The Gleason's problem on normal weight general function spaces in the unit ball of $\mathbb{C}^{\text {n }}$

GUO Yu-ting ZHANG Xue-jun*

Abstract

In this paper, we first discuss the boundedness of certain integral operator T_{t} on the normal weight general function space $F(p, \mu, s)$ in the unit ball B_{n} of \mathbb{C}^{n}. As an application of this operator, we prove that the Gleason's problem is solvable on $F(p, \mu, s)$.

§1 Introduction

We call two quantities G and H are equivalent (denoted by " $G \asymp H$ ") if there are two constants $c_{1}>0$ and $c_{2}>0$ such that $c_{1} H \leq G \leq c_{2} H$. If there exists a constant $c>0$ such that $G \leq c H(G \geq c H)$, then we denote by " $G \lesssim H$ " (" $G \gtrsim H$ ").

Let B_{n} denote the unit ball in the n-dimensional complex Euclidean space \mathbb{C}^{n}. For two points $w=\left(w_{1}, w_{2}, \cdots, w_{n}\right)$ and $z=\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ in \mathbb{C}^{n}, let

$$
\langle w, z\rangle=w_{1} \overline{z_{1}}+w_{2} \overline{\bar{z}_{2}} \cdots+w_{n} \overline{\bar{z}_{n}} .
$$

The class of all holomorphic functions on B_{n} is denoted by $H\left(B_{n}\right)$. For $f \in H\left(B_{n}\right)$ and $z \in B_{n}$, the complex gradient of f is defined by

$$
\nabla f(z)=\left(\frac{\partial f}{\partial z_{1}}(z), \frac{\partial f}{\partial z_{2}}(z), \cdots, \frac{\partial f}{\partial z_{n}}(z)\right) .
$$

Given $z \in B_{n}$, let φ_{z} be the automorphisms of B_{n} with $\varphi_{z}(z)=0, \varphi_{z}(0)=z$ and $\varphi_{a}^{-1}=\varphi_{a}$. For $\rho>0$ and $z \in B_{n}$, let $D(z, \rho)=\left\{w: w \in B_{n}\right.$ and $\left.\beta(z, w)<\rho\right\}$ denote the Bergman metric ball at z with radius ρ, where

$$
\beta(z, w)=\frac{1}{2} \log \frac{1+\left|\varphi_{z}(w)\right|}{1-\left|\varphi_{z}(w)\right|} .
$$

Definition 1.1 A positive and continuous function μ on $[0,1)$ is called a normal function if there are constants $0<a \leq b<\infty$ and $0 \leq r_{0}<1$ such that $\frac{\mu(r)}{\left(1-r^{2}\right)^{b}}$ is increasing on $\left[r_{0}, 1\right)$

[^0]and $\frac{\mu(r)}{\left(1-r^{2}\right)^{a}}$ is decreasing on $\left[r_{0}, 1\right)$.
The following two functions are the examples of this kind of normal functions:
\[

$$
\begin{aligned}
& \mu_{1}(r)=\left(1-r^{2}\right)^{\gamma}\left(\log \frac{e}{1-r^{2}}\right)^{\beta}\left(\log \log \frac{e^{2}}{1-r^{2}}\right)^{\alpha} \quad(\gamma>0, \alpha \text { and } \beta \text { real }) \\
& \mu_{2}(r)=\left\{\begin{array}{cc}
\frac{(2 n-2)!!}{(2 n-1)!!}\left(1-r^{2}\right)^{\frac{1}{2}}, & \frac{n-1}{n} \leq r^{2}<\frac{2 n^{2}-1}{2 n(n+1)} \quad(n=1,2, \cdots) \\
\frac{(2 n)!!(n+1)}{(2 n+1)!!}\left(1-r^{2}\right)^{\frac{3}{2}}, & \frac{2 n^{2}-1}{2 n(n+1)} \leq r^{2}<\frac{n}{n+1}
\end{array}\right.
\end{aligned}
$$
\]

For the convenience of proof, we let $r_{0}=0$ in this paper. The following spaces are several function spaces involved in this paper, and we give definitions respectively.

Definition 1.2 Let ν be a positive continuous function on $[0,1)$ such that $\sup _{0 \leq r<1} \nu(r)<\infty$. If $f \in H\left(B_{n}\right)$ and

$$
\|f\|_{\mathcal{B}_{\nu}}=|f(0)|+\sup _{z \in B_{n}} \nu(|z|)|\nabla f(z)|<\infty
$$

then we say that f belongs to the ν-Bloch space $\mathcal{B}_{\nu}\left(B_{n}\right)$. In particular, if ν is a normal function on $[0,1)$, then $\mathcal{B}_{\nu}\left(B_{n}\right)$ is called the normal weight Bloch space.

