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Equilibrium dividend strategies in the dual model with a

random time horizon

ZHAO Yong-xia1 YE Chuan-xiu2 CHENG Gong-pin3

Abstract. This paper investigates the dividend problem with non-exponential discounting in

a dual model. We assume that the dividends can only be paid at a bounded rate and that the

surplus process is killed by an exponential random variable. Since the non-exponential discount

function leads to a time inconsistent control problem, we study the equilibrium HJB-equation

and give the associated verification theorem. For the case of a mixture of exponential discount

functions and exponential gains, we obtain the explicit equilibrium dividend strategy and the

corresponding equilibrium value function. Besides, numerical examples are shown to illustrate

our results.

§1 Introduction

In this paper, the surplus of a company is described as a dual model

dXt = −µdt+ dSt, t ≥ 0, (1.1)

where the constant µ > 0 is the rate of expenses, and the compound Poisson process {St =∑Nt

k=1 Yk} is the income process defined on a filtered probability space (Ω,F ,F, P ) satisfying

the usual conditions. The Poisson process {Nt} with the tensity λ > 0 represents the number of

income; and {Yk}, which is a sequence of nonnegative, independent and identically distributed

variables, represents the amounts of income. We assume that Y1 has the probability density

function p(y) and the expectation ν =
∫∞
0

yp(y)dy < ∞. In addition, the net profit condition

holds, i.e.,

θ = −µ+ λν > 0. (1.2)

The optimization of dividend payments has been studied by many researchers since it was

proposed by [8]. In [11] and [14], the authors considered the optimal dividend problems in the

classical risk model. In the context of the dual model, the optimal dividend problems were

studied in [2], [3], [19] – [21] and so on.
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In the above papers, a common assumption is that the discount rate is constant, namely,

the discount function is exponential. However, the assumption of the constant discount rate is

unrealistic in some empirical studies of human behavior. The non-exponential discount function

leads the time inconsistent problem which was first studied by [13] in a game theoretic frame-

work. [4] and [15] developed the general theories of time inconsistent control problem. [16], [10]

and [5] studied the optimal portfolio problems with non-exponential discounting. The time

inconsistent dividend problems were considered in [6] for a compound Poisson model and in [17]

for a diffusion model. [7] discussed the optimal dividend strategies with a quasi-hyperbolic

discount function in a dual model. In the same model, [12] studied the equilibrium dividend

strategy with a pseudo exponential discount function. Recently, [18] considered the equilibrium

dividend strategy with non-exponential discounting for spectrally negative Lévy processes.

In this paper, we consider the equilibrium dividend problem in the dual model with a random

time. Motivated by [4] and [15], we give the equilibrium HJB-equation by a heuristic discussion

and prove it by a verification theorem. In a special case, we obtain the explicit equilibrium

dividend strategy and the associated value function. When the random time horizon tends to

infinity and the discount function is a mixture of two exponential functions, our results are

reduced to those in [12]. Moreover, the main method in this work is different from that in [12].

This paper is organized as follows. Section 2 provides the formulations of the control prob-

lem. The equilibrium HJB-equation and the verification theorem are presented in Section 3.

In Section 4, we study the case of a mixture of exponential discount functions and show some

numerical examples.

§2 Model and Control Problem

A dividend strategy is described by a stochastic process {ut}. Here, ut is the rate of dividend

payout at time t, which is assumed to be bounded by a constant M > 0. We restrict ourselves

to the feedback control strategies, i.e., at time t, the control ut is given by

ut = u(t, x), t ≥ 0, (2.1)

where x ≥ 0 is the surplus level at time t, and the control mapping u : [0,∞)× [0,∞) → [0,M ]

is a Borel measurable function. In order to distinguish between functions and function values,

we will always denote a control strategy (i.e., a mapping) by using boldface, like u, whereas a

possible value of the mapping will be denoted without boldface, like u ∈ [0,M ]. The control

strategy u defined in (2.1) is called admissible strategy. The set of all admissible strategies is

denoted by Π.

For an admissible strategy u and the initial time t ∈ [0,∞), the controlled surplus process

denoted by {Xu
t } evolves according to{

dXu
s = −µds+ dSs − u(s,Xu

s )ds, s ≥ t,

Xu
t = x.

