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Least square method based on Haar wavelet to solve

multi-dimensional stochastic Itô-Volterra integral

equations

JIANG Guo∗ KE Ting DENG Meng-ting

Abstract. This paper proposes a method combining blue the Haar wavelet and the least square

to solve the multi-dimensional stochastic Itô-Volterra integral equation. This approach is to

transform stochastic integral equations into a system of algebraic equations. Meanwhile, the

error analysis is proven. Finally, the effectiveness of the approach is verified by two numerical

examples.

§1 Introduction

In practical applications, on the one hand, complex systems in engineering and physics are

affected by stochastic factors such as stochastic disturbances, stochastic environments, stochas-

tic boundary conditions, stochastic inputs, and stochastic initial conditions; on the other hand,

people ignore the processes whose physical reasons are temporarily unclear. Both of these

cases can be described by stochastic integral equation or approximated by stochastic process.

The research field of SDE is very broad, for example, engineering, the nonlinear age-structured

population model and mathematical finance and so on ([1,2]).

However, many stochastic integral equations can not be solved explicitly. Hence, it is of

great significance to study a convenient and accurate numerical algorithm. Different orthogonal

basis functions or polynomials, for instance, Iterative technique, Walsh functions, block pulse

functions(BPFs), Chebyshev polynomials, Legendre polynomials and Fourier series were applied

to solve different Volterra integral equations. Here, we only mentioned the references such as

the papers ([3-13]) and other relevant literatures. In recent years, as a powerful tool, Haar

wavelet has been widely applied in numerical analysis. Many scholars have used it to solve

stochastic equations ([14-17]).

In paper ([11]), authors utilized BPFs to gain the numerical solution of the linear stochas-

tic Itô-Volterra integral equations (SIVIEs). The authors ([18]) put forward a computational
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method to solve SIVIEs by the least squares method and BPFs. Moreover, the paper ([19])

solved the m-dimensional SIVIEs based on BPFs. In paper ([14]), the author derived the ap-

proximate solution of linear SIVIEs by Haar wavelets (HWs). The paper ([16]) proposed an

effective numerical method for solving nonlinear SIVIEs based on HWs.

In this article, we study the following multi-dimensional linear SIVIEs

V (t) = g(t) +

∫ t

0

M̃(τ, t)V (τ)dτ +

q∑
r=1

∫ t

0

M̂r(τ, t)V (τ)dBr(τ), t ∈ [0, T ), (1)

where r = 1, 2, · · · , q and 0 < τ < t. V (t) is an unknown stochastic process and Br(τ) are

Brownian motions. They are all denoted on the same probability space of (Ω,F , P ). M̃(τ, t)

and M̂r(τ, t) are kernel functions, g(t) is an initial function. Moreover,
∫ t

0
M̂r(τ, t)V (τ)dBr(τ)

are the Itô integrals.

Compared with the above papers ([11,18,19]), the difference of this paper is to discuss

the numerical solution of the linear SIVIEs with respect to multiple independent Brownie

motions using the Least square method and Haar wavelet. The method combines the least

square method with the haar wavelet to obtain a more accurate numerical solution. The most

significant innovation is that SIVIEs are converted into a system of algebraic equations by this

approach. According to the simulation results and numerical results of numerical examples in

Section 5, it can be found that the error of this method is relatively small, and the approximate

solution is closer to the exact solution than the literature ([19]).

In section 2, we give some fundamental theories about BPFs and HWs. The relationship

between BPFs and HWs is presented in section 3. In section 4, the computational method is

given concretely. In section 5, the error analysis is acquired. Two numerical examples are used

to confirm the availability of the approach in section 6.

§2 Preliminaries

BPFs and HWs are recommended in this section, the details see literatures ([4,10,11,17,19]).

2.1 Block Pulse Functions

The definition of BPFs is as follows

ξl(t) =

{
1, lh ≤ t < (l + 1)h,

0, otherwise.
(2)

where l = 0, 1, · · · ,m− 1, h = T
m and t ∈ [0, T ).

