization error

E(f̂priv)− E(fρ). (6)

For a randomized learning algorithm A : Zn 7→ Rd, let A(S) denotes the model produced by

running A over the training dataset S. Two datasets S and S ′ are called neighboring datasets
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Algorithm 1 Differentially private SGD based on random features

Input: Data {(xi, yi)}ni=1, sampling function π(ν), random feature map ϕM , parameters
M, ϵ, δp, T, η

Output: The predictor f̂priv
Draw νj , j = 1, 2, · · · ,M according to π(ν).

Set ϕM (xi) =
√
1/M [ψ(xi, ν1), ψ(xi, ν2), · · · , ψ(xi, νM )]⊤ for each i

Set ŵ1 = 0
for t = 1 to T do
Sample it ∼ Unif [n]
ŵt+1 = ŵt − η(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)

end for
Let ∆ = ∆SGD(δ/2)

Compute σ2 = 2 log (2.5/δ)∆2

ϵ2

ŵpriv = ŵT+1 + b, where b ∼ N (0, σ2IM )

f̂priv(x) = ⟨ŵpriv, ϕM (x)⟩, ϕM (x) =
√
1/M [ψ(x, ν1), ψ(x, ν2), · · · , ψ(x, νM )]⊤

if they differ by a single datum, that is, S and S ′ have n − 1 points (xi, yi) in common which

is denoted by S ≃ S ′. The privacy measurement used in our paper is the (ϵ, δp)-differential

privacy, which defines a notion of privacy for a randomized algorithm A(S). In this paper, A
is the SGD algorithm (5), and S = {(xi, yi)}ni=1, then A(S) = ŵT+1.

Definition 1 (Differential Privacy(DP), [10]). We say a randomized algorithm A satisfies

(ϵ, δp)-DP if, for any two neighboring datasets S and S ′ and any event E in the output space

of A, there holds

P(A(S) ∈ E) ≤ eϵP(A(S ′) ∈ E) + δp (7)

In particular, we call it satisfies ϵ-DP if δp = 0.

The output perturbation mechanism is conducted by adding noise with a particular distri-

bution to the output of A(S), which has the effect of masking the effect of any kind of particular

data point [6]. This is usually called the sensitivity method. The ℓ2-sensitivity of an algorithm

(function) A is defined as follows.

Definition 2 (ℓ2-sensitivity, [29]). The ℓ2-sensitivity of an algorithm (function) A : Zn 7→ Rd

is defined as ∆ = supS≃S′ ∥A(S)−A(S ′)∥2, where ∥ · ∥2 denotes the Euclidean norm, S and S ′

are neighboring datasets.

The following Gaussian mechanism [29] generates a (ϵ, δp)-DP by adding a random noise

from a Gaussian distribution N (0, σ2Id) to the output of algorithm (function) A, where σ is

proportional to the ℓ2-sensitivity of A.

Lemma 1.1 ( [11]). Given an algorithm (function) A : Zn 7→ Rd with the ℓ2-sensitivity ∆

and a dataset S ⊂ Zn, and assume that σ ≥
√

2 log(1.25/δp)∆

ϵ . Then the following Gaussian

mechanism yields (ϵ, δp)-DP

G(S, σ) := A(S) + b, b ∼ N (0, σ2Id), (8)

where Id is the identity matrix in Rd×d.

The goal of this paper is to prove algorithm 1 satisfies the (ϵ, δp)-differential privacy and

establish fast excess generalization error bounds under some mild conditions. The rest of the
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paper is organized as follows. The main results are given in Section 2. To prove our main results,

we first introduce our error decomposition and obtain some technical estimates in Section 3.

Then we provide proofs of convergence rates and privacy guarantee in Section 4.

§2 Main results

Throughout the paper, we assume that the output y is uniformly bounded, i.e., for some

constant c > 0, |y| ≤ c almost surely.

By the definition (4) of random feature map ϕM , we have

⟨ϕM (x), ϕM (x′)⟩ = 1

M

M∑
j=1

ψ(x, νj)ψ(x
′, νj), ∀x, x′ ∈ X (9)

which can be shown to converge to the following symmetric and positive semi-definite kernel

K(x, x′)

K(x, x′) =

∫
ψ(x, ν)ψ(x′, ν)dπ(ν), ∀x, x′ ∈ X .

as the number of random features M tends to infinity [5,21,22]. And the positive semi-definite

kernel K can be expressed as K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩F with feature map ϕ : X 7→ F , and unlike

the random feature map ϕM : X 7→ RM , here feature space F can be infinite dimensional. Then

we have

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩F ≈ ⟨ϕM (x), ϕM (x′)⟩ = KM (x, x′) (10)

The Gaussian kernel provides a basic example [21], more examples we refer the interested

readers to [21,22] and reference therein.

Example 2.1 (Random Fourier features [21]). If we write the Gaussian kernel as K(x, x′) =

G(x − x′), with G(z) = e−
∥z∥2

2σ2 for σ > 0, then since the inverse Fourier transform of G is a

Gaussian and using a basic symmetry argument, it is easy to show that

G(x− x′) =
1

2πQ

∫ ∫ 2π

0

√
2cos(w⊤x+ b)

√
2(w⊤x′ + b)e−

σ2

2 ∥w∥2

dwdb (11)

where Q is a normalizing factor. Then, the Gaussian kernel has an approximation of the

form with ϕM (x) = 1√
M
(
√
2cos(w⊤

1 x+ b1), · · · ,
√
2cos(w⊤

Mx+ bM ))⊤ and w1, w2, · · · , wM and

b1, b2, · · · , bM sampled independently from 1
Qe

−σ2∥w∥2
2 and uniformly in [0, 2π] respectively.

The reproducing kernel Hilbert space HK associated with the kernel K is the completion of

the span {Kx = K(·, x) : x ∈ X} with respect to the inner product ⟨·, ·⟩K given by ⟨Kx,Kx′⟩K =

K(x, x′). And the reproducing property shows that

f(x) = ⟨f,Kx⟩K , , ∀x ∈ X , f ∈ HK . (12)

The integral operator L : L2
ρX

7→ L2
ρX

associated with the kernel K and the marginal distribu-

tion ρX of ρ is defined by

Lf(·) =
∫
X
K(·, x)f(x)dρX (x), ∀f ∈ L2

ρX
(13)

here L2
ρX

denotes the square-integrable Hilbert space.

Our main results are stated based on two key assumptions. The first assumption is about

the regularity condition of the regression function. We assume the target function fρ satisfies

some smoothness condition(regularity condition) which is standard in learning theory [8, 25].
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Assumption 2.1. There exist r ≥ 1/2 and gρ ∈ L2
ρX

such that

fρ = Lrgρ, ∥gρ∥ρ ≤ R. (14)

Here the ∥ · ∥ρ denotes the norm in L2
ρX

induced by the inner product ⟨h, g⟩ρ =
∫
X f(x)g(x)

dρX (x) for h, g ∈ L2
ρX

. This assumption implies that fρ belongs to the range space of Lr.

Moreover, since ρX is non-degenerate, from Theorem 4.12 in [8], L1/2 is an isomorphism from

HK , the closure ofHK in L2
ρX

, toHK , i.e., for each f ∈ HK , L1/2f ∈ HK and ∥f∥ρ = ∥L1/2f∥K ,
Therefore, L1/2(L2

ρX
) = HK , and when r ≥ 1

2 , condition (14) implies fρ ∈ HK .

We next introduce the second key assumption on the capacity of the RKHS HK . In this

paper, we measure the capacity of the hypothesis space HK by the effective dimension N (λ) =

Tr(L(L+ λI)), here Tr(A) denotes the trace of an operator A of trace class.

Assumption 2.2. We assume that

N (λ) ≤ C0λ
−α for some C0 > 0 and 0 < α < 1. (15)

Since L is a trace class operator satisfying Tr(L) =
∑

k≥1 σk =
∫
X K(x, x)dρX ≤ κ2,

Assumption 2.2 holds trivially with α = 1.

Theorem 1. Let f̂priv be defined by algorithm 1 and 0 < δ < 1. Under Assumption 2.1 with
1
2 < r ≤ 1 and Assumption 2.2 with 4−4r

3−2r < α < 1, let step size 0 < η < 1
κ2(log T+1) , and the

number of random features M ≃ n
1+α(2r−1)

2r+α log n
δ . If η ≃ n−1, T = n

2r+α+1
2r+α ; or η ≃ n−

2r
2r+α , T =

n
2r+1
2r+α , then with probability at least 1− δ, there holds

EIT

(
E(f̂priv)− E(fρ)

)
. n−

4r+3α−4−2rα
2r+α

1

ϵ2
log

n

δ
log

2n

δp
log

2.5

δp
+ n−

2r
2r+α log2 n log2

18

δ
. (16)

Here we denote by EIT the expectation with expectation to the set {i1, i2, · · · , iT }. The
symbols ≃ and . mean that the inequality holds up to a multiplicative constant that depends

on various parameters appearing in the assumptions, but not on the sample size n or the number

of random features M . The proof of Theorem 1 will be given in subsection 4.1.