(2.2)

Let Tu
t = inf{s ≥ t : Xu

s ≤ 0} be the time of ruin under the control strategy u and the

initial time t ≥ 0. Unlike the conventional exponential discount function, we consider the

non-exponential discounting. Inspired by [9] and [17], we assume that the discount function φ:

[0,∞) → [0,∞) is continuous differentiable and satisfies

φ(0) = 1, φ(t) ≥ 0, φ′(t) ≤ 0. (2.3)
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Besides the dividend strategy u, like [1] and [20], the surplus process {Xu
t } is killed randomly

by an exponential variable ζ with the parameter γ > 0, which is independent of {Xu
t }. Further-

more, if t ≤ ζ < Tu
t , we assume that the surplus at the stopping time is paid out as dividend.

For an admissible strategy u, an initial state (t, x) and a non-exponential discount function φ,

we define the performance function

Ṽ (t, x;u) = Et,x

[∫ Tu
t ∧ζ

t

φ(z − t)u(z,Xu
z )I{ζ≥t}dz + φ(ζ − t)Xu

ζ I{t≤ζ<Tu
t }

]
,

where Et,x[·] is the expectation conditioned on the event {Xu
t = x}, and IA is an indicator

function of a set A. By the law of total probability, we have

Ṽ (t, x;u) =Et,x

[∫ Tu
t

t

φ(z − t)u(z,Xu
z )I{ζ≥t,ζ≥z}dz + φ(ζ − t)Xu

ζ I{t≤ζ<Tu
t }

]

=Et,x

[∫ ∞

t

(∫ Tu
t

t

φ(z − t)u(z,Xu
z )I{r≥z}dz + φ(r − t)Xu

r I{r<Tu
t })

)
γe−γrdr

]

=Et,x

[∫ Tu
t

t

φ(z − t)u(z,Xu
z )

∫ ∞

z

γe−γrdrdz +

∫ Tu
t

t

φ(r − t)Xu
r γe

−γrdr

]

=Et,x

[∫ Tu
t

t

φ(z − t)u(z,Xu
z )e

−γzdz +

∫ Tu
t

t

φ(r − t)Xu
r γe

−γrdr

]
=e−γtV (t, x;u),

where

V (t, x;u) = Et,x

[∫ Tu
t

t

φ(z − t)e−γ(z−t)[u(z,Xu
z ) + γXu

z ]dz

]
. (2.4)

Then we only need to study the function V (t, x;u), for convenience, which is still called the

performance function.

Proposition 2.1. The performance function V (t, x;u) in (2.4) satisfies

0 ≤ V (t, x;u) ≤ x+
M + λν

γ
. (2.5)

Proof. Note that, for Xu
t = x and z ≥ t,

Xu
z ≤ x+ Sz − St, a.s.. (2.6)

By Fubini’s Theorem, we obtain

V (t, x;u) ≤
∫ ∞

t

φ(z − t)e−γ(z−t)(M + γEt,x[X
u
z ])dz

≤
∫ ∞

t

φ(z − t)e−γ(z−t)[M + γx+ γλν(z − t)]dz.

Noting that φ(t) ≤ φ(0) = 1, we get the second inequality in (2.5). It is easy to show the first

inequality by (2.5).

In the classical control theory, the optimal dividend strategy u∗ is generally defined by

V (t, x;u∗) = supu∈Π V (t, x;u). However, since φ(t) is non-exponential, the above optimization

problem is time-inconsistent in the sense that the Bellman optimality principle fails. Similar

to [4], we view the entire problem as a non-cooperative game and look for Nash equilibria for
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the game. More precisely, we consider a game with one player for each time t, where player

t can be regarded as the future incarnation of the decision maker at time t. In the following

sections, we will study the subgame perfect Nash equilibrium strategies from the game theoretic

point of view.

Definition 2.1. Consider a control strategy û ∈ Π, a fixed constant u ∈ [0,M ] and a fixed

real number h > 0. For any fixed initial point (t, x) ∈ [0,∞) × [0,∞), we define the control

strategy uh by

uh(s, y) =

{
u, t ≤ s < t+ h, y ≥ 0,

û(s, y), t+ h ≤ s < ∞ y ≥ 0.
(2.7)

If

lim inf
h→0

V (t, x; û)− V (t, x;uh)

h
≥ 0,

for all u ∈ [0,M ], we say that û is an equilibrium control strategy. The corresponding equilib-

rium value function V (t, x) is defined by V (t, x) = V (t, x; û).

§3 Equilibrium Hamilton-Jacobi-Bellman Equation

In this section, we first, in a heuristic way, derive the equilibrium HJB-equation. We then

show that this equation is correct by proving a rigorous verification theorem.