They have the following properties

i) Orthogonality: ∫ T

0

ξl(t)ξj(t)dt = hδlj . (3)

where δlj is Kronecker delta.

ii) Disjointness:

ξl(t)ξj(t) = δljξl(t), l, j = 0, 1, · · · ,m− 1, (4)
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iii) Completeness: for every f(t) ∈ L2([0, T )), then∫ T

0

f2(t)dt =
∞∑
l=1

f2
l ∥ξl(t)∥2, (5)

where fl =
1
h

∫ T

0
f(t)ξl(t)dt.

The vector form of BPFs is given

Λm(t) = (ξ0(t), ξ1(t), · · · , ξm−1(t))
T . (6)

From the above description,

Λm(t)ΛT
m(t) =


ξ0(t) 0 · · · 0

0 ξ1(t) · · · 0
...

...
. . . 0

0 0 · · · ξm−1(t)


m×m

,

ΛT
m(t)Λm(t) = 1,

Suppose that a m-vector Fm = (f0, f1, · · · , fm−1)
T , then

Λm(t)ΛT
m(t)Fm = DFmΛm(t),

where DF is a diagonal matrix whose diagonal entries are the vector Fm.

If K is an m×m matrix, then

ΛT
m(t)KΛm(t) = K̂TΛm(t),

where K̂ is a m-vector composed of the diagonal entries of K.

Any function V (t) ∈ L2([0, T )) can be approximated as

V (t) ≃ Vm(t) =

m−1∑
i=0

viξi(t) = V̂ T
mΛm(t) = ΛT

m(t)V̂m, (7)

where

V̂m = (v0, v1, · · · , vm−1)
T . (8)

For any M(τ, t) ∈ L2([0, T1)× [0, T2)), it can also be expanded as

M(τ, t) = ΛT
m1

(τ)MΛm2(t) = ΛT
m2

(t)MTΛm1(τ),

where M = (m̂ij)m1×m2 ,

m̂ij =
1

h1h2

∫ T1

0

∫ T2

0

M(τ, t)ξi(τ)ξj(t)dτdt, (9)

and h1 = T1

m1
, h2 = T2

m2
.

2.2 Haar wavelets

HWs are denoted as ([14])

hi(t) = 2
j
2h(2jt− z), j ≥ 0, 0 ≤ z < 2j , i = 2j + z, i, j, z ∈ N,

where h0(t) = 1, t ∈ [0, 1), and

h(t) =


1, 0 ≤ t < 1

2 ,

−1, 1
2 ≤ t < 1.

(10)
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The hi(t) are pairwise orthonormal and∫ 1

0

hi(t)hj(t)dt = δij . (11)

Any squared integrable function V (t) on [0, 1) can be approximated by HWs

V (t) = c0h0(t) +
∞∑
i=1

cihi(t), (12)

where

ci =

∫ 1

0

V (t)hi(t)dt,

and i = 0 or i = 2j + z.

It can be found that when m = 2J (J is the wavelet resolution), (12) can be rewritten as

V (t) = c0h0(t) +
m−1∑
i=1

cihi(t), i = 2j + z, j = 0, 1, · · · , J − 1.

or

V (t) ≃ CT
mHm(t) = HT

m(t)Cm, (13)

where Hm(t) = (h0(t), h1(t), · · · , hm−1(t))
T and Cm = (c0, c1, · · · , cm−1)

T .

Any M(τ, t) ∈ L2([0, 1)× [0, 1)) can be expanded as

M(τ, t) = HT
m1

(τ)MHm2(t),

where M = (m̂il)m1×m2
,

m̂il =

∫ 1

0

∫ 1

0

M(τ, t)hi(τ)hl(t)dτdt, (14)

and i, l = 0, 1, · · · ,m− 1. For convenience, let m1 = m2 = m in the following sections.

§3 HWs and BPFs

This section introduces the relationship between HWs and BPFs and the related Lemmas.We

let T = 1 in BPFs in this section.

Lemma 1. Let Hm(t) and Λm(t) are HWs and BPFs vector respectively ([14]),

Hm(t) = PΛm(t), m = 2J , (15)

where P = (Pij)m×m and

Pij = 2
j
2hi−1(

2j − 1

2m
), i− 1 = 2j + z, 0 ≤ z < 2j , i, j = 1, · · · ,m.