Definition 1.3 For $p>0$ and a normal function μ on $[0,1)$, if $f \in H\left(B_{n}\right)$ and

$$
\int_{B_{n}}|\nabla f(z)|^{p} \frac{\mu^{p}(|z|)}{1-|z|^{2}} d v(z)<\infty
$$

then we say that f belongs to the normal weight Dirichlet type space $\mathcal{D}_{\mu}^{p}\left(B_{n}\right)$, where $d v$ is the Lebesgue measure on B_{n} such that $v\left(B_{n}\right)=1$. When $\mu(r)=\left(1-r^{2}\right)^{\frac{\alpha+1}{p}}(\alpha>-1)$, the space $\mathcal{D}_{\mu}^{p}\left(B_{n}\right)$ is just the weighted Dirichlet type space $\mathcal{D}_{\alpha}^{p}\left(B_{n}\right)$.

For $p>0, s \geq 0, q+n>-1, q+s>-1$, the general function space $F(p, q, s)$, consists of all $f \in H\left(B_{n}\right)$ and

$$
\|f\|_{F(p, q, s)}=|f(0)|+\left\{\sup _{w \in B_{n}} \int_{B_{n}}|\nabla f(z)|^{p}\left(1-|z|^{2}\right)^{q} \log ^{s} \frac{1}{\left|\varphi_{w}(z)\right|} d v(z)\right\}^{\frac{1}{p}}<\infty
$$

In [1], R H Zhao first introduced the space $F(p, q, s)$ on the unit disc. Soon, a lot of function spaces associated with $F(p, q, s)$ were studied, such as, [2]-[9] etc.

In [2], X J Zhang et al gave several equivalent characterizations of $F(p, q, s)$. For example,

$$
\left|\left|f \|_{F(p, q, s)} \asymp\right| f(0)\right|+\left\{\sup _{w \in B_{n}} \int_{B_{n}} \frac{|\nabla f(z)|^{p}\left(1-|w|^{2}\right)^{s}}{|1-\langle z, w\rangle|^{2 s}}\left(1-|z|^{2}\right)^{q+s} d v(z)\right\}^{\frac{1}{p}}
$$

The key measure in the above integral is $\left(1-|z|^{2}\right)^{q+s} d v(z)$. In order to study the general function spaces in a broader and more abstract perspective, it is meaningful to extend this measure $\left(1-|z|^{2}\right)^{q+s} d v(z)$ to a kind of abstract form. Recently, S L Li ([9]) extended $F(p, q, s)$ to a kind of abstract form as follows:

Definition 1.4 Let μ be a normal function on $[0,1)$. For $p>0$, the normal weight general
function space, denoted by $F(p, \mu, s)$, consists of all $f \in H\left(B_{n}\right)$ and

$$
\|f\|_{F(p, \mu, s)}=|f(0)|+\left\{\sup _{w \in B_{n}} \int_{B_{n}} \frac{|\nabla f(z)|^{p}\left(1-|w|^{2}\right)^{s}}{|1-\langle z, w\rangle|^{2 s}} \frac{\mu^{p}(|z|)}{1-|z|^{2}} d v(z)\right\}^{\frac{1}{p}}<\infty
$$

In particular, $F(p, \mu, s)=F(p, q, s)$ when $\mu(r)=\left(1-r^{2}\right)^{\frac{q+s+1}{p}}$. If $s=0$, then $F(p, \mu, s)$ $=\mathcal{D}_{\mu}^{p}\left(B_{n}\right)$. Therefore, $F(p, \mu, s)$ is not only a generalization of $F(p, q, s)$, but also a generalization of the weighted Dirichlet type space.

Definition 1.5 For $p>0$ and $\alpha>-1$, the weighted Bergman space $\mathcal{A}_{\alpha}^{p}\left(B_{n}\right)$ consists of holomorphic functions f in B_{n} and

$$
\|f\|_{p, \alpha}=\left(\int_{B_{n}}|f(z)|^{p} d v_{\alpha}(z)\right)^{\frac{1}{p}}<\infty
$$

where $d v_{\alpha}(z)=c_{\alpha}\left(1-|z|^{2}\right)^{\alpha} d v(z)$, and the constant c_{α} such that $v_{\alpha}\left(B_{n}\right)=1$.
Using operators to study function spaces has a long history. There have been a large number of relevant literatures. In particular, Forelli-Rudin introduced the projection operator in [10]:

$$
P_{\tau} f(z)=\int_{B_{n}} \frac{f(w)}{(1-\langle z, w\rangle)^{n+1+\tau}} d v_{\tau}(w) \quad(\tau>-1)
$$

In order to solve the solvability of Gleason's problem, we first need to discuss the boundedness of kinds of Forelli-Rudin type operators. As for the research on Forelli-Rudin type operators, there has been a lot of work, such as [9]-[17], [32], [34] etc.