For convenience, we introduce some notations. Let C1,1([0,∞) × [0,∞)) denote the set of

all functions on [0,∞)× [0,∞) whose first order partial derivatives are continuous with respect

to the each variable. For a constant u ∈ [0,M ] and a control strategy u ∈ Π, we define the

infinitesimal generators applying a function f(t, x) ∈ C1,1([0,∞)× [0,∞)), respectively,

Auf(t, x) =
∂f

∂t
(t, x)− (µ+ u)

∂f

∂x
(t, x) + λ

∫ ∞

0

[f(t, x+ y)− f(t, x)]p(y)dy,

Auf(t, x) =
∂f

∂t
(t, x)− [µ+ u(t, x)]

∂f

∂x
(t, x) + λ

∫ ∞

0

[f(t, x+ y)− f(t, x)]p(y)dy.

Let D[0,∞) = {(s, t) : 0 ≤ s ≤ t} and C0,1,1(D[0,∞) × [0,∞)) be the set of all functions on

D[0,∞)× [0,∞) which are continuous with respect to the first variable, continuously differen-

tiable with respect to the second and third variables.

We consider the following function, for u ∈ Π,

J(s, t, x;u) = Et,x

[∫ Tu
t

t

C(s, z,Xu
z ,u(z,X

u
z ))dz

]
, (3.1)

where (s, t, x) ∈ D[0,∞)× [0,∞) and

C(s, z, x,u(z, x)) = φ(z − s)e−γ(z−s)[γx+ u(z, x)]. (3.2)

If there exists an equilibrium strategy û ∈ Π, we denote J(s, t, x; û) = J(s, t, x). Then

J(t, t, x) = J(t, t, x; û) = V (t, x; û) = V (t, x).

For the control strategy uh in (2.7), if h is small enough, we expect to have

J(t, t, x;uh) = V (t, x;uh) ≤ V (t, x; û) = J(t, t, x; û) = J(t, t, x),

and in the limit as h tends to zero, we should have equality if u = û(t, x).

Since uh(z, y) = û(z, y) for z ≥ t+ h and any u ∈ [0,M ], we have

J(s, t+ h,Xu
t+h;uh) = J(s, t+ h,Xu

t+h; û) = J(s, t+ h,Xu
t+h).
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Taking expectations and applying Dynkin’s formula to J(s, ·, ·), we have the approximation

Et,x[J(s, t+ h,Xu
t+h;uh)] = Et,x[J(s, t+ h,Xu

t+h)]

=J(s, t, x) +AuJs(t, x) · h+ o(h),
(3.3)

where Js(t, x) = J(s, t, x) is viewed as a function of two variables t and x for a fixed s. Note

that

Et,x

[∫ t+h

t

C(s, z,Xu
z , u)dz

]
= C(s, t, x, u) · h+ o(h), (3.4)

where C(s, z, x, u) = φ(z − s)e−γ(z−s)(γx+ u). Then by (3.3) and (3.4), we have

J(s, t, x;uh) = Et,x

[∫ t+h

t

C(s, z,Xu
z , u)dz

]
+ Et,x[J(s, t+ h,Xu

t+h;uh)]

= [C(s, t, x, u) +AuJs(t, x)] · h+ J(s, t, x) + o(h).

(3.5)

By the definition of the equilibrium strategy, we have

AuJ t(t, x) + C(t, t, x, u) ≤ 0, ∀u ∈ [0,M ],

AûJ t(t, x) + C(t, t, x, û(t, x)) = 0.

That is, for û(t, x) = argmaxu∈[0,M ]{AuJ t(t, x) + C(t, t, x, u)},
AûJ t(t, x) + C(t, t, x, û(t, x)) = 0.

For conveniently solving the equilibrium control problem, we strengthen the above condition

by assuming

AûJs(t, x) + C(s, t, x, û(t, x)) = 0, s ≤ t.

Collecting all results, we arrive at the proposed equilibrium HJB-equation which is stated the

equilibrium HJB-equation in the following definition.

Definition 3.1. For a function c(s, t, x) ∈ C0,1,1(D[0,∞) × [0,∞)), we define the equilibrium

HJB-equation for the Nash equilibrium problem as follows{
Aûcs(t, x) + C(s, t, x, û(t, x)) = 0, (s, t, x) ∈ D[0,∞)× (0,∞)

c(s, t, 0) = 0, ∀(s, t) ∈ D[0,∞),
(3.6)

where cs(t, x) = c(s, t, x) and

û(t, x) = argmax
u∈[0,M ]

{Auct(t, x) + C(t, t, x, u)}. (3.7)

Theorem 3.1. (Verification Theorem) Assume that a nonnegative function c(s, t, x) ∈ C0,1,1

(D[0,∞)× [0,∞)) is increasing and concave with respect to x, and solves the equilibrium HJB-

equation (3.6). If for any fixed s ≤ t, it holds that

lim
t,x→∞

c(s, t, x) = 0. (3.8)

Then û given by (3.7) is an equilibrium strategy, and the associated equilibrium value function

is

V (t, x) = V (t, x; û) = c(t, t, x).

