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The asymptotic relation between the first crossing point

and the last exit time of Gaussian order statistics

sequences

NING Zi-jun TAN Zhong-quan∗

Abstract. In this paper, we study the asymptotic relation between the first crossing point and

the last exit time for Gaussian order statistics which are generated by stationary weakly and

strongly dependent Gaussian sequences. It is shown that the first crossing point and the last exit

time are asymptotically independent and dependent for weakly and strongly dependent cases,

respectively. The asymptotic relations between the first crossing point and the last exit time for

stationary weakly and strongly dependent Gaussian sequences are also obtained.

§1 Introduction

The first crossing point (also known as the first exit time) and the last exit time have been

studied extensively in applied probability. In risk theory, they play a very important role, since

the first exit time corresponds to the ruin time of a risk process and the last exit time can

be regarded as the final recovery time after when there will be no more ruin, see e.g., [8]. In

practice, when we consider the random noises problems, it usually adds the first zero crossing

of a sine wave to the random noises. Instead of considering the zero crossing, we can transform

it to a stationary random sequence and consider therefore the first crossing of the sequence, see

e.g., [9].

Let {Xi, i ∈ Z} be a sequence of stationary random variables with EX+
1 < ∞, where X+

means max{X, 0}. Define for some β > 0

Υ(X) = min{i ∈ Z : Xi > −βi}
and

τ(X) = max{i ≥ 0 : Xi > βi}
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the first crossing point and the last exit time of the sequence {Xi, i ∈ Z}, respectively. Because
of the existence of EX+

1 , both Υ(X) and τ(X) are well-defined and also finite almost surely,

see e.g., [9].

[9] first studied the limit distributions of the first crossing point for stationary Gaussian

sequences and showed that with appropriately chosen normalization the limit distribution of

the first crossing point and the maxima are the same. [10] discussed the almost sure limiting

behaviour including the a.s. stability and a.s. relative stability and also derived an iterated

logarithm law for the first crossing point for stationary Gaussian sequences. It is easy to see

from the definition of the first crossing point and the last exit time that their limit properties

of them are equal. The limit properties of the last exit time for independently and identically

distributed random sequences and stationary random sequences can be found in [11],[12] and

[13]. Recently, [16] considered a similar problem for continuous time weakly dependent Gaussian

processes and derived the limiting distribution of the scaled last exit time over a slowly growing

linear boundary, which was extended in [21] to strongly dependent cases. All of the abov-

mentioned results only consider the last exit time or the first crossing point for the linear

boundary. [15] studied the last exit time over a moving nonlinear boundary for a Gaussian

process. For some related results, see e.g., [2] and [18].

A natural question arises what is the joint limit distribution of the first and the last exit

time? For certain of Gaussian processes, [14] showed that the conditional joint limit distribution

of the first and the last exit time, conditioned on ruin occurring, is a difference of two standard

normal distributions. [22] discussed the joint limit properties for the first crossing point and

the last exit time for some dependent chi-sequences.

In this paper, we are interested in the asymptotic relation between the first crossing point

and last exit time for Gaussian order statistics sequences. Let {Xi, i ∈ Z} be a sequence of

stationary standard (mean 0, variance 1) Gaussian random variables with covariance function

ri = E(X1Xi+1) and {Xij , i ∈ Z}, j = 1, 2, . . . , d with d ≥ 1 be independent copies of {Xi, i ∈
Z}. Define {O(r)

id (X), i ∈ Z} a sequence of Gaussian r-th order statistics generated by X as

follows

O
(d)
id (X) :=

d
min
j=1

Xij ≤ · · · ≤ O
(r)
id (X) ≤ · · · ≤ O

(1)
id (X) :=

d
max
j=1

Xij , i ∈ Z,

where r ∈ {1, 2, . . . , d}. The Gaussian r-th order statistics random variables play a very im-

portant role in applied fields, for instance, in models concerned with the analysis of the surface

roughness during all machinery processes, see e.g., [1]. The limit properties of extremes of

Gaussian r-th order statistics sequences and processes are studied in [3,4,5,6,7,23,24,25].

It is worth mentioning the following result, since it is highly relative to the main result of

this paper. Based on the results of [4], [24] derived the weak limit theorems for the maxima of

Gaussian r-th order statistics variables.

Theorem 1.1. Let {O(r)
id (X), i ∈ Z} be defined as above. If the covariance function rn

satisfies

rn lnn → 0 as n → ∞,

then for any x ∈ R
lim

n→∞
P
(
an

(
n

max
i=1

O
(r)
id (X)− bn

)
≤ x

)
= exp(−e−x), (1)
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where

an = (2r lnn)1/2, bn =
1

r
an + a−1

n ln
(
a−r
n Cr

d(2π)
−r/2

)
(2)

with Cr
d = d!

r!(d−r)! .

Theorem 1.1 obtained the limit distributions of maxima of Gaussian order statistics variables

for weakly dependent cases. In the literature, assumption rn lnn → 0 is referred to as the

weak dependence or the Bermans condition (see e.g., [17] and [20]), and, consequently, the

stationary Gaussian sequences {Xi, i ∈ Z} is called weakly dependent sequence. We called

also {O(r)
id (X), i ∈ Z} weakly dependent Gaussian r-th order statistics sequence. In analogy,

{O(r)
id (X), i ∈ Z} with correlation function satisfying assumption rn lnn → γ > 0 is called

strongly dependent Gaussian r-th order statistics sequence.

In this paper, we will investigate the asymptotic relation between the first crossing point and

the last exit time for Gaussian order statistics sequences. We showed that they are asymptotic

independent if the Gaussian order statistics sequences are weakly dependent and are asymptotic

dependent if the Gaussian order statistics sequences are strongly dependent. We also showed

that the limit distribution functions of the first crossing point and the last exit time are very

similar with that of the maxima. Section 2 presents our main results and their proofs are

provided in Section 3.