Let Y be a class of holomorphic functions in the domain $\Delta \subseteq \mathbb{C}^{n}$. Gleason's problem for Y, denoted by (Δ, β, Y), is the following: for any $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right) \in \Delta$ and $h \in Y$ with $h(\beta)=0$, are there functions $h_{1}, h_{2}, \ldots, h_{n} \in Y$ such that

$$
h(z)=\sum_{j=1}^{n}\left(z_{j}-\beta_{j}\right) h_{j}(z) \quad \text { for all } z=\left(z_{1}, z_{2}, \ldots, z_{n}\right) \in \Delta ?
$$

The Gleason's problem originated from ball algebra([18]), and it has been a hot topic of research by mathematicians for decades. There are many references on this aspect, such as, [18]-[30], [33] etc. The key difficulty of the Gleason's problem depends on the domain Δ, the point $\beta \in \Delta$, and the function space Y. It is known that the Gleason's problem always has a solution in a function space with the multiple cylinder as the support domain, but it may not necessarily have a solution on a function space with the unit ball as the support domain. Therefore, the solvability needs to be discussed one by one. For abstract normal weight μ, is Gleason's problem solvable on $F(p, \mu, s)$? In this paper, we mainly solve this problem.

In this paper, we always let a and b be the two parameters in the definition of the normal function μ. Parameter ranges involving function space definitions are no longer repeated.

§2 Some Lemmas

In order to prove the main results of this paper, we give some lemmas first.

Lemma 2.1 ([19]) Let $\delta>-1$ and $t>\delta+n+1$. Then

$$
\int_{B_{n}} \frac{\left(1-|w|^{2}\right)^{\delta}}{|1-\langle z, w\rangle|^{t}} d v(w) \asymp \frac{1}{\left(1-|z|^{2}\right)^{t-\delta-n-1}} \quad \text { for all } z \in B_{n}
$$

Lemma 2.2 ([31]) Let μ be a normal function on $[0,1)$. For $w \in B_{n}$ and $r>0$, there are the following properties:
(1) $\mu(|z|) \asymp \mu(|w|)$ for all $z \in D(w, r)$.
(2) $\frac{\mu(|z|)}{\mu(|w|)} \leq\left(\frac{1-|z|^{2}}{1-|w|^{2}}\right)^{a}+\left(\frac{1-|z|^{2}}{1-|w|^{2}}\right)^{b}$ for all $z \in B_{n}$.

Lemma 2.3 Let μ be a normal function on $[0,1)$. If $f \in F(p, \mu, s)$, then

$$
|\nabla f(w)| \lesssim \frac{\|f\|_{F(p, \mu, s)}}{\mu(|w|)\left(1-|w|^{2}\right)^{\frac{n-s}{p}}} \text { for all } w \in B_{n}
$$

Moreover, if $s>n$, then $F(p, \mu, s)=\mathcal{B}_{\nu}\left(B_{n}\right)$, where $\nu(\rho)=\left(1-\rho^{2}\right)^{\frac{n-s}{p}} \mu(\rho)$.
Proof The results of the previous part come from Lemma 2.4 in [9]. As long as we take $g(z)=\frac{\partial f}{\partial z_{l}}(z) \quad\left(l \in\{1,2, \cdots n\}, z \in B_{n}\right)$ and $\gamma=s / p$.

When $s>n$, for any $f \in \mathcal{B}_{\nu}\left(B_{n}\right)$ and $w \in B_{n}$, it follows from Lemma 2.1 that

$$
\begin{aligned}
& \int_{B_{n}} \frac{\left(1-|w|^{2}\right)^{s}|\nabla f(z)|^{p} \mu^{p}(|z|)}{|1-\langle z, w\rangle|^{2 s}\left(1-|z|^{2}\right)} d v(z) \\
& \leq\|f\|_{\mathcal{B}_{\nu}}^{p} \int_{B_{n}} \frac{\left(1-|w|^{2}\right)^{s}\left(1-|z|^{2}\right)^{s-n-1}}{|1-\langle z, w\rangle|^{2 s}} d v(z) \\
& \asymp\|f\|_{\mathcal{B}_{\nu}}^{p} \Rightarrow\|f\|_{F(p, \mu, s)} \lesssim\|f\|_{\mathcal{B}_{\nu}} \Rightarrow \mathcal{B}_{\nu}\left(B_{n}\right) \subseteq F(p, \mu, s)
\end{aligned}
$$

This proof is completed.
Note When $\lim _{\rho \rightarrow 1^{-}}\left(1-\rho^{2}\right)^{\frac{n-s}{p}} \mu(\rho)=\infty$ (for example, $b+(n-s) / p<0$), the space $\mathcal{B}_{\nu}\left(B_{n}\right)$ contains only constant valued functions by the maximum modulus principle. Therefore, $F(p, \mu, s)$ contains only constant valued functions in this case.