Proof. We first show that c(t, t, x) is the performance function corresponding to û, i.e., c(t, t, x) =

V (t, x; û). Applying Dynkin’s formula and noting (3.6), we have

cs(t, x) = Et,x[c(s, Tn, X
û
Tn

)] + Et,x

[∫ Tn

t

C(s, z,X û
z , û(z,X

û
z ))dz

]
, (3.9)
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where Tn = T û
t ∧ n for n ≥ t, n = 1, 2, · · · . By X û

T û
t
= 0 (a.s.) for T û

t < ∞, we have

Et,x

[
c
(
s, T û

t , X
û
T û
t

)
I{T û

t <n}

]
= 0.

Noting that X û
n ≤ x+ Sn − St (a.s.) for the initial state (t, x) and the increase of the function

c(s, t, ·), we derive

Et,x[c(s, Tn, X
û
Tn

)] = Et,x

[
c
(
s, n,X û

n

)
I{T û

t ≥n}

]
+ Et,x

[
c
(
s, T û

t , X
û
T û
t

)
I{T û

t <n}

]
≤ Et,x [c (s, n, x+ Sn − St)] .

By the concavity of c(s, t, ·) and Jensen’s inequality, we obtain

Et,x[c(s, Tn, X
û
Tn

)] ≤ c (s, n, x+ Et,x[Sn − St]) = c(s, n, x+ λν(n− t)).

Then we conclude

0 ≤ lim
n→∞

Et,x[c(s, Tn, X
û
Tn

)] ≤ lim
n→∞

c(s, n, x+ λν(n− t)) = 0. (3.10)

By (3.2), we have, for the initial state (t, x),

C(s, z,X û
z , û(z,X

û
z )) ≤ φ(z − s)e−γ(z−s) [M + γx+ γ(Sz − St)] .

By the dominated convergence theorem, we get

lim
n→∞

Et,x

[∫ Tn

t

C(s, z,X û
z , û(z,X

û
z ))dz

]
= Et,x

[∫ T û
t

t

C(s, z,X û
z , û(z,X

û
z ))dz

]
Letting n → ∞ in (3.9) and combining (3.10), we obtain

cs(t, x) = Et,x

[∫ T û
t

t

C(s, z,X û
z , û(z,X

û
z ))dz

]
= J(s, t, x; û),

where J(s, t, x;u) is defined in (3.1). Hence, c(t, t, x) = V (t, x; û).

Now we prove that û in (3.7) is indeed an equilibrium control strategy. For any u ∈ [0,M ]

and uh given by (2.7), we have, from (3.5),

V (t, x;uh) = [C(t, t, x, u) +Auct(t, x)]h+ c(t, t, x) + o(h).

By the HJB-equation (3.6), we obtain

c(t, t, x)− V (t, x;uh) + o(h) = −
[
C(t, t, x, u) +Auct(t, x)

]
h ≥ 0.

Therefore we get

lim inf
h→0

c(t, t, x)− V (t, x;uh)

h
= lim inf

h→0

V (t, x; û)− V (t, x;uh)

h
≥ 0.

The proof is completed.

Remark 3.1. By (3.10), we can weaken the condition (3.8) by assuming

lim
n→∞

c(s, n, x+ λν(n− t)) = 0.

When the killing rate γ = 0, we have, by the above proof,

cs(t, x) = Et,x

[∫ T û
t

t

C(s, z,X û
z , û(z,X

û
z ))dz

]
= Et,x

[∫ T û
t

t

φ(z − s)û(z,X û
z )dz

]
.

Furthermore,

Aûc(t, t, x)−Aûcs(t, x)|s=t = −Et,x

[∫ Tu
t

t

φ′(z − t)û(z,X û
z )dz

]
.

Combining Definition 3.1, we can derive Proposition 3.1 in [12] by the above theorem.
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§4 Explicit Solution for a Mixture of Exponential Discount Function

In this section, we try to find a solution of the equilibrium HJB-equation in (3.6) for a

specific discount function. Since

Aucs(t, x) + C(s, t, x, u) = A0cs(t, x) + γϕ(t− s)x+ u

[
ϕ(t− s)− ∂c

∂x
(s, t, x)

]
,

where ϕ(t) = φ(t)e−γt, we have û(t, x) = 0 for ∂c
∂x (t, t, x) > 1 and û(t, x) = M for ∂c

∂x (t, t, x) ≤ 1.