§2 Main results

We define the first crossing point and the last exit time of Gaussian order statistics sequence

{O(r)
id (X), i ∈ Z} with function iβ as follows:

Υ(O
(r)
X ) = min{i ≤ 0 : O

(r)
id (X) > −βi}

and

τ(O
(r)
X ) = max{i ≥ 0 : O

(r)
id (X) > βi}

with β > 0. We consider the joint limit distribution of Υ(O
(r)
X ) and τ(O

(r)
X ) as β → 0.

Now we state our main results.

Theorem 2.1. Let {O(r)
id (X), i ∈ Z} be defined as above. If the covariance function rn

satisfies

rn lnn → 0 as n → ∞,

then for any x, y ∈ R
lim
β→0

P
(
Υ(O

(r)
X ) ≥ −uβ(x), τ(O

(r)
X ) ≤ uβ(y)

)
= exp(−(e−x + e−y)) (3)

and

lim
β→0

P
(
Υ(O

(r)
X ) ≥ −uβ(x)

)
= lim

β→0
P
(
τ(O

(r)
X ) ≤ uβ(x)

)
= exp(−e−x), (4)

where

uβ(x) =

(
a(β, r) +

x

ra(β, r)

)
β−1 (5)

with

a(β, r) =

√
2

r

(
lnβ−1 − r + 1

2
ln

(
2

r
lnβ−1

)
+ ln(Cr

dr
−1(2π)−r/2)

)
. (6)

For the strongly dependent case, we can only deal with the cases r = 1 and r = d.

Theorem 2.2. Let {O(r)
id (X), i ∈ Z} be defined as above. Suppose that the covariance
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function rn satisfies

rn lnn → γ > 0 as n → ∞.

Define ρβ = γ/| lnβ| and b(β, ρβ , r) =
√

1− ρβa(β/
√
1− ρβ , r) with a(·, ·) defined as in (6) .

1.) For the case r = 1, we have for any x, y ∈ R

lim
β→0

P
(
Υ(O

(1)
X ) ≥ −uβ(x), τ(O

(1)
X ) ≤ uβ(y)

)
=

∫
Rd

exp
(
−

d∑
j=1

(e−
√
2γ(x−zj) + e−

√
2γ(y−zj))

)
dΦ(z1) · · · dΦ(zd) (7)

and

lim
β→0

P
(
Υ(O

(1)
X ) ≥ −uβ(x)

)
= lim

β→0
P
(
τ(O

(1)
X ) ≤ uβ(x)

)
=

∫
Rd

exp
(
−

d∑
j=1

e−
√
2γ(x−zj)

)
dΦ(z1) · · · dΦ(zd), (8)

where

uβ(x) =
(
b(β, ρβ , 1) +

√
ρβx

)
β−1 (9)

and Φ(·) denotes the cumulative distribution function of a standard normal variable.

2.) For the case r = d, we have for any x, y ∈ R

lim
β→0

P
(
Υ(O

(d)
X ) ≥ −uβ(x), τ(O

(d)
X ) ≤ uβ(y)

)
=

∫
Rd

exp
(
− (e−

√
2d−1γ(x−

∑d
j=1 zj) + e−

√
2d−1γ(y−

∑d
j=1 zj))

)
dΦ(z1) · · · dΦ(zd) (10)

and

lim
β→0

P
(
Υ(O

(d)
X ) ≥ −uβ(x)

)
= lim

β→0
P
(
τ(O

(d)
X ) ≤ uβ(x)

)
=

∫
Rd

exp
(
− e−

√
2d−1γ(x−

∑d
j=1 zj)

)
dΦ(z1) · · · dΦ(zd), (11)

where

uβ(x) =
(
b(β, ρβ , d) +

√
ρβd

−1x
)
β−1. (12)

Next, let us consider the special case d = 1, namely the stationary Gaussian case.

Corollary 2.1. Let {Xi, i ∈ Z} be a sequence of stationary standard Gaussian random

variables with covariance function ri = E(X1Xi+1).

1.) Under the conditions of Theorem 2.1, we have for any x, y ∈ R
lim
β→0

P (Υ(X) ≥ −uβ(x), τ(X) ≤ uβ(y)) = exp
(
− (e−x + e−y)

)
,

where uβ(x) is defined in (5) with r = d = 1.

2.) Under the conditions of Theorem 2.2, we have for any x, y ∈ R
lim
β→0

P (Υ(X) ≥ −uβ(x), τ(X) ≤ uβ(y))

=

∫
R
exp

(
− (e−

√
2γ(x−z) + e−

√
2γ(y−z))

)
dΦ(z),

where uβ(x) is defined in (12) with d = 1.

Corollary 2.1 extends Theorems 2.1 and 2.2 of [9] which derived only the limit distribution

for Υ(X). But there is still a case which can not be derived from Theorems 2.1 and 2.2 and
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will be discussed in next theorem.

Theorem 2.3. Let {Xi, i ∈ Z} be a sequence of stationary standard Gaussian random

variables with covariance function ri = E(X1Xi+1). Suppose that rn is convex for all n ≥ 0,

rn = o(1), and (rn lnn)
−1 is monotone for large n and o(1). Then for any x, y ∈ R

lim
β→0

P (Υ(X) ≥ −uβ(x), τ(X) ≤ uβ(y)) = Φ(min{x, y}), (13)

where uβ(x) is defined in (12) with d = 1 and ρβ = r[β−1]. Here [x] means the integral parts of

x.

Remark 2.1. i). It can be seen that with appropriately chosen normalization the limit

distributions of maxni=1 O
(r)
id (X) (n → ∞), τ(O

(r)
X ) and Υ(O

(r)
X ) (β → 0) are the same for the

weakly dependent case.

ii). As in [9], the above results can be generalized for the first crossing point Υ(O
(r)
X ) = min{i ≤

0 : O
(r)
id (X) > −βf(i)} and the last exit time τ(O

(r)
X ) = max{i ≥ 0 : O

(r)
id (X) > βf(i)} with

f(t) = tϑL(t) for t → ∞, where ϑ > 0 and L(t) varies slowly.