Lemma 2.4 ([32]) For $\delta>-1$ and $r \geq 0, t \geq 0$, let

$$
I_{w, \eta}=\int_{B_{n}} \frac{\left(1-|z|^{2}\right)^{\delta}}{|1-\langle z, w\rangle|^{t}|1-\langle z, \eta\rangle|^{r}} d v(z) \quad\left(w, \eta \in B_{n}\right)
$$

Then there are the following results.
(1) When $t-\delta>n+1>r-\delta$,

$$
I_{w, \eta} \asymp \frac{1}{\left(1-|w|^{2}\right)^{t-\delta-n-1}|1-\langle w, \eta\rangle|^{r}}
$$

(2) When $t-\delta>n+1$ and $r-\delta>n+1$,

$$
I_{w, \eta} \asymp \frac{1}{\left(1-|w|^{2}\right)^{t-\delta-n-1}|1-\langle w, \eta\rangle|^{r}}+\frac{1}{\left(1-|\eta|^{2}\right)^{r-\delta-n-1}|1-\langle w, \eta\rangle|^{t}}
$$

(3) When $t-\delta>n+1=r-\delta$,

$$
I_{w, \eta} \asymp \frac{1}{\left(1-|w|^{2}\right)^{t-\delta-n-1}|1-\langle w, \eta\rangle|^{r}}+\frac{1}{|1-\langle w, \eta\rangle|^{t}} \log \frac{e}{1-\left|\varphi_{w}(\eta)\right|^{2}}
$$

§3 Main Results

Theorem 3.1 Let μ be a normal function on [0,1). If t is large sufficiently, then $\left\|T_{t} f\right\|_{p, q, s}$ $\lesssim\|f\|_{p, q, s}$ for all $f \in F(p, \mu, s)$ when $0 \leq s \leq n$, where

$$
T_{t} f(z)=\int_{B_{n}} \frac{|\nabla f(w)| d v_{t}(w)}{|1-\langle z, w\rangle|^{n+1+t}} \quad\left(z \in B_{n}\right)
$$

Proof (1) Case $p>1$.
It is clear that $\lim _{t \rightarrow \infty} \frac{(1+t) p-1}{p b+t}=p>1$. Therefore, there exists a $t_{0}>p b+n-s-1$ such that $p b+t<(1+t) p-1$ when $t>t_{0}$. We choose $t_{0}<t<t_{1}<p a+t$. This means that $p^{\prime}\left(t-t_{1} / p\right)>-1$ (where $\left.1 / p+1 / p^{\prime}=1\right)$ and $t_{1}-t>0$. By Hölder inequality and Lemma 2.1, we may obtain

$$
\begin{align*}
\left|T_{t} f(z)\right|^{p} & \lesssim\left\{\int_{B_{n}} \frac{\left(1-|w|^{2}\right)^{p^{\prime}\left(t-\frac{t_{1}}{p}\right)} d v(w)}{|1-\langle z, w\rangle|^{n+1+t}}\right\}^{\frac{p}{p^{\prime}}} \int_{B_{n}} \frac{|\nabla f(w)|^{p}}{|1-\langle z, w\rangle|^{n+1+t}} d v_{t_{1}}(w) \\
& \asymp \frac{1}{\left(1-|z|^{2}\right)^{t_{1}-t}} \int_{B_{n}} \frac{|\nabla f(w)|^{p}}{|1-\langle z, w\rangle|^{n+1+t}} d v_{t_{1}}(w) \tag{1}
\end{align*}
$$

For any $\xi \in B_{n}$, we first consider the integral

$$
\int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p a+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w)
$$

When $s=0$, by $p a-1<t_{0}<t_{1}<p a+t$ and Lemma 2.1, we have

$$
\begin{aligned}
& \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|z|^{2}\right)^{p a+t-t_{1}-1} d v(z)}{|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& \asymp \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{1-|w|^{2}} d v(w) \leq\left||f|_{F(p, \mu, s)}^{p}\right.
\end{aligned}
$$

When $2 s-\left(p a+t-t_{1}-1\right)<n+1$, this conditions $t_{0}<t<t_{1}<p a+t$ show that $(n+1+t)-\left(p a+t-t_{1}-1\right)=(n+1)+1+t_{1}-p a>(n+1)+1+t_{0}-p a>n+1$, $p a+t-t_{1}-1>-1$ and $(n+1+t)-\left(p a+t-t_{1}-1\right)-n-1=1+t_{1}-p a>1+t_{0}-p a>0$. It follows from Lemma 2.4(1) that

$$
\begin{aligned}
& \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p a+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) . \\
& \asymp \int_{B_{n}}|\nabla f(w)|^{p} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle w, \xi\rangle|^{2 s}} \frac{\mu^{p}(|w|)}{1-|w|^{2}} d v(w) \leq \|\left. f\right|_{F(p, \mu, s)} ^{p}
\end{aligned}
$$

When $2 s-\left(p a+t-t_{1}-1\right)>n+1$, the conditions $t_{0}<t<t_{1}<p a+t$ mean that $p a+t-t_{1}-1>-1$ and $p a+t+n-s-t_{1}>0, t_{1}-p a-n+s>-1$. By Lemma 2.1 and Lemma 2.3, Lemma 2.4(2), we have

$$
\begin{aligned}
& \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p a+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& \asymp \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}} \frac{\left(1-|\xi|^{2}\right)^{p a+t+n-s-t_{1}}}{|1-\langle\xi, w\rangle|^{n+1+t}} d v_{t_{1}}(w)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{B_{n}}|\nabla f(w)|^{p} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle w, \xi\rangle|^{2}} \frac{\mu^{p}(|w|)}{1-|w|^{2}} d v(w) \\
& \lesssim\|f\|_{F(p, \mu, s)}^{p} \int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{p a+t+n-s-t_{1}}\left(1-|w|^{2}\right)^{t_{1}-p a-n+s}}{|1-\langle\xi, w\rangle|^{n+1+t}} d v(w) \\
& +\|f\|_{F(p, \mu, s)}^{p} \asymp\|f\|_{F(p, \mu, s)^{p}}^{p} .
\end{aligned}
$$