If there exists a constant b ≥ 0 such that ∂c
∂x (t, t, x) > 1 for 0 ≤ x < b and ∂c

∂x (t, t, x) ≤ 1 for

x ≥ b, we obtain û(t, x) = 0 for 0 ≤ x < b and û(t, x) = M for x ≥ b. Then the equilibrium

HJB-equation (3.6) becomes
A0cs(t, x) + C(s, t, x, 0) = 0, (s, t, x) ∈ D[0,∞)× (0, b),

AMcs(t, x) + C(s, t, x,M) = 0, (s, t, x) ∈ D[0,∞)× [b,∞),

c(s, t, 0) = 0, (s, t) ∈ D[0,∞).

(4.1)

We consider a discount function defined by

φ(t) =
m∑
i=1

wie
−δit, t ≥ 0, (4.2)

where δi > 0, δi ̸= δj for i ̸= j, wi > 0 and
∑m

i=1 wi = 1. Then the performance function

V (t, x;u) becomes

V (t, x;u) =
m∑
i=1

Et,x

[∫ Tu
t

0

wie
−(δi+γ)(z−t)[γXu

z + u(z,Xu
z )]dz

]
,

which is viewed as the case where dividends are proportionally paid to m shareholders who

have different discount rate.

We consider the following candidate function

c(s, t, x) =

m∑
i=1

wie
−(δi+γ)(s−t)Vi(x), (s, t, x) ∈ D[0,∞)× [0,∞), (4.3)

where the functions Vi(x), i = 1, 2, · · · ,m, satisfy the following integro-differential equations

− µV ′
i (x) + λ

∫ ∞

0

Vi(x+ y)p(y)dy − (δi + γ + λ)Vi(x) + γx = 0, 0 ≤ x < b,

− (µ+M)V ′
i (x) + λ

∫ ∞

0

Vi(x+ y)p(y)dy − (δi + γ + λ)Vi(x) + γx+M = 0, x ≥ b.

Furthermore, we assume that the income amount Y is exponential distributed, i.e., p(y)

= βe−βy (y ≥ 0). Applying the operator ( d
dx − β) to the above equations yields

µV ′′
i (x)− (βµ−δi − γ − λ)V ′

i (x)− β(δi + γ)Vi(x) + γβx− γ = 0, 0 < x < b, (4.4)

and
(µ+M)V ′′

i (x)− [β(µ+M)− δi − γ − λ]V ′
i (x)− β(δi + γ)Vi(x)

+ β(γx+M)− γ = 0, x ≥ b.
(4.5)

We assume that one particular solution of the inhomogeneous differential equation (4.4) is

Ai0x+Bi0. Substituting this solution into (4.4), we obtain

Ai0 =
γ

δi + γ
> 0, Bi0 =

γ

(δi + γ)2
(
λ

β
− µ) =

γθ

(δi + γ)2
> 0, (4.6)

where θ > 0 is defined by (1.2). Combining the homogenous and particular solutions, we get
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the general solution of (4.4)

Vi(x) = Ai1e
ξi1x +Ai2e

ξi2x +Ai0x+Bi0, 0 ≤ x < b, (4.7)

where ξi1 < 0 and ξi2 > 0 are the solutions to the following equation

µξ2 − (βµ− δi − γ − λ)ξ − β(δi + γ) = 0.

Similarly, the general solution of (4.5) is

Vi(x) = Bi1e
ξi3x +Bi2e

ξi4x +Ai0x+Bi0 +
δi

(δi + γ)2
M, x ≥ b,

where ξi3 < 0 and ξi4 > 0 are the solutions to the following equation

(µ+M)ξ2 − [β(µ+M)− δi − γ − λ]ξ − β(δi + γ) = 0.

By Proposition 2.1, we know that Vi(x) is linearly bounded. Letting Bi = Bi1, we have

Vi(x) = Bie
ξi3x +Ai0x+Bi0 +

δi
(δi + γ)2

M, x ≥ b. (4.8)

According to the principle of smooth fitting and the boundary condition, we derive the following

equations
Vi(b−) = Vi(b+), i = 1, 2, · · · ,m;

V ′
i (b−) = V ′

i (b+), i = 1, 2, · · · ,m;

Vi(0) = 0, i = 1, 2, · · · ,m;

∂c

∂x
(t, t, b−) =

∂c

∂x
(t, t, b+) = 1.