§3 Proofs

In this section, we give the proofs. As usual, an ≪ bn means lim supn→∞ |an/bn| < +∞. K

will denote a constant whose value will change from line to line.

The following lemma plays a crucial role in our proofs.

Lemma 3.1. Denote by Y = (Yil)n×d and Z = (Zil)n×d two random arrays with N(0, 1)

components, and let (σ
(1)
il,jk)dn×dn and (σ

(0)
il,jk)dn×dn be the covariance matrices of Y and Z,

respectively, with σ
(1)
il,jk := EYilYjk and σ

(0)
il,jk := EZilZjk, 1 ≤ i, j ≤ n, 1 ≤ l, k ≤ d. Suppose

that the columns of both Y and Z are mutually independent, i.e.,

σ
(κ)
il,jk = σ

(κ)
ik,jk1(k = l), 1 ≤ i, j ≤ n, 1 ≤ k, l ≤ d, κ = 0, 1.

Further, suppose that σi,j = max1≤k,l≤d{|σ(0)
ik,jk|, |σ

(1)
ik,jk|} < 1, where 1(·) will denote an indi-

cator function. Define (O
(r)
1d (Y ), · · · , O(r)

nd (Y )) to be the r-th order statistics vector generated

by X as follows

min
1≤k≤d

Yik = O
(d)
id (Y ) ≤ · · · ≤ O

(r)
id (Y ) ≤ · · · ≤ O

(1)
id (Y ) = max

1≤k≤d
Yik, 1 ≤ i ≤ n.

Similarly, we write (O
(r)
1d (Z), · · · , O(r)

nd (Z)) which is generated by Z. Then for any real numbers

u1, . . . , un, and any 1 ≤ r ≤ d∣∣∣∣P(O(r)
id (Y ) ≤ ui, i = 1, . . . , n

)
− P

(
O

(r)
id (Z) ≤ ui, i = 1, . . . , n

)∣∣∣∣
≤ K

d∑
k=1

∑
1≤i<j≤n

|σ(1)
ik,jk − σ

(0)
ik,jk|

(uiuj)r−1
exp

(
−
r(u2

i + u2
j )

2(1 + σi,j)

)
.

Proof. Let (Zi, Zj) be a bivariate standard normal random vector with correlation |δij |. By a

similar argument as the proof on p. 225 of [17], we can show for uj ≥ ui

P{Zi > ui, Zj > uj} ≤
2(1− δ2ij)

ui(uj − |δij |ui)
ϕ(ui, uj ; |δij |).
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where ϕ(u, v; δ) is the probability density function of a two dimensional normal random vari-

ables. If ui = O(uj), we have

2(1− δ2ij)

ui(uj − |δij |ui)
≤

2(1− δ2ij)

uiuj |1−O(1)|δij ||
≤ K

uiuj
.

If ui = o(uj), obviously,

2(1− δ2ij)

ui(uj − |δij |ui)
= O(1)

2(1− δ2ij)

uiuj
≤ K

uiuj
.

By the same arguments, we can get the same bound for the case uj ≤ ui. Thus, we have

P{Zi > ui, Zj > uj} ≤ K

uiuj
ϕ(ui, uj ; |δij |).

Using the above inequality to replace (4.28) in the proof of Theorem 2.4 of [4], we can prove

the lemma.

3.1 Proof of Theorem 2.1

We need the following lemma to prove Theorem 2.1.

Lemma 3.2. Let {ξi, i ∈ Z} be a sequence of independent standard Gaussian random

variable and {O(r)
id (ξ), i ∈ Z} be a sequence of Gaussian r-th order statistics generated by ξ.

We have for any x, y ∈ R
lim
β→0

P
(
Υ(O

(r)
ξ ) ≥ −uβ(x), τ(O

(r)
ξ ) ≤ uβ(y)

)
= exp(−(e−x + e−y)), (14)

wehre uβ(x) is defined in (5).

Proof. First note that βuβ(x) → ∞ as β → 0. From Lemma 2 of [3], we have

P (O
(r)
1d (ξ) ≥ iβ) = Cr

d(1− Φ(iβ))r(1 + o(1)) (15)

as iβ → ∞. Since O
(r)
id (ξ) are independent, using the following well-known fact

1− Φ(x) =
1√
2πx

e−
x2

2 (1 + o(1)) (16)

as x → ∞, we have as β → 0

− lnP
(
Υ(O

(r)
ξ ) ≥ −uβ(x)

)
= − ln

∞∏
i=uβ(x)

P (O
(r)
1d (ξ) ≤ iβ)

= −
∞∑

i=uβ(x)

ln(1− Cr
d(1− Φ(iβ)r)(1 + o(1)))

= Cr
d(2π)

−r/2r−1β−1(βuβ(x))
−(r+1)e−

1
2 r(βuβ(x))

2

(1 + o(1)).

Since (βuβ(x))
2 = (a(β, r))2 + 2x/r + o(1), in view of (6), we have

− lnP
(
Υ(O

(r)
ξ ) ≥ −uβ(x)

)
= e−x(1 + o(1))

as β → 0. Similarly, we have

− lnP
(
τ(O

(r)
ξ ) ≤ uβ(y)

)
= e−y(1 + o(1))

as β → 0. By the independence of {O(r)
id (ξ), i ∈ Z}, we can see that

P
(
Υ(O

(r)
ξ ) ≥ −uβ(x), τ(O

(r)
ξ ) ≤ uβ(y)

)
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= P
(
O

(r)
jd (ξ) ≤ −jβ, j ≤ −uβ(x), O

(r)
id (ξ) ≤ iβ, i ≥ uβ(y)

)
= P

(
O

(r)
jd (ξ) ≤ −jβ, j ≤ −uβ(x)

)
P
(
O

(r)
id (ξ) ≤ iβ, i ≥ uβ(y)

)
and therefore the lemma follows.