When $2 s-\left(p a+t-t_{1}-1\right)=n+1$, the conditions $t_{0}<t<t_{1}<p a+t$ mean that we may take $0<\sigma_{0}<\min \left\{s, t_{1}+s+1-p a-n\right\}$ so that $p a+t-t_{1}-1>-1$ and $t_{1}-p a-n-\sigma_{0}+s>-1$, $s-\sigma_{0}>0$. By Lemma 2.1 and Lemma 2.3, Lemma 2.4(3), $\sup _{0<x \leq 1} x^{\sigma_{0}} \log \frac{e}{x}=\frac{e^{\sigma_{0}-1}}{\sigma_{0}}$, we get

$$
\begin{aligned}
& \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p a+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{s s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& \asymp \int_{B_{n}}|\nabla f(w)|^{p} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle w, \xi\rangle|^{2 s}} \frac{\mu^{p}(|w|)}{1-|w|^{2}} d v(w) \\
& +\int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle\xi, w\rangle|^{n+1+t}} \log \frac{e}{1-\left|\varphi_{w}(\xi)\right|^{2}} d v_{t_{1}}(w) \\
& \left.\lesssim\left\|\left.f\right|_{F(p, \mu, s)} ^{p}+\right\| f\right|_{F(p, \mu, s)} ^{p} \int_{B_{n}} \frac{\left(1-|w|^{2}\right)^{t_{1}-p a-n-\sigma_{0}+s} d v(w)}{\left(1-|\xi|^{2}\right)^{\sigma_{0}-s}|1-\langle\xi, w\rangle|^{n+1+t-2 \sigma_{0}}} \asymp \|\left. f\right|_{F(p, \mu, s)} ^{p}
\end{aligned}
$$

Similarly, if $t_{0}<t<t_{1}<p a+t$, then we may prove that

$$
\begin{aligned}
& \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p b}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p b+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& \lesssim \|\left. f\right|_{F(p, \mu, s)} ^{p}
\end{aligned}
$$

Therefore, (1) and Lemma 2.2(2) combined with the above discusses, we have

$$
\begin{aligned}
& \int_{B_{n}}\left|T_{t} f(z)\right|^{p} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle z, \xi\rangle|^{2 s}} \frac{\mu^{p}(|z|)}{1-|z|^{2}} d v(z) \\
& \lesssim \int_{B_{n}}|\nabla f(w)|^{p}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s} \mu^{p}(|z|)\left(1-|z|^{2}\right)^{t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& \lesssim \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p a+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& +\int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p b}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p b+t-t_{1}-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t}}\right\} d v_{t_{1}}(w) \\
& \lesssim \|\left. f\right|_{F(p, \mu, s)} ^{p}
\end{aligned}
$$

(2) Case $0<p \leq 1$.

We choose $b+(n-s) / p-1<t=\frac{n+1+t^{\prime}}{p}-n-1$ such that $t^{\prime}>p b+n-s-1$.
For any $z \in B_{n}$ and $l \in\{1,2, \cdots, n\}$, we take

$$
F_{l}(w)=\frac{\partial f}{\partial w_{l}}(w) \frac{1}{(1-\langle w, z\rangle)^{n+1+t}} \quad\left(w \in B_{n}\right)
$$

It follows from Lemma 2.15 in [13] that

$$
\int_{B_{n}}\left|F_{l}(w)\right|\left(1-|w|^{2}\right)^{t} d v(w) \lesssim\left\{\int_{B_{n}}\left|F_{l}(w)\right|^{p} d v_{t^{\prime}}(w)\right\}^{\frac{1}{p}}
$$

This shows that

$$
\begin{aligned}
\left|T_{t} f(z)\right|^{p} & \asymp \sum_{l=1}^{n}\left\{\int_{B_{n}}\left|F_{l}(w)\right|\left(1-|w|^{2}\right)^{t} d v(w)\right\}^{p} \\
& \lesssim \sum_{l=1}^{n} \int_{B_{n}}\left|F_{l}(w)\right|^{p} d v_{t^{\prime}}(w) \asymp \int_{B_{n}} \frac{|\nabla f(w)|^{p} d v_{t^{\prime}}(w)}{|1-\langle w, z\rangle|^{n+1+t^{\prime}}}
\end{aligned}
$$