Theorem 2. Let {ŵt} be defined by (5), Let cγ,T = max
{√

3 log(n/γ)
T/n , 3 log(n/γ)

T/n

}
, then for any

0 < γ < 1, there holds

P
(
sup
S≃S

δA(S,S ′) = ∥A(S)−A(S ′)∥2 ≥ ∆SGD(γ)

)
≤ γ, (17)

where ∆SGD(γ) = 4eη2
(
cκ+ κ2

√
ηT
)2 T

n (1 + cγ,T )
(
1 + T

n (1 + cγ,T )
)
.

Theorem 3 (Privacy guarantee). The algorithm 1 satisfies (ϵ, δp)-DP.

The proof of Theorem 2 and Theorem 3 will be given in subsection 4.2.

Our convergence rate (16) consists of two terms, the first term n−
4r+3α−4−2rα

2r+α 1
ϵ2 log

n
δ log

n
δp

log 1
δp

depends on regularity parameter r, capacity parameter α, the sample size n and the

parameters (ϵ, δp) of differential privacy, while the second term n−
2r

2r+α log2 n is optimal in the

mini-max sense(up to a logarithmic term log n) which matches the results of SGD with random

features and mini-batches [5] and ridge regression with random features [22] under the same

assumptions. There is a large literature on the analysis on privacy preserving machine learning

algorithms [2,6,12,29,30], random features [5,16,21,22,22,26] and SGD in the setting of stochas-

tic convex optimization [4, 18, 24] or in reproducing kernel Hilbert space [7, 9, 13–15, 17, 31, 32].
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To the best of our knowledge, this is the first result that combines the advantages of SGD, ran-

dom features and differential privacy. Here we only review some results on differentially private

SGD with output perturbation for the sake of scale of the paper. For more results, we refer the

readers to the work mentioned in this paper and the reference therein. Most of the differentially

private SGD algorithms are considered in the setting of stochastic convex optimization, where

the parameter domain W ⊂ Rd is convex. Differentially private SGD with output perturbation

is studied in [30], where the loss is assumed to be Lipschitz continuous and strongly smooth, and

W is assumed to be uniformly bounded, then it showed an excess risk rate O
(

(d log(1/δp))
1/4

√
nϵ

)
with linear gradient complexity. Recently, private SGD with more general α-Hölder smooth

(α ∈ [0, 1]) loss function (α = 0 corresponds to Lipschitz continuous and α = 1 means strong

smooth) are considered in [29], where privacy guarantee and generalization bounds are estab-

lished for both output and gradient perturbations. For the unbounded domain W, it shows

in [29] that the private SGD with output perturbation attains the excess generalization error

O
(√

d log(1/δp) log(n/δp)

n2/(3+α)ϵ
+

log(n/δp)

n1/(3+α)

)
. In addition to the output perturbation mechanism, another

popular mechanism to achieve differential privacy is called gradient perturbation, which adds

random noise to the stochastic gradient at each step. Under the same assumption on the loss

functions as [30], it shows in [3] that the differentially private SGD with gradient perturbation

achieves an optimal excess error rate O
(√

d log(1/δp)

nϵ + 1√
n

)
but with computationally inefficient

gradient complexity, then the gradient complexity of the algorithm have been improved by [12]

and [2]. And optimal excess error rate (up to some logarithmic terms) is also established in [29]

for private SGD with α-Hölder smooth function using gradient perturbation.

§3 Preliminaries

Before proving the main results, we give some notations [5] and useful lemmas in this section.

Let F be the feature space corresponding to the kernel K. Given the feature map ϕ : X → F ,

we can define the operator S : F → L2
ρX

as

(Sw)(·) = ⟨w, ϕ(·)⟩F , ∀w ∈ F , (18)

and define C : F → F as C = S∗S, where S∗ : L2
ρX

→ F is the adjoint operator of S, and C is

given by

C =

∫
X
ϕ(x)⊗ ϕ(x)dρX(x) =

∫
X
⟨ϕ(x), ·⟩Fϕ(x)dρX(x). (19)

And the integral operator L defined by (13) can be represented as L = SS∗. Now we define

similar operators where we use the random feature map ϕM instead of feature map ϕ. We

define SM : RM → L2
ρX

as

(SMv)(·) = ⟨v, ϕM (·)⟩, ∀v ∈ RM , (20)

And we define CM : RM → RM and LM : L2
ρX

→ L2
ρX

as CM = S∗
MSM and LM = SMS

∗
M

respectively, where S∗
M is the adjoint operator of SM .

We also define some operators with respect to training samples. The operator ŜM : RM →
Rn is defined as

Ŝ⊤
M =

1√
n
(ϕM (x1), · · · , ϕM (xn)). (21)

And ĈM : RM → RM and L̂M : Rn → Rn are defined as ĈM = Ŝ⊤
M ŜM and L̂M = ŜM Ŝ

⊤
M

respectively.
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To sum up, the operators associated with the random feature map ϕM defined above are as

follows:

SM : RM → L2
ρX
. (SMv)(·) = ⟨v, ϕM (·)⟩, ∀v ∈ RM

CM : RM → RM . CM = S∗
MSM . CM =

∫
X
ϕM (x)ϕM (x)⊤dρX (x)

LM : L2
ρX

→ L2
ρX
. LM = SMS

∗
M .

(LMg)(·) =
∫
X
KM (·, z)g(z)dρX (z) (KM (x, y) = ⟨ϕM (x), ϕM (y)⟩)

ŜM : RM → Rn. Ŝ⊤
M =

1√
n
(ϕM (x1), · · · , ϕM (xn))

ĈM : RM → RM . ĈM = Ŝ⊤
M ŜM . ĈM =

1

n

n∑
i=1

ϕM (xi)ϕM (xi)
⊤

L̂M : Rn → Rn. L̂M = ŜM Ŝ
⊤
M

ŷ : ŷ =
1√
n
(y1, y2, · · · , yn)⊤

3.1 Error decomposition

It is well known that the excess generalization error E(f̂priv)− E(fρ) can be expressed as

E(f̂priv)− E(fρ) =
∫
X×Y

(f̂priv(x)− y)2dρ−
∫
X×Y

(fρ(x)− y)2dρ =
∥∥∥f̂priv − fρ

∥∥∥2
ρ

(22)

and f̂priv − fρ can be decomposed into the following six terms [5]

f̂priv − fρ =

[fpriv − f̂T+1] + [f̂T+1 − ĝT+1] + [ĝT+1 − g̃T+1] + [g̃T+1 − g̃λ] + [g̃λ − gλ] + [gλ − fρ]

where f̂t = ⟨ŵt, ϕM (·)⟩, ĝt = ⟨v̂t, ϕM (·)⟩, g̃t = ⟨ṽt, ϕM (·)⟩, g̃λ = ⟨ũλ, ϕM (·)⟩, gλ = ⟨uλ, ϕ(·)⟩F ,
∀1 ≤ t ≤ T and ŵt, v̂t, ṽt, ũλ, uλ are defined as follows [5]

ŵ1 = 0; ŵt+1 = ŵt − η(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit), ∀1 ≤ t ≤ T (23)

v̂1 = 0; v̂t+1 = v̂t − η
1

n

n∑
i=1

(⟨v̂t, ϕM (xi)⟩ − yi)ϕM (xi), ∀1 ≤ t ≤ T (24)

ṽ1 = 0; ṽt+1 = ṽt − η

∫
X
(⟨ṽt, ϕM (x)⟩ − y)ϕM (x)dρ(x, y), ∀1 ≤ t ≤ T (25)

ũλ = argmin
u∈RM

∫
X
(⟨u, ϕM (x)⟩ − y)2dρX (x) + λ∥u∥2, λ > 0 (26)

uλ = argmin
u∈F

∫
X
(⟨u, ϕ(x)⟩F − y)2dρ(x, y) + λ∥u∥2F , λ > 0 (27)