Proof of Theorem 2.1. By Lemma 3.2, to prove Theorem 2.1, we only need to show that∣∣∣P (Υ(O
(r)
X ) ≥ −uβ(x), τ(O

(r)
X ) ≤ uβ(y)

)
− P

(
Υ(O

(r)
ξ ) ≥ −uβ(x), τ(O

(r)
ξ ) ≤ uβ(y)

)∣∣∣→ 0

as β → 0. We use Lemma 3.1 to bound this difference by

K
∞∑
i=1

|ri|
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 + |ri|)

)

+K
∞∑
i=1

|ri|
∞∑

j=uβ(y)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 + |ri|)

)

+K

∞∑
i=uβ(x)

−uβ(y)∑
j=−∞

|r|i−j||(iβ)−(r−1)(−jβ)−(r−1) exp

(
−r((iβ)2 + (jβ)2)

2(1 + |r|i−j||)

)
=: K(Iβ + Jβ +Kβ).

Define δ = supi≥1 |ri| and δn = supi≥n |ri|. Since rn → 0, as n → ∞, we have δn ≤ δ < 1, see

e.g., p. 86 in [17]. Choose ε such that 0 < ε < (1− δ)/(1 + δ). Split the above sum Iβ into two

parts as

Iβ =

[β−ε]∑
i=1

|ri|
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 + |ri|)

)

+
∞∑

i=[β−ε]+1

|ri|
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 + |ri|)

)
=: Iβ,1 + Iβ,2.

For the first term Iβ,1, using (5) and (6), we have

Iβ,1 ≤ β−ε
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r(jβ)2

1 + δ

)

≪ β−(ε+1)(uβ(x)β)
−(2r−1) exp

(
−r(uβ(x)β)

2

1 + δ

)
≪ β−ε+ 1−δ

1+δ | lnβ|
1
2+

1−rδ
1+δ ,

which tends to 0 as β → 0 by the choice of ε. For the term Iβ,2, recall that δ[β−ε] = supi≥[β−ε] |ri|
and note that rn lnn → 0 as n → ∞ implies that δ[β−ε]| lnβ| → 0 as β → 0. We have in view

of (5) and (6) again

Iβ,2 ≤ δ[β−ε]

∞∑
i=[β−ε]

exp

(
−r((i+ uβ(x))β)

2

2(1 + δ[β−ε])

) ∞∑
j=uβ(x)

(jβ)−2(r−1) exp

(
− r(jβ)2

2(1 + δ[β−ε])

)

≪ δ[β−ε]β
−2(βuβ(x))

−2r exp

(
−r(uβ(x)β)

2

1 + δ[β−ε]

)
≪ δ[β−ε]β

−2δ[β−ε] | lnβ|1−(1+r)δ[β−ε] ,
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which tends to 0 as β → 0 since δ[β−ε]| lnβ| → 0 as β → 0. Thus, Iβ → ∞ as β → 0.

Similarly, we can show that Jβ → ∞ as β → 0.

For the third term Kβ , note that uβ(x) ∼ uβ(y) ∼ uβ := β−1( 2r lnβ
−1)1/2 as β → 0. Thus,

by the same arguments as for Iβ,2, we have

Kβ ≤ δ[uβ ]

∞∑
i=[uβ(x)]

(iβ)−(r−1) exp

(
− r(iβ)2

2(1 + δ[uβ ])

) ∞∑
j=[uβ(y)]

(jβ)−(r−1) exp

(
− r(jβ)2

2(1 + δ[uβ ])

)

≪ δ[uβ ]β
−2(βuβ)

−2r exp

(
− r(uβ(x)β)

2

2(1 + δ[uβ ])

)
exp

(
− r(uβ(y)β)

2

2(1 + δ[uβ ])

)
≪ δ[uβ ]β

−2δ[uβ ] | lnβ|1−(1+r)δ[uβ ] ,

which tends to 0 as β → 0 since δ[uβ ]| lnβ| → 0 as β → 0. Thus, we have Kβ → 0 as β → 0.

The proof of Theorem 2.1 is complete. �
In the following two subsection, let Aβ,x denote the set (−uβ(x) − β−1,−uβ(x)] ∩ Z and

Bβ,y denote the set [uβ(y), uβ(y) + β−1) ∩ Z.

3.2 Proof of Theorem 2.2

To prove Theorem 2.2, we need the following two lemmas.

Lemma 3.3. Let ρβ be a function of β with 0 < ρβ < c < 1 and Yij =
√
1− ρβξij+

√
ρβUj ,

i ∈ N, j = 1, 2 . . . , d, where ξij are independent Gaussian random vectors and Uj , j = 1, 2 . . . , d

are a standard normal random variables independent with ξij . Denote by O
(r)
id (Y ) the Gaussian

order statistics sequences generated by Yij . Suppose that ρβ | lnβ| → γ > 0 as β → 0.

1). If r = 1, we have for any x, y ∈ R

lim
β→0

P
(
O

(1)
id (Y ) ≤ −iβ, i ∈ Aβ,x, O

(1)
kd (Y ) ≤ kβ, k ∈ Bβ,y

)
=

∫
Rd

exp
(
−

d∑
j=1

(e−
√
2γ(x−zj) + e−

√
2γ(y−zj))

)
dΦ(z1) · · · dΦ(zd),

where Aβ,x = (−uβ(x) − β−1,−uβ(x)] ∩ Z and Bβ,y = [uβ(y), uβ(y) + β−1) ∩ Z with uβ(x)

defined in (9) with ρβ satisfying the above assumptions.