Next, it is similar to the proof of case $p>1$ when $t^{\prime}>p b+n-s-1$. We have

$$
\begin{aligned}
& \int_{B_{n}}\left|T_{t} f(z)\right|^{p} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle z, \xi\rangle|^{2 s}} \frac{\mu^{p}(|z|)}{1-|z|^{2}} d v(z) \\
& \lesssim \int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p a}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p a-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t^{\prime}}}\right\} d v_{t^{\prime}}(w) \\
& +\int_{B_{n}} \frac{|\nabla f(w)|^{p} \mu^{p}(|w|)}{\left(1-|w|^{2}\right)^{p b}}\left\{\int_{B_{n}} \frac{\left(1-|\xi|^{2}\right)^{s}\left(1-|z|^{2}\right)^{p b-1} d v(z)}{|1-\langle z, \xi\rangle|^{2 s}|1-\langle z, w\rangle|^{n+1+t^{\prime}}}\right\} d v_{t^{\prime}}(w) \\
& \lesssim\|f\|_{F(p, \mu, s) .}^{p}
\end{aligned}
$$

This proof is completed.
As an application of Theorem 3.1, we prove the Gleason's problem is solvable on $F(p, \mu, s)$.
Theorem 3.2 Let μ be a normal function on $[0,1)$. For any integer $k \geq 1$ and $\beta \in B_{n}$, there exist bounded linear operators $A_{\alpha} \quad(|\alpha|=k)$ on $F(p, \mu, s)$ such that

$$
f(z)=\sum_{|\alpha|=k}(z-\beta)^{\alpha} A_{\alpha} f(z) \text { for any } f \in F(p, \mu, s)
$$

with $D^{\gamma} f(\beta)=0 \quad(|\gamma|=0,1, \cdots, k-1)$, where α and γ are multi-index.
Proof When $s>n$, it follows from Lemma 2.3 that $F(p, \mu, s)=\mathcal{B}_{\nu}\left(B_{n}\right)$. This result has been proved in [33]. We need only to consider the case $0 \leq s \leq n$.

First, we consider the case $k=1$.
When $\beta=(0, \cdots, 0)$, for any $f \in F(p, \mu, s)$ with $f(\beta)=0$ and $j \in\{1, \ldots, n\}$, let

$$
A_{j} f(z)=\int_{0}^{1} \frac{\partial f}{\partial z_{j}}(t z) d t
$$

Then each A_{j} is a linear operator and

$$
\begin{equation*}
\sum_{j=1}^{n} z_{j} A_{j} f(z)=\int_{0}^{1} \frac{R f(t z)}{t} d t=f(z)-f(\beta)=f(z) \tag{2}
\end{equation*}
$$

In the following, we prove that A_{j} is bounded on $F(p, \mu, s)$ for every $j \in\{1,2, \ldots, n\}$.
It follows from Lemma 2.3 that

$$
\left|\frac{\partial f}{\partial z_{j}}(z)\right| \leq|\nabla f(z)| \lesssim \frac{\|f\|_{F(p, \mu, s)}}{\mu(|z|)\left(1-|z|^{2}\right)^{\frac{n-s}{p}}} \leq \frac{\|f\|_{F(p, \mu, s)}}{\mu(0)\left(1-|z|^{2}\right)^{b+\frac{n-s}{p}}}
$$

Therefore, as long as $t-b-(n-s) / p>-1$, it is clear that

$$
\int_{B_{n}}\left|\frac{\partial f}{\partial z_{j}}(z)\right| d v_{t}(z) \lesssim\|f\|_{F(p, \mu, s)} \int_{B_{n}}\left(1-|z|^{2}\right)^{t-b-\frac{n-s}{p}} d v(z)<\infty
$$

This shows that $\frac{\partial f}{\partial z_{j}} \in A_{t}^{1}\left(B_{n}\right)$. By Theorem 2.2 in [13], we have

$$
\begin{equation*}
\frac{\partial f}{\partial z_{j}}(z)=\int_{B_{n}} \frac{\partial f}{\partial w_{j}}(w) \frac{1}{(1-\langle z, w\rangle)^{n+1+t}} d v_{t}(w) \quad\left(z \in B_{n}\right) \tag{3}
\end{equation*}
$$

By (2)-(3) and Fubini Theorem, it is clear that

$$
A_{j} f(z)=\int_{B_{n}} \frac{\partial f}{\partial w_{j}}(w)\left\{\int_{0}^{1} \frac{d \rho}{(1-\rho\langle z, w\rangle)^{n+t+1}}\right\} d v_{t}(w)
$$