With the operators introduced in the beginning of Section 3, we can rewrite v̂T+1, ṽT+1, ũλ and

uλ respectively as

v̂T+1 =
T∑

t=1

η
T∏

k=t+1

(I − ηĈM )Ŝ∗
M ŷ =

T∑
t=1

η(I − ηĈM )T−tŜ∗
M ŷ, (28)

ṽT+1 =
T∑

t=1

η
T∏

k=t+1

(I − ηCM )S∗
Mfρ =

T∑
t=1

η(I − ηCM )T−tS∗
Mfρ, (29)
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ũλ = S∗
M (LM + λI)−1fρ, (30)

uλ = S∗(L+ λI)−1fρ. (31)

It follows that

fpriv = SM ŵpriv, f̂T+1 = SM ŵT+1, ĝT+1 = SM v̂T+1, g̃T+1 = SM ṽT+1,

g̃λ = SMS
∗
M (LM + λI)−1fρ = LM (LM + λI)−1fρ, gλ = SS∗(L+ λI)−1fρ = L(L+ λI)−1fρ

Let

G1 := EIT

[
∥SM ŵpriv − SM ŵT+1∥2ρ

]
,

G2 := EIT

[
∥SM ŵT+1 − SM v̂T+1∥2ρ

]
,

G3 := ∥SM v̂T+1 − SM ṽT+1∥2ρ,

G4 :=
∥∥SM ṽT+1 − LM (LM + λI)−1fρ

∥∥2
ρ
, (32)

G5 :=
∥∥LM (LM + λI)−1fρ − L(L+ λI)−1fρ

∥∥2
ρ
,

G6 :=
∥∥L(L+ λI)−1fρ − fρ

∥∥2
ρ
,

then the expected excess generalization error can be divided into the following six terms

EIT

(
E(f̂priv)− E(fρ)

)
= EIT

[∥∥∥f̂priv − fρ

∥∥∥2
ρ

]
≤ 6(G1 +G2 +G3 +G4 +G5 +G6). (33)

We will bound the six terms of the right hand side of (33) respectively in Section 4.

3.2 Technical estimates

In order to prove our main results in Section 4, we need some preliminary lemmas. For any

w ∈ RM , we define empirical risk as

EZ(w) =
1

n

n∑
i=1

(⟨w, ϕM (xi)⟩ − yi)
2
. (34)

Lemma 3.1. Let T ≥ 3, the step size η satisfies

0 < η <
1

κ2(log T + 1)
, (35)

then for 2 ≤ t ≤ T , we have

EIt−1 [EZ(ŵt)] ≤
c2

(1− ηκ2)(1− ηκ2 − ηκ2 log T )
. (36)

Proof. We borrow some ideas from [19, 24] to prove this lemma. Let {ŵt}t be defined by (5),

for k = 1, · · · , t− 1, we have

1

k

t∑
l=t−k+1

EIl−1
[EZ(ŵl)]−

1

k + 1

t∑
l=t−k

EIl−1
[EZ(ŵl)]

=
1

k(k + 1)

(
(k + 1)

t∑
l=t−k+1

EIl−1
[EZ(ŵl)]− k

t∑
l=t−k

EIl−1
[EZ(ŵl)]

)

=
1

k(k + 1)

t∑
l=t−k+1

EIl−1
[EZ(ŵl)− EZ(ŵt−k)] .
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Using this inequality repeatedly and by summing over k = 1, 2, · · · , t− 1, we have

EIt−1 [EZ(ŵt)] =
1

t

t∑
l=1

EIl−1
[EZ(ŵl)] +

t−1∑
k=1

1

k(k + 1)

t∑
l=t−k+1

EIl−1
[EZ(ŵl)− EZ(ŵt−k)] . (37)

Next we estimate the two terms of the right hand side of (37) respectively. For the first term
1
t

∑t
l=1 EIl−1

[EZ(ŵl)]. By the definition of {ŵl}, we have

∥ŵl+1∥22 = ∥ŵl∥22 − 2η(⟨ŵl, ϕM (xil)⟩ − yil)⟨ŵl, ϕM (xil)⟩+ η2(⟨ŵl, ϕM (xil)⟩ − yil)
2∥ϕM (xil)∥22

≤ ∥ŵl∥22 + η
(
(yil)

2 − (⟨ŵl, ϕM (xil)⟩ − yil)
2
)
+ η2κ2 (⟨ŵl, ϕM (xil)⟩ − yil)

2
.

Then rearrange terms and by the definition (34) of EZ(w), we have

ηEIl−1
[El(ŵl)− EZ(0)] ≤ EIl [∥ŵl∥22 − ∥ŵl+1∥22] + η2κ2EIl−1

[EZ(ŵl)],

and

η(1− ηκ2)EIl−1
[EZ(ŵl)] ≤ EIl [∥ŵl∥22 − ∥ŵl+1∥22] + ηEZ(0).

Since ηκ2 < 1, it follows that

EIl−1
[EZ(ŵl)] ≤

1

η(1− ηκ2)
EIl [∥ŵl∥22 − ∥ŵl+1∥22] +

1

1− ηκ2
EZ(0)

and

1

t

t∑
l=1

EIl−1
[EZ(ŵl)] ≤

1

tη(1− ηκ2)
EIt [∥ŵ1∥22 − ∥ŵt+1∥22] +

1

1− ηκ2
EZ(0) ≤

1

1− ηκ2
EZ(0).

Now we turn to estimate the second term EIl−1
[EZ(ŵl)− EZ(ŵt−k)] for t− k + 1 ≤ l ≤ T. By

the definition of ŵl+1, we have

ŵl+1 − ŵt−k = ŵl − ŵt−k − η(⟨ŵl, ϕM (xil)⟩ − yil)ϕM (xil), (38)

then
∥ŵl+1 − ŵt−k∥22 = ∥ŵl − ŵt−k∥22 − 2η(⟨ŵl, ϕM (xil)⟩ − yil)⟨ŵl − ŵt−k, ϕM (xil)⟩

+ η2(⟨ŵl, ϕM (xil)⟩ − yil)
2∥ϕM (xil)∥22

≤ ∥ŵl − ŵt−k∥22 + η
(
(⟨ŵt−k, ϕM (xil)⟩ − yil)

2 − (⟨ŵl, ϕM (xil)⟩ − yil)
2
)

+ η2κ2 (⟨ŵl, ϕM (xil)⟩ − yil)
2
.

It follows that

EIl−1
[EZ(ŵl)− EZ(ŵt−k)] ≤

1

η
EIl−1

[∥ŵl − ŵt−k∥22 − ∥ŵl+1 − ŵt−k∥22] + ηκ2EIl−1
[EZ(ŵl)].

Applying this relationship iteratively from l = t− k + 1 to l = t,
t∑

l=t−k+1

EIl−1
[EZ(ŵl)− EZ(ŵt−k)] =

t∑
l=t−k

EIl−1
[EZ(ŵl)− EZ(ŵt−k)]

≤
t∑

l=t−k

1

η
EIl−1

[∥ŵl − ŵt−k∥22 − ∥ŵl+1 − ŵt−k∥22] + ηκ2
t∑

l=t−k

EIl−1
[EZ(ŵl)]

≤ 1

η
EIt−k−1

[∥ŵt−k − ŵt−k∥22 − ∥ŵt+1 − ŵt−k∥22] + ηκ2
t∑

l=t−k

EIl−1
[EZ(ŵl)]

≤ ηκ2
t∑

l=t−k

EIl−1
[EZ(ŵl)].
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Then the second term of the right hand side of (37) can be estimated as
t−1∑
k=1

1

k(k + 1)

t∑
l=t−k+1

EIl−1
[EZ(ŵl)− EZ(ŵt−k)]

≤
t−1∑
k=1

ηκ2

k(k + 1)

t∑
l=t−k

EIl−1
[EZ(ŵl)]

=
t−1∑
k=1

ηκ2

k(k + 1)

t−1∑
l=t−k

EIl−1
[EZ(ŵl)] +

t−1∑
k=1

ηκ2

k(k + 1)
EIt−1 [EZ(ŵt)]

≤
t−1∑
k=1

ηκ2

k(k + 1)

t−1∑
l=t−k

EIl−1
[EZ(ŵl)] + ηκ2EIt−1 [EZ(ŵt)].