We rewrite the above equations as

Ai1e
ξi1b +Ai2e

ξi2b = Bie
ξi3b +

δi
(δi + γ)2

M,

Ai1ξi1e
ξi1b +Ai2ξi2e

ξi2b = Biξi3e
ξi3b,

Ai1 +Ai2 +Bi0 = 0,

(4.9)

and
m∑
i=1

wi(Ai1ξi1e
ξi1b +Ai2ξi2e

ξi2b +Ai0) = 1. (4.10)

By (4.9), we get Ai1, Ai2 and Bi in the expression of b

Ai1(b) =
1

Ei(b)

[
Bi0(ξi3 − ξi2)e

ξi2b +
δi

(δi + γ)2
ξi3M

]
, (4.11)

Ai2(b) = − 1

Ei(b)

[
Bi0(ξi3 − ξi1)e

ξi1b +
δi

(δi + γ)2
ξi3M

]
, (4.12)

Bi(b) =
1

ξi3eξi3b
[
Ai1(b)ξi1e

ξi1b +Ai2(b)ξi2e
ξi2b
]
, (4.13)

where

Ei(b) = eξi1b(ξi3 − ξi1)− eξi2b(ξi3 − ξi2). (4.14)

Lemma 4.1. Let I = {1, 2, · · · ,m}. If 0 ≤ γ ≤ mini∈I

{
δiξi3M

(ξi1−ξi3)θ

}
, we have, for any b > 0

and all i ∈ I,
Ai1(b) < 0, Ai2(b) > 0, Bi(b) < 0.

Proof. Due to ξi1 < ξxi3 < 0 < ξi2, we have Ei(b) > 0. Furthermore, we get

Bi0(ξi3 − ξi2)e
ξi2b +

δi
(δi + γ)2

ξi3M < 0.
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Then we know Ai1(b) < 0 for i = 1, 2, · · · ,m. Since

Bi0(ξi3 − ξi1)e
ξi1b +

δi
(δi + γ)2

ξi3M < Bi0(ξi3 − ξi1) +
δi

(δi + γ)2
ξi3M

=
1

(δi + γ)2
[γθ(ξi3 − ξi1) + δiξi3M ] < 0,

we obtain Ai2(b) > 0 for i = 1, 2, · · · ,m. Furthermore,

Ai1(b)ξi1e
ξi1b +Ai2(b)ξi2e

ξi2b > 0.

Hence Bi(b) < 0 for i = 1, 2, · · · ,m.

Let

F (b) =
m∑
i=1

wi

(
Ai1(b)ξi1e

ξi1b +Ai2(b)ξi2e
ξi2b +Ai0

)
. (4.15)

Lemma 4.2. If
∑m

i=1 wi

[
γ

δi+γ − ξi3
(δi+γ)2 (γθ + δiM)

]
> 1, then the equation F (b) = 1 has a

unique positive solution b > 0.

Proof. Letting

∆i(b) = Ai1(b)ξi1e
ξi1b +Ai2(b)ξi2e

ξi2b

=
1

Ei(b)

[
Bi0ξi3(ξi1 − ξi2)e

(ξi1+ξi2)b +
ξi3δiM

(δi + γ)2
(ξi1e

ξi1b − ξi2e
ξi2b)

]
,

where Ei(b) is defined by (4.14), we have

∆i(0) = − ξi3
(δi + γ)2

(γθ + δiM), lim
b→∞

∆i(b) =
ξi2

ξi3 − ξi2
· ξi3δiM

(δi + γ)2
.

Hence, F (0) =
∑m

i=1 wi

(
∆i(0) +

γ
δi+γ

)
> 1. By M

δi+γ − 1
ξi2

+ 1
ξi3

< 0 in Lemma 4.2 of [12], we

have

lim
b→∞

(F (b)− 1) =
m∑
i=1

wi( lim
b→∞

∆i(b)−
δi

δi + γ
)

=
m∑
i=1

wi
δiξi2
δi + γ

· ξi3
ξi3 − ξi2

(
M

δi + γ
− 1

ξi2
+

1

ξi3

)
< 0.

Differentiating ∆i(b) and after some simplification, we obtain ∆′
i(b) =

Di(b)
(Ei(b))2

where

Di(b) =Bi0ξi3(ξi1 − ξi2)e
(ξi1+ξi2)b

[
ξi2(ξi3 − ξi1)e

ξi1b − ξi1(ξi3 − ξi2)e
ξi2b
]

− δiξ
2
i3

(δi + γ)2
· (ξi1 − ξi2)

2e(ξi1+ξi2)b.