This shows that

$$
\begin{aligned}
\nabla A_{j} f(z) & =\int_{B_{n}} \frac{\partial f}{\partial w_{j}}(w)\left\{\int_{0}^{1} \frac{(n+t+1) \rho d \rho}{(1-\rho\langle z, w\rangle)^{n+t+2}}\right\} \bar{w} d v_{t}(w) \\
& =\int_{B_{n}} \frac{\partial f}{\partial w_{j}}(w) \frac{\bar{w} Q(z, w)}{(1-\langle z, w\rangle)^{n+t+1}} d v_{t}(w)
\end{aligned}
$$

where \bar{w} is a vector, and the integral

$$
\begin{aligned}
& \int_{B_{n}}(\cdot) \bar{w} d v_{t}(w)=\left(\int_{B_{n}}(\cdot) \overline{w_{1}} d v_{t}(w), \cdots, \int_{B_{n}}(\cdot) \overline{w_{n}} d v_{t}(w)\right) \\
& Q(z, w)=\frac{n+1+t}{(n+t)\langle z, w\rangle}+\frac{1}{n+t} \frac{(1-\langle z, w\rangle)^{n+t+1}-1}{\langle z, w\rangle^{2}}
\end{aligned}
$$

when $\langle z, w\rangle \neq 0$ or $Q(z, w)=(n+1+t) / 2$ when $\langle z, w\rangle=0$. Otherwise,

$$
\lim _{y \rightarrow 0}\left\{\frac{n+1+t}{(n+t) y}+\frac{1}{n+t} \frac{(1-y)^{n+t+1}-1}{y^{2}}\right\}=\frac{n+1+t}{2}
$$

This means that $|Q(z, w)| \lesssim 1$. Therefore,

$$
\begin{equation*}
\left|\nabla A_{j} f(z)\right| \lesssim \int_{B_{n}} \frac{|\nabla f(w)|}{|1-\langle z, w\rangle|^{n+1+t}} d v_{t}(w)=T_{t} f(z) \tag{4}
\end{equation*}
$$

As long as t sufficiently large, it follows from (4) and Theorem 3.1 that

$$
\sup _{\xi \in B_{n}} \int_{B_{n}}\left|\nabla A_{j} f(z)\right|^{p} \frac{\left(1-|\xi|^{2}\right)^{s}}{|1-\langle z, \xi\rangle|^{2 s}} \frac{\mu^{p}(|z|)}{1-|z|^{2}} d v(z) \lesssim \|\left. f\right|_{F(p, \mu, s)} ^{p}
$$

On the other hand, it follows from Lemma 2.3 that

$$
\left|A_{j} f(0, \cdots, 0)\right|=\left|\int_{B_{n}} \frac{\partial f}{\partial w_{j}}(w) d v_{t}(w)\right| \lesssim\|f\|_{F(p, \mu, s)}
$$

In a word, we have $\left\|A_{j} f\right\|_{F(p, \mu, s)} \lesssim\|f\|_{F(p, \mu, s)}$ for all cases.
When $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \neq(0, \cdots, 0)$, it is clear that

$$
\begin{aligned}
f(z) & =f(z)-f(\beta)=\int_{0}^{1}\left\{\frac{d}{d t} f[\beta+t(z-\beta)]\right\} d t \\
& =\sum_{j=1}^{n}\left(z_{j}-\beta_{j}\right) \int_{0}^{1} D_{j} f[\beta+t(z-\beta)] d t=\sum_{j=1}^{n}\left(z_{j}-\beta_{j}\right) A_{j} f(z) .
\end{aligned}
$$

It is similar to the proof of (4). We may obtain

$$
\begin{aligned}
\left|\nabla A_{j} f(z)\right| & \lesssim \int_{B_{n}} \frac{|\nabla f(w)|}{|1-\langle\beta, w\rangle|^{n+2+t}|1-\langle z, w\rangle|^{n+1+t}} d v_{t}(w) \\
& \leq \frac{1}{(1-|\beta|)^{n+2+t}} \int_{B_{n}} \frac{|\nabla f(w)|}{|1-\langle z, w\rangle|^{n+1+t}} d v_{t}(w) \asymp T f(z)
\end{aligned}
$$

It follows from Theorem 3.1 that A_{j} is bounded on $F(p, \mu, s)$.

For $k \geq 2$, the proof is the same as that of Theorem 5 in [20].
This proof is completed.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