(39)

Then putting (38) and (39) back into (37), we get

EIt−1 [EZ(ŵt)] ≤
1

(1− ηκ2)2
EZ(0) +

ηκ2

1− ηκ2

t−1∑
k=1

1

k(k + 1)

t−1∑
l=t−k

sup
1≤l≤t−1

EIl−1
[EZ(ŵl)]

≤ 1

(1− ηκ2)2
EZ(0) +

ηκ2 log t

1− ηκ2
sup

1≤l≤t−1
EIl−1

[EZ(ŵl)]. (40)

Let A = 1
(1−ηκ2)2 EZ(0), Bt =

ηκ2 log t
1−ηκ2 , Ct = EIt−1 [EZ(ŵt)]. Since η ≤ 1

κ2(log T+1) , there holds

Bt ≤
ηκ2 log T

1− ηκ2
:= B ≤ 1.

Then for t ≥ 2, we can get from (40) that

Ct ≤ A+Bt sup
1≤l≤t−1

Cl ≤ A+B sup
1≤l≤t−1

Cl,

then it follows that

sup
2≤l≤t−1

Cl ≤ A+B sup
1≤l≤t−1

Cl.

And for C1, by η ≤ 1
κ2(log T+1) , it is obvious that C1 ≤ A+BC1. Then we have

sup
1≤l≤t−1

Cl ≤ A+B sup
1≤l≤t−1

Cl,

sup
1≤l≤t−1

Cl ≤ A

1−B
.

Therefore, for t ≥ 2, we have

Ct ≤ A+Bt sup
1≤l≤t−1

Cl ≤ A+Bt
A

1−B
≤ A

1−B
.

That is, for 2 ≤ t ≤ T, there holds

EIt−1 [EZ(ŵt)] ≤
1

(1− ηκ2 log T
1−ηκ2 )(1− ηκ2)2

EZ(0) ≤
c2

(1− ηκ2)(1− ηκ2 − ηκ2 log T )
, (41)

where the last inequality holds due to |y| ≤ c almost surely.

We also need the following bound for the sequence {ṽt}t≥1.

Lemma 3.2. Let {ṽt} be defined by (25), δ ∈ (0, 1), λ̂ ≥ 9κ2

M log M
δ , and the target function fρ

satisfies Assumption 2.1 with 1/2 < r ≤ 1, then

∥ṽt+1∥2 ≤ 2Rκ2r−1
(
1 + ηλ̂t

)
, ∀1 ≤ t ≤ T, (42)
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holds with probability at least 1− δ.

Proof. Let {ṽt} be defined by (25), and fρ = Lrgρ with 1
2 < r ≤ 1 and ∥gρ∥ρ ≤ R, then for

λ̂ > 0, we have

∥ṽt+1∥2 =

∥∥∥∥∥
t∑

k=1

η(I − ηCM )t−kS∗
Mfρ

∥∥∥∥∥
2

=

∥∥∥∥∥
t∑

k=1

ηS∗
M (I − ηLM )t−kfρ

∥∥∥∥∥
2

=

∥∥∥∥∥
t∑

k=1

ηL
1
2

M (I − ηLM )t−kfρ

∥∥∥∥∥
ρ

=

∥∥∥∥∥
t∑

k=1

ηL
1
2

M (I − ηLM )t−k(LM + λ̂I)
1
2 (LM + λ̂I)−

1
2L

1
2Lr− 1

2 gρ

∥∥∥∥∥
ρ

≤

∥∥∥∥∥
t∑

k=1

ηL
1
2

M (I − ηLM )t−k(LM + λ̂I)
1
2

∥∥∥∥∥ · ∥∥∥(LM + λ̂I)−
1
2L

1
2

∥∥∥ · ∥∥∥Lr− 1
2

∥∥∥ ∥gρ∥ρ
≤ 2Rκ2r−1

∥∥∥∥∥
t∑

k=1

η(I − ηLM )t−k(LM + λ̂I)

∥∥∥∥∥ ,
the last inequality holds since

∥∥∥(LM + λ̂I)−
1
2L

1
2

∥∥∥ ≤ 2 with probability at least 1 − δ for λ̂ ≥
9κ2

M log M
δ [5], ∥gρ∥ρ ≤ R and ∥L∥ ≤ κ2. Now we consider the term∥∥∥∑t

k=1 η(I − ηLM )t−k(LM + λ̂I)
∥∥∥,∥∥∥∥∥

t∑
k=1

η(I − ηLM )t−k(LM + λ̂I)

∥∥∥∥∥ ≤

∥∥∥∥∥
t∑

k=1

η(I − ηLM )t−kLM

∥∥∥∥∥+ λ̂

∥∥∥∥∥
t∑

k=1

η(I − ηLM )t−k

∥∥∥∥∥
=

∥∥∥∥∥−
t∑

k=1

(I − ηLM )t−k(I − ηLM ) +

t∑
k=1

(I − ηLM )t−k

∥∥∥∥∥+ λ̂η

∥∥∥∥∥
t∑

k=1

(I − ηLM )t−k

∥∥∥∥∥
≤ ∥I − (I − ηLM )t∥+ ηλ̂t

≤ 1 + ηλ̂t.

Then the desired result holds.

The following Bernstein inequality also plays a crucial role in the proof of the main results.

Lemma 3.3 ( [20]). For a random variable ξ on (Z, ρ) with values in a Hilbert space (H, ∥ ·∥H)

satisfying ∥ξ∥H ≤ M̃ < ∞ almost surely, and a random sample {zi}si=1 independently drawn

according to ρ, there holds with confidence 1− δ,∥∥∥∥∥1s
s∑

i=1

[ξ(zi)− E(ξ)]

∥∥∥∥∥
H

≤ 2M̃ log(2/δ)

s
+

√
2E(∥ξ∥2H) log(2/δ)

s
. (43)

Lemma 3.4. Let A be a compact positive semi-definite operator on a separable Hilbert space,

for any a > 0, b > 0 and η∥A∥ < 1, we have∥∥(I − ηA)aAb
∥∥ ≤

(
b

eaη

)b

. (44)
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Proof. By the elementary inequality 1− x ≤ exp(−x) for x ≥ 0, then we have∥∥(I − ηA)aAb
∥∥ ≤ sup

x≥0

(
(1− ηx)axb

)
≤ sup

x≥0

(
exp(−ηxa)xb

)
≤
(

b

eaη

)b

. (45)

the last inequality holds since the function exp(−ηxa)xb attains its maximum at x = b
aη .

Lemma 3.5. ( [28]) Let X1, · · · , Xd be i.i.d. standard Gaussian random variables, and X =

(X1, · · · , Xd)
⊤ ∈ Rd. Then for any t ∈ (0, 1), with probability at least 1 − exp(−dt2/8), there

holds ∥X∥22 ≤ d(1 + t).

§4 Proof of main results

We prove our main results in this section. In the first part, we estimate the six terms G1,

G2, G3, G4, G5, G6 in (32) respectively for the proof of Theorem 1. While the second part

focuses on the privacy guarantee of algorithm 1.

4.1 Convergence analysis

In this subsection, we will prove the convergence rates of algorithm 1.

Proposition 4.1. Let cδp,T = max{
√
3n log (2n/δp)/T , 3n log (2n/δp)/T}, and

σ2 =
8eη2 log 2.5

δp

ϵ2

(
cκ+ cκ2

√
ηT
)2 T

n
(1 + cδp,T )

(
1 +

T

n
(1 + cδp,T )

)
,

then with probability at least 1− δ, there holds

G1 = EIT

[
∥SM ŵpriv − SM ŵT+1∥2ρ

]
≤

8Mκ4eη2 log 2.5
δp

ϵ2

(
c+ cκ

√
ηT
)2 T

n
(1 + cδp,T )

(
1 +

T

n
(1 + cδp,T )

)
·

(
1 +

√
8 log(1/δ)

M

)
.

Proof. By the definition of ŵpriv, we have

∥SM ŵpriv − SM ŵT+1∥2ρ = ∥SM (ŵT+1 + b)− SM ŵT+1∥2ρ = ∥SMb∥2ρ ≤ κ2∥b∥2. (46)

Since b ∼ N (0, σ2IM ), then for δ ∈ (0, 1), Lemma 3.5 implies with probability at least 1− δ,

∥b∥2 ≤Mσ2

(
1 +

√
8 log(1/δ)

M

)
(47)

Then the proof is completed by putting the above bound and σ2 back into (46).

Proposition 4.2. Let δ ∈ (0, 1), T ≥ 3, λ̃ ≥ 9κ2

M log M
δ and the step size η satisfies

0 < η <
1

κ2(log T + 1)
, (48)

then with probability at least 1− δ, there holds

G2 = EIT

[
∥SM (ŵT+1 − v̂T+1)∥2ρ

]
≤ κ2(3 + 4T λ̃η)

(1− ηκ2)(1− ηκ2 − ηκ2 log T )
η log T, ∀T ≥ 3. (49)

Proof. We borrow some ideas from [19,31] to prove this proposition. By the definition of {ŵt}
and {v̂t}, for any 1 ≤ t ≤ T, we have

ŵt+1 − v̂t+1 = ŵt − v̂t + η(ĈM v̂t − Ŝ∗
M ŷ − (⟨ŵt, ϕM (xit⟩ − yit))ϕM (xit))

= (I − ηĈM )(ŵt − v̂t) + η(ĈM ŵt − Ŝ∗
M ŷ − (⟨ŵt, ϕM (xit⟩ − yit))ϕM (xit)).