2). If r = d, we have for any x, y ∈ R

lim
β→0

P
(
O

(d)
id (Y ) ≤ −iβ, i ∈ Aβ,x, O

(d)
kd (Y ) ≤ kβ, k ∈ Bβ,y

)
=

∫
Rd

exp
(
− (e

√
2d−1γ(x−

∑d
j=1 zj) + e

√
2d−1γ(y−

∑d
j=1 zj))

)
dΦ(z1) · · · dΦ(zd),

where Aβ,x = (−uβ(x) − β−1,−uβ(x)] ∩ Z and Bβ,y = [uβ(y), uβ(y) + β−1) ∩ Z with uβ(x)

defined in (12) with ρβ satisfying the above assumptions.

Proof. We show first the case r = 1. By the definition of Yij and the independence of ξij , we

have

P
(
O

(1)
id (Y ) ≤ −iβ, i ∈ Aβ,x, O

(1)
kd (Y ) ≤ kβ, k ∈ Bβ,y

)
= P

(
d

max
j=1

{
√

1− ρβξij +
√
ρβUj} ≤ −iβ,−uβ(x)− β−1 < i ≤ −uβ(x),
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d
max
j=1

{
√
1− ρβξkj +

√
ρβUj} ≤ kβ, uβ(y) ≤ k < uβ(y) + β−1

)
=

∫
Rd

P

(
d

max
j=1

{
√
1− ρβξij +

√
ρβzj} ≤ −iβ,−uβ(x)− β−1 < i ≤ −uβ(x),

d
max
j=1

{
√
1− ρβξkj +

√
ρβzj} ≤ kβ, uβ(y) ≤ k < uβ(y) + β−1

)
dΦ(z1) · · · dΦ(zd)

=

∫
Rd

−uβ(x)∏
i=−uβ(x)−[β−1]+1

d∏
j=1

P
(√

1− ρβξij +
√
ρβzj ≤ −iβ

)

×
uβ(y)+[β−1]+1∏

k=uβ(y)

d∏
j=1

P
(√

1− ρβξkj +
√
ρβzj ≤ kβ

)
dΦ(z1) · · · dΦ(zd)

=:

∫
Rd

H(β, x, z1, . . . , zd)H(β, y, z1, . . . , zd)dΦ(z1) · · · dΦ(zd). (17)

By the same arguments as for the proof of Lemma 3.2, we have

− lnH(β, x, z1, . . . , zd)

= − ln

−uβ(x)∏
i=−uβ(x)−[β−1]+1

d∏
j=1

[
1− P

(
ξij ≥

−(iβ +
√
ρβzj)√

1− ρβ

)]

= −
−uβ(x)∑

i=−uβ(x)−[β−1]+1

d∑
j=1

ln

[
1− P

(
ξij ≥

−(iβ +
√
ρβzj)√

1− ρβ

)]

=

−uβ(x)∑
i=−uβ(x)−[β−1]+1

d∑
j=1

(
1− Φ

(
−(iβ +

√
ρβzj)√

1− ρβ

))
(1 + o(1))

=

−uβ(x)∑
i=−uβ(x)−[β−1]+1

d∑
j=1

(2π)−1/2(1− ρβ)
1/2|iβ|−1 exp

(
−
(iβ)2 + 2iβ

√
ρβzj

2(1− ρβ)

)
(1 + o(1))

= (2π)−1/2(1− ρβ)
1/2β−1(βuβ(x))

−2 exp

(
− (βuβ(x))

2

2(1− ρβ)

)
×

d∑
j=1

exp

(
βuβ(x)

√
ρβzj

1− ρβ

)
(1 + o(1)).

Now, using (9) and the fact that ρβ | lnβ| → γ > 0 as β → 0, we have

− lnH(β, x, z1, . . . , zd) →
d∑

j=1

exp
(
−
√
2γ(x− zj)

)
, (18)

as β → 0. Similarly, we have

− lnH(β, y, z1, . . . , zd) →
d∑

j=1

exp
(
−
√
2γ(y − zj)

)
, (19)

as β → 0. Now, (17-19) combined with the dominated convergence theorem completes the

proof for the case r = 1.

Next, we prove the case r = d. By the definition of Yij and the independence of ξij again, we
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have

P
(
O

(d)
id (Y ) ≤ −iβ, i ∈ Aβ,x, O

(d)
kd (Y ) ≤ kβ, k ∈ Bβ,y

)
= P

(
d

min
j=1

{
√
1− ρβξij +

√
ρβUj} ≤ −iβ,−uβ(x)− β−1 < i ≤ −uβ(x)

d
min
j=1

{
√
1− ρβξkj +

√
ρβUj} ≤ kβ, uβ(y) ≤ k < uβ(y) + β−1

)
=

∫
Rd

P

(
d

min
j=1

{
√
1− ρβξij +

√
ρβzj} ≤ −iβ,−uβ(x)− β−1 < i ≤ −uβ(x),

d
min
j=1

{
√
1− ρβξkj +

√
ρβzj} ≤ kβ, uβ(y) ≤ k < uβ(y) + β−1

)
dΦ(z1) · · · dΦ(zd)

=

∫
Rd

−uβ(x)∏
i=−uβ(x)−[β−1]+1

P

(
d

min
j=1

{
√
1− ρβξij +

√
ρβzj} ≤ −iβ

)

×
uβ(y)+[β−1]+1∏

k=uβ(y)

P

(
d

min
j=1

{
√
1− ρβξkj +

√
ρβzj} ≤ kβ

)
dΦ(z1) · · · dΦ(zd)

=:

∫
Rd

G(β, x, z1, . . . , zd)G(β, y, z1, . . . , zd)dΦ(z1) · · · dΦ(zd). (20)

By the same arguments as for the proof of Lemma 3.2, we have

− lnG(β, x, z1, . . . , zd)