[1] R H Zhao. On a general family of function spaces, Ann Acad Sci Fenn Math Diss, 1996, 105: 110-120.
[2] X J Zhang, C Z He, F F Cao. The equivalent norms of $F(p, q, s)$ space in \mathbb{C}^{n}, J Math Anal Appl, 2013, 401(2): 601-610.
[3] L J Jiang, Y Z He. Composition operators from β^{α} to $F(p, q, s)$, Acta Math Sci, 2003, 23(2): 252-260.
[4] Z H Zhou, R Y Chen. Weighted composition operator from $F(p, q, s)$ to Bloch type spaces on the unit ball, Int J Math, 2008, 19(8): 899-926.
[5] S L Ye. Weighted composition operators from $F(p, q, s)$ into logarithmic Bloch space, J of Kore Math Soc, 2008, 45(4): 977-991.
[6] Y X Liang. On an integral-type operator from a weighted-type space to $F(p, q, s)$ on the unit ball, Complex Var Ellip Equ, 2015, 60: 282-291.
[7] H S Wulan, K H Zhu. Möbius Invariant Q_{K} Spaces, Springer-Nature, Swizerland, 2017.
[8] S L Li, X J Zhang, S Xu. The equivalent characterization of $F(p, q, s)$ space on bounded symmetric domains of \mathbb{C}^{n}, Acta Math Sci, 2017, 37B: 1791-1802.
[9] S L Li. Bergman type operator on spaces of holomorphic functions in the unit ball of \mathbb{C}^{n}, J Math Anal Appl, 2022, 514: 126088.
[10] F Forelli, W Rudin. Projections on spaces of holomorphic functions on balls, Indiana Univ Math J, 1974, 24: 593-602.
[11] G B Ren, J H Shi. Bergman type operator on mixed norm spaces with applications, Chin Ann Math, 1997, 18B: 265-276.
[12] K H Zhu. A Forelli-Rudin type theorem with applications, Complex Var, 1991, 16: 107-113.
[13] K H Zhu. Spaces of holomorphic functions in the unit ball, Spri nger-Verlag (GTM 226), New York, 2005.
[14] R H Zhao, L F Zhou. $L^{p}-L^{q}$ boundedness of Forelli-Rudin type operators on the unit ball of \mathbb{C}^{n}, J of Funct Anal, 2022, 282: 109345.
[15] H Kaptanoğlu, A Üreyen. Singular integral operators with Bergman-Besov kernels on the ball, Inte Enquat Oper Theorey, 2019, https://doi.org/10.1007/s00020-019-2528-0.
[16] C W Liu. Sharp Forelli-Rudin estimates and the norm of the Bergman projection, J of Funct Anal, 2015, 268: 255-277.
[17] X J Zhang, H X Chen, M Zhou. Forelli-Rudin type operators on the space $L^{p, q, s}(B)$ and some applications, J Math Anal Appl, 2023, 525: 127305.
[18] A Gleason. Finitely generated ideals in Banach algebras, J Math Mechanics, 1964, 13: 125-132.
[19] W Rudin. Function theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.
[20] K H Zhu. The Bergman spaces, the Bloch space and the Gleason's problem, Trans Amer Math Soc, 1988, 309: 253-268.
[21] J Ortega. The Gleason's problem in Bergman-Sobolev spaces, Complex Var, 1992, 20: 157-170.
[22] G B Ren, J H Shi. Gleason's problem in weighted Bergman space type on egg domains, Sci in China, 1998, 41: 225-231.
[23] E Doubtsov. Minimal solutions of the Gleason problem, Complex Var, 1998, 36: 27-35.
[24] Z J Hu, X M Tang. The Gleason's problem for some polyharmonic and hyperbolic harmonic function spaces, Science in China, 2006, 49: 1128-1145.
[25] L Carlsson. An equivalence to the Gleason problem, J Math Anal Appl, 2010, 370: 373-378.
[26] X J Zhang, M Li, Y Guan. The equivalent norms and the Gleason's problem on μ-Zygmund spaces in \mathbb{C}^{n}, J Math Anal Appl, 2014, 419: 185-199.
[27] K Abu-Ghanem, D Alpay, F Colombo, et al. Gleason's problem and Schur multipliers in the multivarable quaternionic setting, J Math Anal Appl, 2015, 425: 1083-1096.
[28] A Daniel, E Luna-Elizarrarás María, S Michael, et al. Gleason's problem, rational functions and spaces of left-regular functions: The split-quaternion setting, Israel J of Math, 2018, 226: 1-31.
[29] S Q Cheng, J N Dai. Composition operators and Gleason's problem on weighted Fock spaces, Ann of Funct Anal, 2022, 13: 1-23.
[30] P C Tang, X J Zhang. Gleason's Problem on the Space Fp, q,s(B) in \mathbb{C}^{n}, Acta Math Sci, 2022, 42B(5): 1971-1980.
[31] X J Zhang, LH Xi, HX Fan, et al. Atomic decomposition of μ-Bergman space in \mathbb{C}^{n}, Acta Math Sci, 2014, 34B: 779-789.
[32] S L Li, X J Zhang, S Xu. The Bergman type operators on the $F(p, q, s)$ type spaces in \mathbb{C}^{n}, Chin J of Conte Math, 2017, 38: 303-316.
[33] X J Zhang, D H Xiong, Y Wu. Solvability of Gleason's Problem on μ-Bloch Spaces of Several Complex Variables, Chin J of Conte Math, 2012, 33: 231-238.
[34] X J Zhang, Y T Guo, H X Chen. Integral estimates and the boundedness of the generalized Forelli-Rudin type operator on weighted Lebesgue spaces (in Chinese), Sci Sin Math, 2023, 53: 1357-1376.

College of Mathematics and Statistics, Hunan Normal University, Changsha 410006, China.
Email: xuejunttt@263.net

[^0]: Received: 2022-09-09. Revised: 2023-05-26.
 MR Subject Classification: 32A37, 47B33.
 Keywords: Gleason's problem, solvability, $F(p, \mu, s)$ space, integral operator.
 Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-023-4840-3.
 Supported by the National Natural Science Foundation of China(11942109) and the Natural Science Foundation of Hunan Province in China(2022JJ30369).

 * Corresponding author.