(50)
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Let

Mt := ĈM ŵt − Ŝ∗
M ŷ − (⟨ŵt, ϕM (xit⟩ − yit))ϕM (xit). (51)

Then one can easily see that Eit [Mt] = 0 since ŵt depends only on {zi1 , zi2 , · · · , zit−1}. Applying

the relationship (50) iteratively, we have

ŵT+1 − v̂T+1 = (I − ηĈM )T (ŵ1 − v̂1) +

T∑
t=1

η

T∏
l=t+1

(I − ηĈM )Mt =

T∑
t=1

η(I − ηĈM )T−tMt.

Then we have

EIT

[
∥SM ŵT+1 − SM v̂T+1∥2ρ

]
= EIT

∥∥∥∥∥SM

T∑
t=1

η(I − ηĈM )T−tMt

∥∥∥∥∥
2

ρ


=

T∑
t=1

η2EIt

[∥∥∥SM (I − ηĈM )T−tMt

∥∥∥2
ρ

]
+
∑
t ̸=t′

EIt′ ⟨ρSM (I − ηĈM )T−tMt, SM (I − ηĈM )T−t′Mt′⟩

Without loss of generality, let t < t′, then there holds

EIt′ ⟨SM (I − ηĈM )T−tMt, SM (I − ηĈM )T−t′Mt′⟩ρ
= EIt′−1

⟨SM (I − ηĈM )T−tMt, SM (I − ηĈM )T−t′Eit′ [Mt′ ]⟩ρ = 0.

When t > t′, we also have EIT ⟨SM (I−ηĈM )T−tMt, SM (I−ηĈM )T−t′Mt′⟩ρ = 0, which implies

EIT

[
∥SM ŵT+1 − SM v̂T+1∥2ρ

]
=

T∑
t=1

η2EIt

∥∥∥SM (I − ηĈM )T−tMt

∥∥∥2
ρ

≤
T∑

t=1

η2
∥∥∥C 1

2

M (I − ηĈM )T−t
∥∥∥2 EIt∥Mt∥2ρ.

(52)

In the following, we estimate the two terms
∥∥∥C 1

2

M (I − ηĈM )T−t
∥∥∥2 and EIt∥Mt∥2ρ respectively.

First, by the elementary inequality E[∥ξ − Eξ∥2] ≤ E∥ξ∥2 for random variable ξ, for any 1 ≤
t ≤ T, we have the following uniform bound

EIt

[
∥Mt∥2ρ

]
≤ EIt∥(⟨ŵt, ϕM (xit⟩ − yit))ϕM (xit)∥2ρ ≤ κ2EIt

[
(⟨ŵt, ϕM (xit)⟩ − yit)

2
]

= κ2EIt−1 [EZ(ŵt)] ≤ κ2
c2

(1− ηκ2)(1− ηκ2 − ηκ2 log T )
.

(53)

where the last inequality holds due to the bound for EIt−1 [EZ(ŵt)] from Lemma 3.1. Now we

turn to consider the term
∥∥∥C 1

2

M (I − ηĈM )T−t
∥∥∥2 for 1 ≤ t ≤ T . For any λ̃ > 0,∥∥∥C 1

2

M (I − ηĈM )T−t
∥∥∥2

≤
∥∥∥C 1

2

M (ĈM + λ̃I)−
1
2

∥∥∥ · ∥∥∥(ĈM + λ̃I)
1
2 (I − ηĈM )T−t

∥∥∥
≤
∥∥∥(CM + λ̃I)

1
2 (ĈM + λ̃I)−

1
2

∥∥∥ · ∥∥∥(ĈM + λ̃I)
1
2 (I − ηĈM )T−t

∥∥∥
≤ 4

∥∥∥(ĈM + λ̃I)(I − ηĈM )2(T−t)
∥∥∥ ,

where the last inequality holds due to
∥∥∥(CM + λ̃I)

1
2 (ĈM + λ̃I)−

1
2

∥∥∥ ≤ 2 for λ̃ ≥ 9κ2

M log M
δ with

probability at least 1− δ [5]. And for any λ̃ > 0, and 1 ≤ t ≤ T − 1, by taking A = ĈM , b = 1
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and a = 2(T − t) in Lemma 3.4, there holds∥∥∥(ĈM + λ̃I)(I − ηĈM )2(T−t)
∥∥∥ ≤

∥∥∥ĈM (I − ηĈM )2(T−t)
∥∥∥+ λ̃ ≤ 1

2eη(T − t)
+ λ̃.

It follows that
T∑

t=1

∥∥∥C 1
2

M (I − ηĈM )T−t
∥∥∥2 =

T−1∑
t=1

∥∥∥C 1
2

M (I − ηĈM )T−t
∥∥∥2 + ∥∥∥C 1

2

M

∥∥∥2
≤

T−1∑
t=1

2

eη(T − t)
+ 4(T − 1)λ̃+ κ2 ≤ 1 + log T

η
+ 4T λ̃+ κ2 (54)

≤ 1

η
(1 + log T + 4T λ̃η + ηκ2).

Then putting the bounds (53) and (54) back into (52) yields the desired result.

We borrow some ideas from [5,19] to get the following bound for G3.

Proposition 4.3. Under Assumption 2.1 and 2.2, let δ ∈ (0, 1/5), λ̂ ≥ 9κ2

M log M
δ , and

M ≥
(
4 +

18κ2

λ̂

)
log

12κ2

λ̂δ
(55)

then with probability at least 1− 5δ,

G3 = ∥SM v̂T+1 − SM ṽT+1∥2ρ ≤ C3

(
C1√
λn

+

√
C2N (λ)

n

)2

log2 T log2
2

δ
, (56)

where C1 = max(c, κ)2, C2 = 2C2
1 max(2.55, 2κ2

∥L∥ ), C3 =
(
4/e+ 4 + ηκ2

)2(
1 + 4Rκ2r

)2

.

Proof. By the definition of {v̂t} and {ṽt}, we have

v̂T+1 − ṽT+1 = v̂T − ṽT + η[(CM ṽT − S∗
Mfρ)− (ĈM v̂T − Ŝ∗

M ŷ)]

= (I − ηĈM )(v̂T − ṽT ) + η[(CM ṽT − S∗
Mfρ)− (ĈM ṽT − Ŝ∗

M ŷ)]

= (I − ηĈM )(v̂T − ṽT ) + ηNT

= (I − ηĈM )T (v̂1 − ṽ1) +
T∑

t=1

η
T∏

i=t+1

(I − ηĈM )Nt

=
T∑

t=1

η(I − ηĈM )T−tNt,

where we denote Nt := (CM ṽt − S∗
Mfρ)− (ĈM ṽt − Ŝ∗

M ŷ) for 1 ≤ t ≤ T. Then we have

∥SM (v̂T+1 − ṽT+1)∥ρ =

∥∥∥∥∥C 1
2

M

T∑
t=1

η(I − ηĈM )T−tNt

∥∥∥∥∥
ρ

≤
T∑

t=1

η
∥∥∥C 1

2

M (I − ηĈM )T−tNt

∥∥∥
ρ
+ η

∥∥∥C 1
2

MNt

∥∥∥
ρ
.
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For 1 ≤ t ≤ T − 1, and any λ∗ > 0,∥∥∥C 1
2

M (I − ηĈM )T−tNt

∥∥∥
ρ
=
∥∥∥C 1

2

M (ĈM + λ∗I)−
1
2 (ĈM + λ∗I)

1
2

(I − ηĈM )T−t(ĈM + λ∗I)
1
2 (ĈM + λ̂I)−

1
2 (CM + λ̂I)

1
2 (CM + λ∗I)−

1
2Nt

∥∥∥
ρ

≤
∥∥∥(CM + λ̂I)

1
2 (ĈM + λ∗I)−

1
2

∥∥∥ · ∥∥∥(ĈM + λ∗I)
1
2 (I − ηĈM )T−t(ĈM + λ∗I)

1
2

∥∥∥
·
∥∥∥(ĈM + λ̂I)−

1
2 (CM + λ∗I)

1
2

∥∥∥ · ∥∥∥(CM + λ∗I)−
1
2Nt

∥∥∥
ρ
.