= − ln

−uβ(x)∏
i=−uβ(x)−[β−1]+1

1− d∏
j=1

P

(
ξij ≥

−(iβ +
√
ρβzj)√

1− ρβ

)
= −

−uβ(x)∑
i=−uβ(x)−[β−1]+1

ln

1− d∏
j=1

P

(
ξij ≥

−(iβ +
√
ρβzj)√

1− ρβ

)
=

−uβ(x)∑
i=−uβ(x)−[β−1]+1

d∏
j=1

(
1− Φ

(
−(iβ +

√
ρβzj)√

1− ρβ

))
(1 + o(1))

=

−uβ(x)∑
i=−uβ(x)−[β−1]+1

(2π)−d/2(1− ρβ)
d/2|iβ|−d exp

(
−
d(iβ)2 + 2iβ

√
ρβ
∑d

j=1 zj

2(1− ρβ)

)
(1 + o(1))

= (2π)−d/2d−1(1− ρβ)
d/2β−1(βuβ(x))

−(d+1) exp

(
−d(βuβ(x))

2

2(1− ρβ)

)
× exp

(
βuβ(x)

√
ρβ
∑d

j=1 zj

1− ρβ

)
(1 + o(1)).

Now, using (12) and the fact ρβ | lnβ| → γ > 0 as β → 0, we have

− lnG(β, x, z1, . . . , zd) → exp
(
−
√
2d−1γ(x−

d∑
j=1

zj)
)
, (21)
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as β → 0. Similarly, we have

− lnG(β, y, z1, . . . , zd) → exp
(
−
√
2d−1γ(y −

d∑
j=1

zj)
)
, (22)

as β → 0. Now, combining (20-22) with the dominated convergence theorem, we complete the

proof for the case r = d.

Lemma 3.4. Under the conditions of Theorem 2.2, we have for r = 1, d∣∣∣P (Υ(O
(r)
X ) ≥ −uβ(x), τ(O

(r)
X ) ≤ uβ(y)

)
−P

(
O

(r)
id (X) ≤ −iβ, i ∈ Aβ,x, O

(r)
kd (X) ≤ kβ, k ∈ Bβ,y

)∣∣∣→ 0

as β → 0.

Proof. Obviously, the absolute value in Lemma 3.4 is bound above by

P

−uβ(x)−[β−1]∪
i=−∞

(O
(r)
id (X) > −iβ)

∪ ∞∪
k=uβ(y)+[β−1]

(O
(r)
kd (X) > kβ)


≤

−uβ(x)−[β−1]∑
i=−∞

P
(
O

(r)
id (X) > −iβ

)
+

∞∑
k=uβ(y)+[β−1]

P (O
(r)
kd (X) > kβ)

=

∞∑
i=uβ(x)+[β−1]

P
(
O

(r)
id (X) > iβ

)
+

∞∑
k=uβ(y)+[β−1]

P (O
(r)
kd (X) > kβ)

=

∞∑
i=uβ(x)+[β−1]

Cr
d(1− Φ(iβ))r(1 + o(1)) +

∞∑
k=uβ(y)+[β−1]

Cr
d(1− Φ(kβ))r(1 + o(1)),

where in the last step, we use the fact (15). Applying (16), the last sum is bounded above by
∞∑

i=uβ(x)+[β−1]

Cr
d

(2π)r/2(iβ)r
exp

(
−r(iβ)2

2

)
+

∞∑
k=uβ(y)+[β−1]

Cr
d

(2π)r/2(kβ)r
exp

(
−r(kβ)2

2

)

≪ β−1(βuβ(x))
−(r+1) exp

(
−r(βuβ(x) + 1)2

2

)
+β−1(βuβ(y))

−(r+1) exp

(
−r(βuβ(y) + 1)2

2

)
≪ β−ρβ | lnβ|−

(1+r)ρβ
2 e−K| ln β|1/2 ,

which tends to 0, since ρβ lnβ
−1 = γ under the conditions of Theorem 2.2.

Proof of Theorem 2.2. Define Yij =
√
1− ρβξij +

√
ρβUj and O

(r)
id (Y ) as in Lemma 3.3.

Then by Lemmas 3.3 and 3.4, to prove Theorem 2.2, it suffices to prove for r = 1 and r = d

that ∣∣∣P (O(r)
id (X) ≤ −iβ, i ∈ Aβ,x, O

(r)
kd (X) ≤ kβ, k ∈ Bβ,y

)
−P

(
O

(r)
id (Y ) ≤ −iβ, i ∈ Aβ,x, O

(r)
kd (Y ) ≤ kβ, k ∈ Bβ,y

)∣∣∣→ 0
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as β → 0. Using Lemma 3.1 again, we can bound the difference as

K

[β−1]+1∑
i=1

|ri − ρβ |
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)

+K

[β−1]+1∑
i=1

|ri − ρβ |
∞∑

j=uβ(y)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)

+K

−uβ(x)∑
i=−uβ(x)−[β−1]

uβ(y)+[β−1]∑
j=uβ(y)

|r|i−j| − ρβ |(−iβ)−(r−1)(jβ)−(r−1) exp

(
−r((iβ)2 + (jβ)2)

2(1 +ϖ|i−j|,β)

)
=: KRβ +KSβ +KTβ ,

where ϖi,β = max{|ri|, ρβ}. Recall that δ = supi≥1 |ri| < 1 and δn = supi≥n |ri| < 1. Choose

also ε such that 0 < ε < (1 − δ)/(1 + δ) and ε < 1 − | lnβ|−1/2 =: θ. Split the above sum Rβ

into three parts as

Rβ =

[β−ε]∑
i=1

|ri − ρβ |
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)

+

[β−θ]∑
i=[β−ε]+1

|ri − ρβ |
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)

+

[β−1]+1∑
i=[β−θ]+1

|ri − ρβ |
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)
=: Rβ,1 +Rβ,2 +Rβ,3.