Remark 1. According to the definition of P in (15), we have ([14])

P−1 =
1

m
PT .

Remark 2. For any an m-vector U , then ([14])

Hm(t)HT
m(t)U = ŨHm(t),

where Ũ = PŪP−1 is an matrix and Ū is a diagonal matrix whose diagonal entries are the

vector PTU .



JIANG Guo, et al. Least square method based on Haar wavelet to solve multi-dimensional... 595

Remark 3. Suppose that S is an m×m matrix, we get ([14])

HT
m(t)SHm(t) = ŜTHm(t),

where ŜT = NP−1 is a vector and the entries of the vector N are the diagonal entries of PTSP.

Lemma 2. Suppose that Λm(t) is defined in (6), there are ([11,14])∫ t

0

Λm(τ)dτ ≃ QΛm(t), (16)

where

Q =
h

2


1 2 2 · · · 2

0 1 2 · · · 2

0 0 1 · · · 2
...

...
...

. . .
...

0 0 0 · · · 1


m×m

.

Lemma 3. Suppose that Λm(t) is defined in (6), then ([11,14])∫ t

0

Λm(τ)dB(τ) ≃ QBΛm(t), (17)

where

QB =



Bh
2

Bh Bh · · · Bh

0 B 3h
2
−Bh B2h −Bh · · · B2h −BH

h

0 0 B 5h
2
−B2h · · · B3h −B2h

...
...

...
. . .

...

0 0 0 · · · B (2m−1)h
2

−B(m−1)h


m×m

,

Lemma 4. Suppose that Hm(t) is given in (13), there are ([11,14])∫ t

0

Hm(τ)dτ ≃ 1

m
PQPTHm(t) = ΥHm(t),

where P and Q are the same as (15) and Lemma 2 respectively, Υ = 1
mPQPT .

Lemma 5. Suppose that Hm(t) is given in (13), there are ([11,14])∫ t

0

Hm(τ)dB(τ) ≃ 1

m
PQBP

THm(t) = ΥBHm(t),

where P and QB are the same as (15) and Lemma 3 respectively, ΥB = 1
mPQBP

T .

§4 Method description

First we give the following operator

L(V (t)) := V (t)−
∫ t

0

M̃(τ, t)V (τ)dτ −
q∑

r=1

∫ t

0

M̂r(τ, t)V (τ)dBr(τ). (18)
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where L is linear operator.

If V (t) is the precise solution to (1), we have

∥ L(V (t))− g(t) ∥L2= 0.

Suppose ε > 0, Vε(t) is the numerical solution, then the residual norm of Vε(t) is as follows

∥ L(Vε(t))− g(t) ∥L2< ε. (19)

In terms of (19), we now propose a method to obtain an approximate solution, Vm(t) is a

linear combination of HWs,

Vm(t) =
m−1∑
i=0

cihi(t),

where ci is the unknown.

Next, we discuss the following problem

min
c0,··· ,cm−1

∥ L(Vm(t))− g(t) ∥L2 . (20)

A set of values of ĉ0, · · · , ĉm−1 is got by minimizing (20), then
∑m

i=1 ĉihi(t) is an approximate

solution of (1), and

E
[

min
c0,··· ,cm−1

∥L(Vm(t))− g(t)∥L2

]
= E

[∥∥∥∥∥L(
m−1∑
i=0

ĉihi)− g(t)

∥∥∥∥∥
L2

]
→ 0, (21)

where m → ∞ (or h → 0).

For obtaining the minimum value of (20), we must take the partial derivative of ci,

∂

∂ci

∫ T

0

m−1∑
j=0

cjL(hj(t))− g(t)

2

dt = 0, i = 0, 1, · · · ,m− 1,

then ∫ T

0

m−1∑
j=0

cjL(hj(t))L(hi(t))dt =

∫ T

0

g(t)L(hi(t))dt, (22)

and

m−1∑
j=0

cj⟨L(hi(t)), L(hj(t))⟩ = ⟨L(hi(t)), g(t))⟩,

where ⟨L(hi(t)), L(hj(t))⟩ =
∫ T

0
L(hi(t))L(hj(t))dt.

We define the following matrix

C = A−1W, (23)

where W = (w0, w1, · · · , wm−1)
T ∈ Rm, wi = ⟨L(hi(t)), g(t)⟩, C = (c0, c1, · · · , cm−1)

T ∈ Rm,

and A = (ηij) ∈ Rm×m, ηij = ⟨L(hi(t)), L(hj(t))⟩, i, j = 0, 1, · · · ,m− 1.