By Lemma 3 of [5],
∥∥∥(CM + λ∗I)

1
2 (ĈM + λ̂I)−

1
2

∥∥∥ =
∥∥∥(ĈM + λ∗I)−

1
2 (CM + λ∗I)

1
2

∥∥∥ ≤ 2 holds

with probability at least 1− δ for λ∗ ≥ 9κ2

M log M
δ . Applying Lemma 3.4 with A = ĈM , α = 1

and β = T − t, then for 1 ≤ t < T − 1, we have∥∥∥(ĈM + λ̂I)
1
2 (I − ηĈM )T−t(ĈM + λ∗I)

1
2

∥∥∥ ≤
∥∥∥(ĈM + λ∗I)(I − ηĈM )T−t

∥∥∥
≤
∥∥∥ĈM (I − ηĈM )T−t

∥∥∥+ λ∗
∥∥∥(I − ηĈM )T−t

∥∥∥
≤ 1

eη(T − t)
+ λ∗.

When t = T ,∥∥∥C 1
2

M (I − ηĈM )T−tNt

∥∥∥
ρ
=
∥∥∥C 1

2

MNT

∥∥∥
ρ
≤
∥∥∥C 1

2

M (CM + λ∗I)
1
2

∥∥∥ · ∥∥∥(CM + λ∗I)−
1
2NT

∥∥∥
ρ

≤ ∥CM∥+ λ∗∥
∥∥∥(CM + λ̂I)−

1
2NT

∥∥∥ ≤ (κ2 + λ∗)
∥∥∥(CM + λ̂I)−

1
2NT

∥∥∥
ρ
.

Therefore, we have

∥SM (v̂T+1 − ṽT+1)∥ρ ≤
T−1∑
t=1

4

(
1

e(T − t)
+ λ̂η

)∥∥∥(CM + λ∗I)−
1
2Nt

∥∥∥
ρ

+ η(κ2 + λ∗)
∥∥∥(CM + λ∗I)−

1
2NT

∥∥∥
ρ
.

(57)

Now we consider the term
∥∥∥(CM + λ∗I)−

1
2Nt

∥∥∥
ρ
for 1 ≤ t ≤ T,∥∥∥(CM + λ∗I)−

1
2Nt

∥∥∥
ρ
=
∥∥∥(CM + λ∗I)−

1
2 (Ŝ∗

M ŷ − S∗
Mfρ + CM ṽt − ĈM ṽt)

∥∥∥
ρ

≤
∥∥∥(CM + λ∗I)−

1
2 (Ŝ∗

M ŷ − S∗
Mfρ)

∥∥∥
ρ

+
∥∥∥(CM + λ∗I)−

1
2 (CM − ĈM )

∥∥∥ · ∥ṽt∥ .
(58)

In the following, we will estimate the three terms of the right hand side of (58) respectively.

For the first term
∥∥∥(CM + λ∗I)−

1
2 (Ŝ∗

M ŷ − S∗
Mfρ)

∥∥∥
ρ
, let ξ(zi) = (CM + λ∗I)−

1
2ϕM (xi)yi, then

Eξ(zi) = (CM + λ∗I)−
1
2

∫
ϕM (x)ydρ(x, y) = (CM + λ∗I)−

1
2

∫
ydρ(y|x)ϕM (x)dρX (x)

= (CM + λ∗I)−
1
2

∫
ϕM (x)fρ(x)dρX (x) = (CM + λ∗I)−

1
2S∗

Mfρ,

and (CM + λ∗I)−
1
2 (Ŝ∗

M ŷ − S∗
Mfρ) = 1

n

∑n
i=1 ξ(zi) − E[ξ]. Apply Lemma 3.3 to the random

variable ξ with M̃ = cκ√
λ∗ and E∥ξ∥2ρ ≤ c2NM (λ∗), we know by (43) that with confidence at
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least 1− δ, ∥∥∥(CM + λ∗I)−
1
2 (Ŝ∗

M ŷ − S∗
Mfρ)

∥∥∥
ρ
≤ 2cκ√

λ∗n
log

2

δ
+

√
2c2NM (λ∗) log 2

δ

n
.

The second term
∥∥∥(CM + λ∗I)−

1
2 (CM − ĈM )

∥∥∥ can also be estimated by the same method as

∥∥∥(CM + λ∗I)−
1
2 (CM − ĈM )

∥∥∥ ≤ 2κ2√
λ∗n

log
2

δ
+

√
2κ2NM (λ∗) log 2

δ

n
.

By Lemma 3.2, for 1 ≤ t ≤ T we have

∥ṽt+1∥2 ≤ 2Rκ2r−1 (1 + ηλ∗t) .

Putting the above bounds back into (58) yields that∥∥∥(CM + λ∗I)−
1
2Nt

∥∥∥
ρ
=
∥∥∥(CM + λ∗I)−

1
2 (Ŝ∗

M ŷ − S∗
Mfρ + CM ṽt − ĈM ṽt)

∥∥∥
ρ

≤ log
2

δ

(
2cκ√
λ∗n

+

√
2c2NM (λ∗)

n

)
+ 2Rκ2r log

2

δ

(
2κ2√
λ∗n

+

√
2κ2NM (λ∗)

n

)
.

holds at least 1− 2δ. Putting the above bound back into (57), we have

∥SM v̂T+1 − SM ṽT+1∥ρ

≤
T−1∑
t=1

4

(
1

e(T − t)
+ λ∗η

)∥∥∥(CM + λ∗I)−
1
2Nt

∥∥∥
ρ
+ η(κ2 + λ∗)

∥∥∥(CM + λ∗I)−
1
2NT

∥∥∥
ρ

≤

(
T−1∑
t=1

4

(
1

e(T − t)
+ λ∗η

)
+ η(κ2 + λ∗)

)
sup

1≤t≤T

∥∥∥(CM + λ∗I)−
1
2Nt

∥∥∥
ρ

≤
(
4 log T/e+ 4λ∗Tη + ηκ2

)(( 2cκ√
λ∗n

+

√
2c2NM (λ∗)

n

)
+ 2Rκ2r

(
2κ2√
λ∗n

+

√
2κ2NM (λ∗)

n

))
log

2

δ
.

Moreover, we know from Lemma 4 of [5] that with probability at least 1− δ, there holds

NM (λ∗) ≤ max

{
2.55,

2κ2

∥L∥

}
N (λ∗)

when M ≥ (4 + 18κ2

λ∗ ) log 12κ2

λ∗δ . The proof is completed by taking C1 = max(c, κ)2 and C2 =

2C2
1 max

{
2.55, 2κ2

∥L∥

}
.

Proposition 4.4. Let {ṽt} be defined by (25), then

G4 =
∥∥SM ṽT+1 − LM (LM + λI)−1fρ

∥∥2
ρ
≤ 2(1 + (ληT )−1)2(G5 +G6).

Proof. Recall the expression (29) of {ṽT+1}, i.e., ṽT+1 =
∑T

t=1 η(I − ηCM )T−tS∗
Mfρ, then

SM ṽT+1 =
T∑

t=1

ηSM (I − ηCM )T−tS∗
Mfρ

=
T∑

t=1

ηSMS
∗
M (I − ηLM )T−tfρ =

T∑
t=1

ηLM (I − ηLM )T−tfρ.
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Then we have∥∥SM ṽT+1 − LM (LM + λI)−1fρ
∥∥
ρ

=

∥∥∥∥∥
T∑

t=1

η(I − ηLM )T−t(LM + λI)LM (LM + λI)−1fρ − LM (LM + λI)−1fρ

∥∥∥∥∥
ρ

=

∥∥∥∥∥
(

T∑
t=1

η(I − ηLM )T−t(LM + λI)− I

)
LM (LM + λI)−1fρ

∥∥∥∥∥
ρ

=

∥∥∥∥∥
(

T∑
t=1

η(I − ηLM )T−t(LM + λI)− I

)
LM (LM + λI)−1fρ

∥∥∥∥∥
ρ

=

∥∥∥∥∥
((

T∑
t=1

η(I − ηLM )T−tLM − I

)
LM + λ

T∑
t=1

η(I − ηLM )T−tLM

)
(LM + λI)−1fρ

∥∥∥∥∥
ρ

≤

(∥∥∥∥∥
(

T∑
t=1

η(I − ηLM )T−tLM − I

)
LM

∥∥∥∥∥+ λ

∥∥∥∥∥
T∑

t=1

η(I − ηLM )T−tLM

∥∥∥∥∥
)∥∥(LM + λI)−1fρ

∥∥
ρ
.