By the same arguments as for Iβ,1, we can show that Rβ,1 = o(1) as β → 0. For the term Rβ,2,

let πβ = supi≥[β−θ ] ϖi,β . Then it is easy to see that πβ | lnβ| → γ as β → 0. We have

Rβ,2 ≤ (β−θ − β−ε)
∞∑

j=uβ(x)

(jβ)−2(r−1) exp

(
− r(jβ)2

1 + πβ

)

≪ (β−θ − β−ε)β−1(βuβ(x))
−2r+1 exp

(
−r(uβ(x)β)

2

1 + πβ

)
≪ β

2(1−ρβ)

1+πβ
−(1+θ)| lnβ|

(1−ρβ)(1+r)

1+πβ
− 2r−1

2

≪ β1−θ| lnβ|3/2

≪ exp{−| lnβ|1/2 + 3/2 ln | lnβ|},
which tends to 0 as as β → 0. To estimate the term Rβ,3, using the following inequality

|ri − ρβ | 6
∣∣∣ri − γ

ln i

∣∣∣+ γ

∣∣∣∣ 1

ln i
− 1

|lnβ|

∣∣∣∣ (23)

we have

Rβ,3 ≤
[β−1]+1∑

i=[β−θ]+1

∣∣∣ri − γ

ln i

∣∣∣ ∞∑
j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)
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+ γ

[β−1]+1∑
i=[β−θ]+1

∣∣∣∣ 1

ln i
− 1

|lnβ|

∣∣∣∣ ∞∑
j=uβ(x)

(jβ)−2(r−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)
=: Rβ,31 +Rβ,32.

By the same arguments as for the proof of Iβ,2 in Theorem 2.1, we have

Rβ,31 ≪ | lnβ|−1

[β−1]+1∑
i=[β−θ ]+1

|ri ln i− γ|
∞∑

j=uβ(x)

(jβ)−2(d−1) exp

(
−r((jβ)2 + ((j + i)β)2)

2(1 +ϖi,β)

)
≤ sup

i≥β−θ

{|ri ln i− γ|}β−2(πβ+ρβ)| lnβ|−(1+r)(ρβ+πβ),

which tends to 0, since ri ln i → γ. Using the inequality for [β−θ] + 1 ≤ i ≤ [β−1] + 1∣∣∣∣ 1

ln i
− 1

|lnβ|

∣∣∣∣≪ | lnβ|−3/2

and by the same arguments as for the proof of Rβ,31, we have

Rβ,32 ≤ β−2(πβ+ρβ)| lnβ|−(1+r)(πβ+ρβ)−1/2,

which also tends to 0.

By the same arguments, we get Sβ → 0 as β → 0.

For the term Tβ , note that uβ(x) ∼ uβ(y) ∼ uβ := β−1( 2r lnβ
−1)1/2 as β → 0. Define

κβ = supi≥2[uβ ]
ϖi,β . Using (23) again, we have

Kβ ≤
−uβ(x)∑

i=−uβ(x)−[β−1]

uβ(y)+[β−1]∑
j=uβ(y)

∣∣∣∣r|i−j| −
γ

ln |i− j|

∣∣∣∣ (−ijβ2)−(r−1) exp

(
−r(iβ)2 + r(jβ)2

2(1 + κβ)

)

+

−uβ(x)∑
i=−uβ(x)−[β−1]

uβ(y)+[β−1]∑
j=uβ(y)

∣∣∣∣ γ

ln |i− j|
− γ

| lnβ|

∣∣∣∣ (−ijβ2)−(r−1) exp

(
−r(iβ)2 + r(jβ)2

2(1 + κβ)

)
=: Kβ,1 +Kβ,2.

By the same arguments as for the proof of Rβ,31, we have

Kβ,1 ≤ sup
i≥2[uβ ]

{|ri ln i− γ|}| lnβ|−1

uβ(x)+[β−1]∑
i=uβ(x)

(iβ)−(r−1) exp

(
− r(iβ)2

2(1 + κβ)

)

×
uβ(y)+[β−1]∑

j=uβ(y)

(jβ)−(r−1) exp

(
− r(jβ)2

2(1 + κβ)

)
≪ sup

i≥2[uβ ]

{|ri ln i− γ|}β−2(κβ+ρβ)| lnβ|−(1+r)(ρβ+κβ),

which tends to 0, since rn lnn → γ as n → ∞. Using the inequality for uβ(x)+uβ(y) < |i−j| <
uβ(x) + uβ(y) + 2[β−1] ∣∣∣∣ 1

ln |i− j|
− 1

|lnβ|

∣∣∣∣≪ | lnβ|−3/2,

we have

Kβ,2 ≤ | lnβ|−3/2

uβ(x)+[β−1]∑
i=uβ(x)

(iβ)−(r−1) exp

(
− r(iβ)2

2(1 + κβ)

)
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×
uβ(y)+[β−1]∑

j=uβ(y)

(jβ)−(r−1) exp

(
− r(jβ)2

2(1 + κβ)

)
≪ β−2(κβ+ρβ)| lnβ|−(1+r)(ρβ+κβ)−1/2,

which tends to 0 as β → 0. Thus, we have Kβ → 0 as β → 0. The proof of Theorem 2.2 is

complete. �

3.3 Proof of Theorem 2.3

We need the following two lemmas to prove Theorem 2.3.

Lemma 3.5. Let ρβ be a function of β with 0 ≤ ρβ < c < 1 and Yβ,i =
√
1− ρβξi+

√
ρβU ,

where ξi is a sequence of independent standard Gaussian variables and U is a standard Gaussian

random variable independent with ξi. If ρβ | lnβ| → ∞ as β → 0, we have for any x, y ∈ R
lim
β→0

P (Yβ,i ≤ −iβ, i ∈ Aβ,x, Yβ,j ≤ jβ, j ∈ Bβ,y) = Φ(min(x, y)),

where Aβ,x = (−uβ(x) − β−1,−uβ(x)] ∩ Z and Bβ,y = [uβ(y), uβ(y) + β−1) ∩ Z with uβ(x)

defined in (12) with d = 1 and ρβ satisfying the above assumptions.