According to the previous content, we know that V (t), g(t), M̃(u, t) and M̂(u, t) can be

expanded as

V (t) ≃ Vm(t) = CT
mHm(t) = HT

m(t)Cm, (24)

g(t) ≃ gm(t) = GT
mHm(t) = HT

m(t)Gm, (25)

M̃(τ, t) ≃ M̃m(τ, t) = HT
m(τ)M1Hm(t) = HT

m(t)MT
1 Hm(τ), (26)

M̂(τ, t) ≃ M̂m(τ, t) = HT
m(τ)M2Hm(t) = HT

m(t)MT
2 Hm(τ), (27)
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where M1and M2 are HWs coefficients matrices, Cm and Gm are HWs coefficients vector.

Now, for solving ηij and wi. By (18), (24)-(27), we get

L(hi(t)) = hi(t)−
∫ t

0

M̃(τ, t)hi(τ)dτ −
q∑

r=1

∫ t

0

M̂r(τ, t)hi(τ)dBr(τ)

= IiHm(t)−HT
m(t)MT

1

∫ t

0

Hm(τ)HT
m(τ)Iidτ

−HT
m(t)

q∑
r=1

MT
2

∫ t

0

Hm(τ)HT
m(τ)IidBr(τ),

(28)

where Ii is a vector which is the ith row of an m×m identity matrix.

According to Remark 2,

L(hi(t)) = IiHm(t)−HT
m(t)MT

1

∫ t

0

ĨiHm(τ)dτ −HT
m(t)

q∑
r=1

MT
2

∫ t

0

ĨiHm(τ)dBr(τ).

By Lemma 4, Lemma 5, and Remark 3,

L(hi(t)) = IiHm(t)−HT
m(t)MT

1 ĨiΥHm(t)−HT
m(t)

q∑
r=1

MT
2 ĨiΥBrHm(t)

=

(
Ii −HT

m(t)MT
1 ĨiΥ−HT

m(t)

q∑
r=1

MT
2 ĨiΥBr

)
Hm(t)

= IiHm(t)−HT
m(t)αHm(t)−HT

m(t)βHm(t)

= (Ii − α̂− β̂)Hm(t),

(29)

where matrices α = MT
1 ĨiΥ , β =

∑q
r=1 M

T
2 ĨiΥBr , and vector α̂ and β̂ can be obtained by

Remark 3.

By (29) and Remark 2,

ηij = ⟨L(hi(t)), L(hj(t))⟩

=

∫ T

0

L(hi(t))L(hj(t))dt

=

∫ T

0

(Ii − α̂− β̂)Hm(t)(Ij − α̂− β̂)Hm(t)dt

= X1

∫ T

0

Hm(t)HT
m(t)XT

2 dt

= X1

∫ T

0

X̃2Hm(t)dt

= X1X̃2ΥHm(T ),

(30)

where vectors X1 = (Ii− α̂− β̂), X2 = (Ij − α̂− β̂), and matrix X̃2 can be obtained by Remark

2.
wi = ⟨L(hi(t)), g(t))⟩
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=

∫ T

0

L(hi(t))g(t)dt

≃
∫ T

0

X1Hm(t)GT
mHm(t)dt

= X1

∫ T

0

Hm(t)HT
m(t)Gmdt

= X1

∫ T

0

G̃mHm(t)dt

= X1G̃mΥHm(T ),

(31)

where matrix G̃m can be obtained by Remark 2.

§5 Error analysis

We firstly give two Lemmas before discussing error analysis.

Lemma 6. (Continuous module) The continuity module ω(g, θ) of the general function g with

respect to θ on [0, T ] is denoted as ([18])

ω(g, θ) = sup{|g(x)− g(y)||x, y ∈ [0, T ], |x− y| ≤ θ, θ > 0}. (32)

If and only if limθ→0 ω(g, θ) = 0, g(t) is uniformly continuous over [0, T ] (see the reference

([20])).