Due to ξi2(ξi3 − ξi1) > 0, eξi1b ≤ 1, −ξi1(ξi3 − ξi2) < 0 and eξi2b ≥ 1, we have

ξi2(ξi3 − ξi1)e
ξi1b − ξi1(ξi3 − ξi2)e

ξi2b

< ξi2(ξi3 − ξi1)− ξi1(ξi3 − ξi2) = ξi3(ξi2 − ξi1) < 0.

Hence, we obtain ∆′
i(b) < 0, and so F ′(b) =

∑m
i=1 wi∆

′
i(b) < 0. Therefore, the equation

F (b) = 1 admits a unique solution on (0,∞).

Lemma 4.3. Given the discount function (4.2) and the killing rate 0 < γ ≤ mini∈I

(
δiξi3M

(ξi1−ξi3)θ

)
,

there exits a function c(s, t, x) ∈ C0,1,1(D[0,∞)× [0,∞) satisfying the equilibrium HJB-equation

(3.6).
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(i) If
∑m

i=1 wi

[
γ

δi+γ − ξi3
(δi+γ)2 (γθ + δiM)

]
≤ 1, then the function c(s, t, x) is given by, for

(s, t, x) ∈ D[0,∞)× [0,∞),

c(s, t, x) =
m∑
i=1

wie
−(δi+γ)(t−s)

[
γθ + δiM

(δi + γ)2
(1− eξi3x) +

γ

δi + γ
x

]
. (4.16)

(ii) If
∑m

i=1 wi

[
γ

δi+γ − ξi3
(δi+γ)2 (γθ + δiM)

]
> 1, then the function c(s, t, x) is given by, for

(s, t) ∈ D[0,∞),

c(s, t, x) =


∑m

i=1 wie
−(δi+γ)(t−s)

[
Ai1(b)e

ξi1x +Ai2(b)e
ξi2x +Ai0x+Bi0

]
, x ∈ [0, b),∑m

i=1 wie
−(δi+γ)(t−s)

[
Bi(b)e

ξi3x +Ai0x+Bi0 +
δiM

(δi+γ)2

]
, x ∈ [b,∞),

(4.17)

where Ai1(b), Ai2(b), Bi(b) (i = 1, 2, · · · ,m) are given respectively by (4.11)-(4.13), b > 0 is

determined by F (b) = 1, and Ai0, Bi0 (i = 1, 2, · · · ,m) are given by (4.6).

Proof. (i) Letting b = 0 in (4.11)-(4.13) and combining (4.8), we obtain (4.16). Since

∂c

∂x
(t, t, 0) =

m∑
i=1

wi

[
γ

δi + γ
− ξi3

(δi + γ)2
(γθ + δiM)

]
≤ 1,

∂2c

∂x2
(t, t, x) = −

m∑
i=1

wi
ξ2i3

(δi + γ)2
(γθ + δiM)eξi3x < 0,

we have ∂c
∂x (t, t, 0) ≤ 1 for x ≥ 0. Hence, c(s, t, x) in (4.16) solves the equilibrium HJB-equation

(3.6).

(ii) By Lemma 4.2, there exists a unique b > 0 such that F (b) = 0. It is sufficient to show
∂c
∂x (t, t, x) > 1 if 0 < x < b and ∂c

∂x (t, t, x) ≤ 1 if x ≥ b.

For x ≥ b, since

∂2c

∂x2
(t, t, x) =

m∑
i=1

wiBi(b)ξ
2
i3e

ξi3x < 0,

we obtain ∂c
∂x (t, t, x) ≤

∂c
∂x (t, t, b+) = 1. By (4.4) and (4.5), we get

µ
∂2c

∂x2
(t, t, b−) = (µ+M)

∂2c

∂x2
(t, t, b+) < 0.

For 0 < x < b, we have

∂3c

∂x3
(t, t, x) =

m∑
i=1

wi(Ai1(b)ξ
3
i1e

ξi1x +Ai2(b)ξ
3
i2e

ξi2x) > 0.

Hence, for 0 < x < b,
∂2c

∂x2
(t, t, x) ≤ ∂2c

∂x2
(t, t, b−) < 0.

Furthermore, ∂c
∂x (t, t, x) ≥

∂c
∂x (t, t, b−) = 1. The results are proved.