Proof. Since

P (Yβ,i ≤ −iβ, i ∈ Aβ,x, Yβ,j ≤ jβ, j ∈ Bβ,y)

= P
(√

1− ρβξi +
√
ρβU ≤ −iβ,−uβ(x)− β−1 < i ≤ −uβ(x),√

1− ρβξj +
√
ρβU ≤ jβ, uβ(y) ≤ j < uβ(y) + β−1

)
=

∫ +∞

−∞
P

(
ξi ≤ −

β(i+
√
ρβz/β)√

1− ρβ
,−uβ(x)− β−1 < i ≤ −uβ(x),

ξj ≤ −
β(j +

√
ρβz/β)√

1− ρβ
, uβ(y) ≤ j < uβ(y) + β−1

)
dΦ(z),

by the definition of ξi, we get the above integral equals∫ +∞

−∞
P

(
ξi ≤ − iβ√

1− ρβ
,−(uβ(x)−

√
ρβz/β)− β−1 < i ≤ −(uβ(x)−

√
ρβz/β)

)

×P

(
ξj ≤

jβ√
1− ρβ

, (uβ(y)−
√
ρβz/β) ≤ j < (uβ(y)−

√
ρβz/β) + β−1

)
dΦ(z)

=:

∫ +∞

−∞
F (β, x, z)F (β, y, z)dΦ(z). (24)

By the same arguments as in Lemma 3.3 (see also the proof of Lemma 2.2 of [9]), we have

− lnF (β, x, z) →

{
0, if x > z;

∞, if x < z,

and

− lnF (β, y, z) →

{
0, if y > z;

∞, if y < z,

which combining with (24) completes the proof of the lemma.
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Lemma 3.6. Under the conditions of Theorem 2.3, we have

|P (Υ(X) ≥ −uβ(x), τ(X) ≤ uβ(x))− P (Xi ≤ −iβ, i ∈ Aβ,x, Xj ≤ jβ, j ∈ Bβ,y)| → 0

as β → 0.

Proof. Let AX = (Υ(X) ≥ −uβ(x)), A
′
X =

(
Xi ≤ −iβ,−uβ(x)− [β−1] < i ≤ −uβ(x)

)
, BX =

(τ(X) ≤ uβ(x)) and B′
X =

(
Xj ≤ jβ, uβ(y) ≤ i < uβ(y) + [β−1]

)
. Obviously,

|P (AX ∩BX)− P (A′
X ∩B′

X)| ≤ |P (AX ∩BX)− P (A′
X ∩BX)|

+ |P (A′
X ∩BX)− P (A′

X ∩B′
X)|

≤ |P (AX)− P (A′
X)|+ |P (BX)− P (B′

X)|
≤ P (Ec

X) + P (F c
X),

where EX =
(
Υ(X) ≥ −uβ(x)− [β−1]

)
and FX =

(
τ(X) ≤ uβ(x) + [β−1]

)
. From the proof of

Lemma 2.3 of [9], we get P (EX) → 1, as β → 0. Similarly, we have P (FX) → 1, as β → 0. The

proof of the lemma is complete.

Proof of Theorem 2.3. By Lemma 3.6, it suffices to show that

P (Xi ≤ −iβ, i ∈ Aβ,x, Xj ≤ jβ, j ∈ Bβ,y) → Φ(min(x, y))

as β → 0. Define Yβ,i =
√
1− ρβξi +

√
ρβU as in Lemma 3.5. Since ri ≥ ρβ for all i ≤ β−1, by

Slepian’s lemma (see, e.g., [17]), we have

lim
β→0

P (Xi ≤ −iβ, i ∈ Aβ,x, Xj ≤ jβ, j ∈ Bβ,y)

≥ lim
β→0

P (Yβ,i ≤ −iβ, i ∈ Aβ,x, Yβ,j ≤ jβ, j ∈ Bβ,y) ,

which by Lemma 3.5 equals Φ(min(x, y)). Thus, we only need to show

P (Xi ≤ −iβ, i ∈ Aβ,x, Xj ≤ jβ, j ∈ Bβ,y) ≤ Φ(min(x, y) + ε)

for all ε > 0. Since rn is convex, there is a Gaussian sequence {Zi = Zi(β), i ∈ Z} with the

correlations (see, e.g., [19])

ϱk = (rk − ρβ)/(1− ρβ) for k = 1, 2, . . . , [β−1].

Let V be independent of {Zi, i ∈ Z}, such that

Xi =
√

1− ρβZi +
√
ρβV.

Now

P (Xi ≤ −iβ, i ∈ Aβ,x, Xj ≤ jβ, j ∈ Bβ,y)

=

∫ ∞

−∞
P

(
Zi ≤

−iβ√
1− ρβ

,−uβ(x− z)− [β−1] < i ≤ −uβ(x− z),

Zj ≤
jβ√
1− ρβ

, uβ(y − z) ≤ j < uβ(y − z) + [β−1]

)
dΦ(z)

≤ Φ(min(x, y) + ε)

+

∫ ∞

min(x,y)+ε

P

(
Zi ≤

−iβ√
1− ρβ

,−uβ(x− z)− [β−1] < i ≤ −uβ(x− z),

Zj ≤
jβ√
1− ρβ

, uβ(y − z) ≤ j < uβ(y − z) + [β−1]

)
dΦ(z)
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≤ Φ(min(x, y) + ε) + P

(
Zi ≤

−iβ√
1− ρβ

,−uβ(−ε)− [β−1] < i ≤ −uβ(−ε)

)
.

Therefore, to complete the proof of the theorem, it suffices to show that the second term tends

to 0, which has been done in the proof of Theorem 2.3 in [9]. �
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