Lemma 7. For any function g ∈ C[0, T ], we have ( [18])

∥g −Rh∥∞ ≤ ω(g, h).

where Rh =
∑m

l=1 ylhl(t), yl = g( tl−1+tl
2 ), tl = lh, h = T

m , l = 1, · · · ,m.

Theorem 1. Assume that Ṽm(t) =
∑m

i=1 eihi(t) where ei = V ( ti−1+ti
2 ), M̃(τ, t) and M̂r(τ, t)

are known functions, ∥M̃(τ, t)∥∞ ≤ ζ, ∥M̂r(τ, t)∥∞ ≤ ζ, where ζ is a positive constant. Then

when h → 0, we get

(i)

∥Ṽm(t)− V (t)∥∞,E = E

[
sup

t∈[0,T )

|Ṽm(t)− V (t)|

]
→ 0.

(ii)

E

 min
c1,··· ,cm

∥∥∥∥∥Vm(t)− g(t)−
∫ t

0

M̃(τ, t)Vm(τ)dτ −
q∑

r=1

∫ t

0

M̂r(τ, t)Vm(τ)dBr(τ)

∥∥∥∥∥
2

L2

→ 0.

Proof. (i) According to Lemma7, we have

∥Ṽm(t)− V (t)∥∞,E = E

[
sup

t∈[0,T )

|Ṽm(t)− V (t)|

]
≤ E[ω(V, h)] → 0. (33)
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(ii)

E

 min
c1,··· ,cm

∥∥∥∥∥Vm(t)− g(t)−
∫ t

0

M̃(τ, t)Vm(τ)dτ −
q∑

r=1

∫ t

0

M̂r(τ, t)Vm(τ)dBr(τ)

∥∥∥∥∥
2

L2


≤ E

∥∥∥∥∥Ṽm(t)− g(t)−
∫ t

0

M̃(τ, t)Ṽm(τ)dτ −
q∑

r=1

∫ t

0

M̂(τ, t)Ṽm(τ)dBr(τ)

∥∥∥∥∥
2

L2


≤ T 2

∥∥∥∥∥Ṽm(t)− g(t)−
∫ t

0

M̃(τ, t)Ṽm(τ)dτ −
q∑

r=1

∫ t

0

M̂(τ, t)Ṽm(τ)dBr(τ)

∥∥∥∥∥
2

∞,E

= T 2∥∥∥∥∥Ṽm(t)− V (t) +

∫ t

0

M̃(τ, t)(V (τ)− Ṽm(τ))dτ +

q∑
r=1

∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∥∥∥∥∥
2

∞,E

≤ 3T 2

(
∥Ṽm(t)− V (t)∥2∞,E +

∥∥∥∥∫ t

0

M̃(τ, t)(V (τ)− Ṽm(τ))dτ

∥∥∥∥2
∞,E

+

∥∥∥∥∥
q∑

r=1

∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∥∥∥∥∥
2

∞,E


≤ 3T 2∥Ṽm(t)− V (t)∥2∞,E + 3T 2ζ2∥V (t)− Ṽm(t)∥2∞,E

+ 3T 2

∥∥∥∥∥
q∑

r=1

∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∥∥∥∥∥
2

∞,E

.

(34)

On the basis of Doob’s inequality and isometry property, we have∥∥∥∥∥
q∑

r=1

∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∥∥∥∥∥
2

∞,E

= E

 sup
0≤τ≤t

∣∣∣∣∣
q∑

r=1

∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∣∣∣∣∣
2


≤ 4E

∣∣∣∣∣
q∑

r=1

∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∣∣∣∣∣
2


≤ 4Eq

[
q∑

r=1

∣∣∣∣∫ t

0

M̂(τ, t)(V (τ)− Ṽm(τ))dBr(τ)

∣∣∣∣2
]

= 4Eq2
[∫ t

0

|M̂(τ, t)|2|V (τ)− Ṽm(τ)|2dτ
]

≤ 4Tζ2q2∥V (t)− Ṽm(t)∥2∞,E .