Now we estimate the three parts of the right hand side of the above inequality respectively. For

the first term, we have∥∥∥∥∥
(

T∑
t=1

η(I − ηLM )T−tLM − I

)
LM

∥∥∥∥∥
=

∥∥∥∥∥
(
−

T∑
t=1

(I − ηLM )T−t(I − ηLM ) +

T∑
t=1

(I − ηLM )T−t − I

)
LM

∥∥∥∥∥
=

∥∥∥∥∥
(

T∑
t=1

(I − ηLM )T−t −
T∑

t=1

(I − ηLM )T−t+1 − I

)
LM

∥∥∥∥∥
=
∥∥−(I − ηLM )TLM

∥∥ ≤ 1

ηT
.

For the second term, we have

λ

∥∥∥∥∥
T∑

t=1

η(I − ηLM )T−tLM

∥∥∥∥∥ = λ

∥∥∥∥∥−
T∑

t=1

η(I − ηLM )T−t(I − ηLM ) +
T∑

t=1

η(I − ηLM )T−t

∥∥∥∥∥
= λ

∥∥I − (I − ηLM )T
∥∥ ≤ λ.

And for the third term, there holds

λ
∥∥(LM + λI)−1fρ

∥∥
ρ
= ∥(λ(LM + λI)−1 − λ(L+ λI)−1 + λ(L+ λI)−1)fρ∥ρ
≤ ∥(λ(LM + λI)−1 − λ(L+ λI)−1)fρ∥+ ∥λ(L+ λI)−1fρ∥ρ
= ∥LM (LM + λI)−1fρ − L(L+ λI)−1fρ∥ρ + ∥L(L+ λI)−1fρ − fρ∥ρ

where the last inequality holds due to λ(A+λI) = I−A(A+λI)−1 for any bounded symmetric

operator A and λ > 0. Combining the above three bounds together yields

G4 =
∥∥SM ṽT+1 − LM (LM + λI)−1fρ

∥∥2
ρ

≤ (1 + (ληT )−1)2
(∥∥LM (LM + λI)−1fρ − L(L+ λI)−1fρ

∥∥
ρ
+
∥∥L(L+ λI)−1fρ − fρ

∥∥
ρ

)2
.

Then the desired result holds due to the definition of G5 and G6.
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Proposition 4.5. Under Assumption 2.1 with 1/2 < r ≤ 1, let 0 < δ < 1/2, λ ≥ 9κ2

M log M
δ ,

and

M ≥
(
4 +

18κ2

λ

)
log

12κ2

λδ
(59)

then with probability at least 1− 2δ, there holds

G5 =
∥∥LM (LM + λI)−1fρ − L(L+ λI)−1fρ

∥∥2
ρ

≤ 128R2κ4r−2

(
log2 2

δ

M2r
+
λ2r−1(N (λ))2r−1 log 2

δ

M

)(
log

11κ2

λ

)2−2r

.

Proof. By the identity A(A + λI)−1 = I − λ(A + λI)−1 for any bounded positive operator A,

and A−1 −B−1 = A−1(B −A)B−1 = B−1(B −A)A−1 for any invertible bounded operators A

and B, we have

LM (LM + λI)−1 − L(L+ λI)−1 = λ((L+ λI)−1 − (LM + λI)−1)

= λ(LM + λI)−1(LM − L)(L+ λI)−1.

By the regularity assumption (14) with 1
2 < r ≤ 1, i.e., fρ = Lrgρ with gρ ∈ L2

ρX
and ∥gρ∥ρ ≤ R,

we have the following decomposition∥∥(LM (LM + λI)−1 − L(L+ λI)−1)fρ
∥∥
ρ
=
∥∥λ(LM + λI)−1(LM − L)(L+ λI)−1fρ

∥∥
ρ

=
∥∥∥√λ√λ(LM + λI)−

1
2 (LM + λI)−

1
2 (L+ λI)

1
2 (L+ λI)−

1
2 (L− LM )(L+ λI)r−1(L+ λI)−r

· Lrgρ

∥∥∥
ρ

≤
√
λ
∥∥∥√λ(LM + λI)−

1
2

∥∥∥ ∥∥∥(LM + λI)−
1
2 (L+ λI)

1
2

∥∥∥∥∥∥(L+ λI)−
1
2 (L− LM )(L+ λI)−(1−r)

∥∥∥
·
∥∥(L+ λI)−rLr

∥∥ ∥gρ∥ρ
≤ 2R

√
λ
∥∥∥(L+ λI)−

1
2 (L− LM )

∥∥∥2r−1 ∥∥∥(L+ λI)−
1
2 (L− LM )(L+ λI)−

1
2

∥∥∥2−2r

,

(60)

the last inequality holds due to
∥∥∥√λ(LM + λI)−

1
2

∥∥∥ ≤ 1, ∥(L+ λI)−rLr∥ ≤ 1 for any λ > 0,∥∥∥(LM + λI)−
1
2 (L+ λI)

1
2

∥∥∥ ≤ 2 for any λ ≥ 9κ2

M log M
δ with probability at least 1−δ, ∥gρ∥ρ ≤ R,

and
∥∥∥(L+ λI)−

1
2 (L− LM )(L+ λI)−(1−r)

∥∥∥ ≤
∥∥∥(L+ λI)−

1
2 (L− LM )

∥∥∥2r−1

·
∥∥∥(L + λI)−

1
2 (L −

LM )(L + λI)−
1
2

∥∥∥2−2r

by Proposition 9 of [22]. Moreover, by Lemma 8 of [22], for M ≥(
4 + 18κ2

λ

)
log 12κ2

λδ , with confidence at least 1− 2δ, there holds

√
λ
∥∥∥(L+ λI)−

1
2 (L− LM )

∥∥∥2r−1 ∥∥∥(L+ λI)−
1
2 (L− LM )(L+ λI)−

1
2

∥∥∥2−2r

≤ 4κ2r−1

 log 2
δ

Mr
+

√
λ2r−1N (λ)2r−1 log 2

δ

M

(log 11κ2

λ

)1−r

.
(61)

Then the proof is finished by putting the above bound back into (60).

Proposition 4.6. Under Assumption 2.1 with 1/2 < r ≤ 1, we have

G6 =
∥∥L(L+ λI)−1fρ − fρ

∥∥2
ρ
≤ R2λ2r. (62)

Proof. By the identity A(A + λI)−1 = I − λ(A + λI)−1 for any λ > 0 and any bounded self-
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adjoint positive operator A, and the assumption fρ = Lrgρ with 1/2 < r ≤ 1, and gρ ∈ L2
ρX

and ∥gρ∥ρ ≤ R, then we have∥∥(L(L+ λI)−1 − I)fρ
∥∥
ρ
=
∥∥−λ(L+ λI)−1fρ

∥∥
ρ
=
∥∥λ(L+ λI)−1Lrgρ

∥∥
ρ

=
∥∥∥λr(λ1−r(L+ λI)−(1−r))((L+ λI)−rLr)gρ

∥∥∥
ρ
≤ Rλr

where the last inequality holds due to
∥∥λ1−r(L+ λI)−(1−r)

∥∥ ≤ 1, ∥(L+ λI)−rLr∥ ≤ 1, and

∥gρ∥ρ ≤ R.

Now we are ready to prove our convergence rates of algorithm 1.

Proof of Theorem 1. Under Assumption 2.1 with 1/2 < r ≤ 1, let λ̃ = λ̂ = λ∗ = λ ≃
1
ηT log n

δ , and Propositions 4.1, 4.2, 4.3, 4.4, 4.5,4.6 to the error decomposition (33), then with

probability at least 1− 9δ, there holds

EIT

(
E(f̂priv)− E(fρ)

)
= EIT

[
∥fpriv − fρ∥2ρ

]
≤

48Mκ4eη2 log 2.5
δp

ϵ2

(
c+ cκ

√
ηT
)2 T

n
(1 + cδp,T )

(
1 +

T

n
(1 + cδp,T )

)(
1 +

√
8 log(1/δ)

M

)

+
42κ2

(1− ηκ2)(1− ηκ2 − ηκ2 log T )
η log T + 6C3

(
C1√
λn

+

√
C2N (λ)

n

)2

log2 T log2
2

δ

+ 6912R2κ4r−2

(
log2 2

δ

M2r
+
λ2r−1(N (λ))2r−1 log 2

δ

M

)(
log

11κ2

λ

)2−2r

+ 54R(ηT )−2r.