(35)
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By (33)-(35), we get

E

 min
c1,··· ,cm

∥∥∥∥∥Vm(t)− g(t)−
∫ t

0

M̃(τ, t)Vm(τ)dτ −
q∑

r=1

∫ t

0

M̂r(τ, t)Vm(τ)dBr(τ)

∥∥∥∥∥
2

L2


≤
(
3T 2 + 3T 4ζ2 + 12T 3ζ2q2

)
∥Ṽm(t)− V (t)∥2∞,E

≤ (3T 2 + 3T 4ζ2 + 12T 3ζ2q2)E[ω(V, h)] → 0,

(36)

The proof is accomplished.

§6 Numerical examples

Two numerical examples are given to confirm the effectiveness of the approach. All compu-

tations are run using MATLAB R2016a software on a Core(TM) i5 PC Laptop with 2.20 GHz

of CPU and 4 GB of RAM.

Example 6.1. The following linear SIVIE is considered ([19])

V (t) = V0 +

∫ t

0

kV (τ)dτ +
4∑

r=1

∫ t

0

arV (τ)dBr(τ), τ, t ∈ [0, 1). (37)

Where V (t) = V0e
(k− 1

2

∑4
r=1 a2

r)t+
∑4

r=1 arBr(t). Let V0 = 1
200 , k = 1

20 , a1 = 1
50 , a2 = 2

50 , a3 =
4
50 and a4 = 9

50 , the error means Em, error standard deviations Es and confidence intervals for

different time t of this example are shown in Table 1 and Table 2, where n is the number of

trajetories. The simulation results are exhibited Figure 1 and Figure 2.
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Figure 1. m = 24, the approximate solution and exact solution for Example 6.1, the CPU time
of the provided method is 19.84 seconds.

Table 1. When m = 24, n = 100, the numerical results are shown as follows.

t Em Es 95% confidence interval for error mean
Lower Upper

1/16 1.31837963E-04 6.59189815E-05 2.6367592E-06 2.6103916E-04
3/16 1.06003128E-04 5.30015641E-05 2.1200625E-06 2.0988619E-04
5/16 7.97155665E-05 3.98577832E-05 1.5943113E-06 1.5783682E-04
7/16 5.05665735E-05 2.52832867E-05 1.0113314E-06 1.0012181E-04
9/16 1.42429556E-05 7.12147783E-06 2.8485911E-07 2.8201052E-05
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Figure 2. m = 25, the approximate solution and exact solution for Example 6.1, the CPU time
of the provided method is 43.71 seconds.
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Figure 3. m = 24, the approximate solution and mean solution for Example 6.2, the CPU time
of the provided method is 178.07 seconds.
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Figure 4. m = 25, the approximate solution and mean solution for Example 6.2, the CPU time
of the provided method is 841.32 seconds.

Table 2. When m = 25, n = 100, the numerical results are shown as follows.

t Em Es 95% confidence interval for error mean
Lower Upper

1/32 1.41125138E-04 7.05625694E-05 2.8225027E-06 2.7942777E-04
7/32 7.47392791E-05 3.73696395E-05 1.4947855E-06 1.4798377E-04
13/32 3.96747456E-05 1.98373728E-05 7.9349491E-07 7.8555996E-05
19/32 1.87498023E-05 9.37490116E-06 3.7499604E-07 3.7124608E-05
25/32 1.88988202E-05 9.44941014E-06 3.7797640E-07 3.7419664E-05
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From Figure 1, Figure 2, Table 1, and Table 2, it can be show that the error is relatively

small. Moreover, this method is more precise than the method in paper ([19]).

Example 6.2. The following linear SIVIE is considered ([16]).

V (t) = V0 +

∫ t

0

e−(t−τ)V (τ)dτ +
4∑

r=1

∫ t

0

are
−(t−τ)V (τ)dBr(τ), τ, t ∈ [0, 1), (38)

Let V0 = 1, a1 = 1
50 , a2 = 2

50 , a3 = 4
50 and a4 = 9

50 , the simulation results are exhibited in

Figure 3 and Figure 4.

The Figure 3 and Figure 4 exhibit that the approximate solution undulates around the mean

orbit, where the mean solution is acquired by 100 trajectories.
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