Then under Assumption 2.2 with 0 < α < 1, i.e., N (λ) ≤ C0λ
−α with 0 < α < 1, and we take

M ≃ n
1+α(2r−1)

2r+α log n
δ , and η = n−

2r
2r+α and T = n

2r+1
2r+α ; or η = n−1 and T = n

2r+α+1
2r+α , in both

cases, we have T > n, ηT = n
1

2r+α 1+cδp,T = 1+max{
√
3n log (2n/δp)/T , 3n log (2n/δp)/T} ≤

1+ 3 log (2n/δp) ≤ 4 log (2n/δp), and when α > (4− 4r)/(3− 2r), then with confidence at least

1− 9δ, there holds

EIT

(
E(f̂priv)− E(fρ)

)
≤ O

(
n−

4r+3α−4−2rα
2r+α

1

ϵ2
log

n

δ
log

2n

δp
log

2.5

δp

√
log

2

δ
+ n−

2r
2r+α log2 n log2

2

δ

)
.

The proof is completed by scaling 9δ to δ.

4.2 Analysis of the performance on privacy protection

In this subsection, we borrow some ideas from [29] to prove the differential privacy of

algorithm 1.

Proof of Theorem 2. Assume that S and S ′ differ by the i-th datum, i.e.,zi ̸= z′i. Let {ŵt}Tt=1

and {ŵ′
t}Tt=1 be the sequence produced by SGD update (5) based on S and S ′ respectively. For

any 1 ≤ t ≤ T , we consider the following two cases.

Case 1: it ̸= i. We have

∥ŵt+1 − ŵ′
t+1∥22

= ∥ŵt − η(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)− ŵ′
t + η(⟨ŵ′

t, ϕM (xit)⟩ − yit)ϕM (xit)∥22
= ∥ŵt − ŵ′

t − ηϕM (xit)⟨ŵt − ŵ′
t, ϕM (xit)⟩∥22

= ∥ŵt − ŵ′
t∥22 + η2∥ϕM (xit)⟨ŵt − ŵ′

t, ϕM (xit)⟩∥22 − 2η|⟨ŵt − ŵ′
t, ϕM (xit)⟩|2
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≤ ∥ŵt − ŵ′
t∥22 + η2κ2|⟨ŵt − ŵ′

t, ϕM (xit)⟩|2 − 2η|⟨ŵt − ŵ′
t, ϕM (xit)⟩|2

≤ ∥ŵt − ŵ′
t∥22

where the last inequality holds due to ηκ2 < 1.

Case 2: it = i.

From the elementary inequality (a+ b)2 ≤ (1 + p)a2 +
(
1 + 1

p

)
b2 for any p > 0 and

a, b ∈ R, we have

∥ŵt+1 − ŵ′
t+1∥22

= ∥ŵt − η(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)− ŵ′
t + η(⟨ŵ′

t, ϕM (x′it)⟩ − y′it)ϕM (x′it)∥
2
2

≤ (1 + p)∥ŵt − ŵ′
t∥22

+

(
1 +

1

p

)
η2∥ϕM (xit)(⟨ŵt, ϕM (xit)⟩ − yit)− ϕM (x′it)(⟨ŵ

′
t, ϕM (x′it)⟩ − y′it)∥

2
2

and

∥ϕM (xit)(⟨ŵt, ϕM (xit)⟩ − yit)∥2 ≤ κ2∥ŵt∥2 + cκ. (63)

Now we consider the bound of ∥ŵt∥2, from the definition of ŵt, we have

∥ŵt+1∥22 = ∥ŵt − η(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)∥22
= ∥ŵt∥22 + η2∥(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)∥22 − 2η⟨ŵt, (⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)⟩.

One can easily see that

−2⟨ŵt, (⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)⟩ = 2⟨0− ŵt, (⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)⟩

≤ (yit)
2 − (ŵt, ϕM (xit)⟩ − yit)

2

and

η2∥(⟨ŵt, ϕM (xit)⟩ − yit)ϕM (xit)∥22 ≤ η2κ2(⟨ŵt, ϕM (xit)⟩ − yit)
2

and since ηκ2 < 1 we have

∥ŵt+1∥22 ≤ ∥ŵt∥22 + (η2κ2 − η) (⟨ŵt, ϕM (xit)⟩ − yit)
2
+ ηc2 ≤ ηtc2

so there holds

∥ϕM (xit)(⟨ŵt, ϕM (xit)⟩ − yit)∥2 ≤ cκ+ cκ2
√
ηt,

then

∥ŵt+1 − ŵ′
t+1∥22 ≤ (1 + p)∥ŵt − ŵ′

t∥22 + 4

(
1 +

1

p

)
η2(cκ+ cκ2

√
ηt)2 (64)

Combining case 1 and case 2, we have

∥ŵt+1 − ŵ′
t+1∥22 ≤ (1 + p)I(it=i)∥ŵt − ŵ′

t∥22 + 4

(
1 +

1

p

)
I(it = i)η2(cκ+ cκ2

√
ηt)2

≤
t∏

k=1

(1 + p)I(ik=i)∥ŵ1 − ŵ′
1∥22

+ 4

(
1 +

1

p

)
η2(cκ+ cκ2

√
ηt)2

t∑
k=1

I(ik = i)
t∏

j=k+1

(1 + p)I(ij=i)

≤ 4

(
1 +

1

p

)
η2(cκ+ cκ2

√
ηt)2(1 + p)

∑t
j=2 I(ij=i)

t∑
k=1

I(ik = i).

Let Xj = I(ij = i) and X =
∑t

j=1Xj , using Chernoff bound for Bernoulli random variable [28],
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for any exp(−t/3n) ≤ γ ≤ 1, with probability at least 1− γ
n , there holds

t∑
j=1

I(ij = i) ≤ t

n

(
1 +

√
3 log(n/γ)

t/n

)
.

For any 0 < γ < exp(−t/3n), with probability at least 1− γ
n , there holds

t∑
j=1

I(ij = i) ≤ t

n

(
1 +

3 log(n/γ)

t/n

)
.

Let cγ,t = max
{√

3 log(n/γ)
t/n , 3 log(n/γ)

t/n

}
, then with probability at least 1− γ

n , there holds

∥ŵt+1 − ŵ′
t+1∥22 ≤ 4

(
1 +

1

p

)
η2(cκ+ cκ2

√
ηt)2(1 + p)

t
n (1+cγ,t)

t

n
(1 + cγ,t) (65)

Let p = 1
t
n (1+cγ,t)

then (1 + p)
t
n (1+cγ,t) ≤ e so

∥ŵt+1 − ŵ′
t+1∥22 ≤ 4eη2(cκ+ cκ2

√
ηt)2

t

n
(1 + cγ,t)

(
1 +

t

n
(1 + cγ,t)

)
By taking a union bound of probabilities over i = 1, 2, · · · , n, with probability at least 1 − γ,

there holds

sup
S≃S′

∥ŵT+1 − ŵ′
T+1∥22 ≤ 4eη2

(
cκ+ cκ2

√
ηT
)2 T

n
(1 + cγ,T )

(
1 +

T

n
(1 + cγ,T )

)
:= ∆2

SGD(γ)

The proof of the theorem is complete.

Lemma 4.1 (Post-Processing [11]). Let A : Zn → Ω be a randomized algorithm that is (ϵ, δp)-

differentially private. Let f : Ω → R be an arbitrary randomized mapping. Then f◦A : Zn → R
is (ϵ, δp)-differentially private.

Now we are in a position to prove Theorem 3.

Proof of Theorem 3. Let IT = {i1, i2, · · · , iT } and δA(S,S ′) = ∥A(S)−A(S ′)∥2. Define

B = {IT : sup
S≃S′

δA(S,S ′) ≤ ∆SGD(δp/2)},

then Theorem 2 tells us that P(IT ∈ B) ≥ 1− δp
2 , then we have

P(ŵpriv ∈ E) = P(ŵpriv ∈ E ∩ IT ∈ B) + P (ŵpriv ∈ E ∩ IT ∈ Bc)

≤ P(ŵpriv ∈ E|IT ∈ B)P(IT ∈ B) + δp
2

≤
(
eϵP(ŵ′

priv ∈ E|IT ∈ B) + δp
2

)
P(IT ∈ B) + δp

2

≤ eϵP(ŵ′
priv ∈ E ∩ IT ∈ B) + δp

≤ eϵP(ŵ′
priv ∈ E) + δp.

The proof is completed by applying Lemma 4.1 with f = f̂priv(·) = ⟨ŵpriv, ϕM (·)⟩.
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