By the above proof, we know that the functions c(s, t, x) in (4.16) and (4.17) are increasing

and concave with respective to x, and limn→∞ c(s, n, x+ λν(n− t)) = 0. By Theorem 3.1 and

Remark 3.1, we obtain the following theorem.

Theorem 4.1. Consider the discount function (4.2) and the killing rate

0 < γ ≤ mini∈I

(
δiξi3M

(ξi1−ξi3)θ

)
.



520 Appl. Math. J. Chinese Univ. Vol. 38, No. 4

(i) If
∑m

i=1 wi

[
γ

δi+γ − ξi3
(δi+γ)2 (γθ + δiM)

]
≤ 1, then

û(t, x) = M, (t, x) ∈ [0,∞)× [0,∞),

is an equilibrium strategy and for (t, x) ∈ [0,∞)× [0,∞),

V (t, x) = c(t, t, x) =

m∑
i=1

wi

[
γθ + δiM

(δi + γ)2
(1− eξi3x) +

γ

δi + γ
x

]
. (4.18)

is the corresponding equilibrium value function.

(ii) If
∑m

i=1 wi

[
γ

δi+γ − ξi3
(δi+γ)2 (γθ + δiM)

]
> 1, then

û(t, x) =

{
0, (t, x) ∈ [0,∞)× [0, b),

M, (t, x) ∈ [0,∞)× [b,∞),

is an equilibrium strategy and the corresponding equilibrium value function is

V (t, x) = c(t, t, x) =


∑m

i=1 wi

[
Ai1(b)e

ξi1x +Ai2(b)e
ξi2x +Ai0x+Bi0

]
, x ∈ [0, b),∑m

i=1 wi

[
Bi(b)e

ξi3x +Ai0x+Bi0 +
δiM

(δi+γ)2

]
, x ∈ [b,∞),

where Ai1(b), Ai2(b), Bi(b) (i = 1, 2, · · · ,m) are given respectively by (4.11)-(4.13), b > 0 is

determined by F (b) = 1, and Ai0, Bi0 (i = 1, 2, · · · ,m) are given by (4.6).

Example Let m = 2, µ = 1, λ = 2, β = 1.5, M = 0.5, γ = 0.1, δ1 = 0.2 and δ = 0.5. We can

verify that γ ≤ mini=1,2

(
δiξi3M

(ξi1−ξi3)θ

)
holds and obtain

f1 :=
γ

δ1 + γ
− ξ13

(δ1 + γ)2
· (γθ + δ1M) = 1.1698,

f2 :=
γ

δ2 + γ
− ξ23

(δ2 + γ)2
· (γθ + δ2M) = 0.8750.

Therefore, the equilibrium dividend threshold b > 0 if and only if w1f1+w2f2 > 1. For example,

for w1 = 1
3 ,

2
3 , we have the threshold b = 0 and b = 0.1393, respectively. The corresponding

equilibrium value functions are, respectively,

V (t, x) = −0.4938e−0.5646x − 0.5247e−0.9000x + 0.2222x+ 1.0185, x ≥ 0,

and

V (t, x) =

{
Z1(x) + 0.2778(x+ 1), x ∈ [0, 0.1393),

Z2(x) + 0.2778x+ 1.2500, x ∈ [0.1393,∞),

where Z1(x) = −0.4371e−1.1810x+0.1902e0.3810x−0.1191e−1.6466x+0.0882e0.5466x and Z2(x) =

−0.9855e−0.5646x − 0.2618e−0.9000x.

Finally, we discuss the impact of the killing rate γ to the control problem by some numerical

examples. We still let m = 2, µ = 1, λ = 2, β = 1.5, M = 0.5, δ1 = 0.2 and δ = 0.5. Fig.1

shows the equilibrium dividend threshold b as a function of the killing rate γ for different values

of w1. We find that the larger w1 leads to the higher threshold. Specially, in the case of

w1 = 1, the dividend problem is time-consistent. With the increase of γ, the level of b rises.

Large γ means that it is earlier to kill the surplus process. Hence, it is better to enhance the

dividend threshold in order to increase the surplus at the stopping time. In other words, it is

advisable to retain more surplus at the stopping time rather than paying early out dividend.

Accordingly, the equilibrium value function is larger as it is earlier to kill the surplus process,

which is illustrated in Fig.2. When w1 = 0.6, the dividend threshold are 0, 0.0292, 0.0983 and

0.1503 for the associated killing rate 0, 0.05, 0.1 and 0.15, respectively. Fig.2 implies that the
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Fig. 1. Influence of γ on threshold b. Fig. 2. Influence of γ on value function V .

equilibrium value function is increasing and concave with the initial surplus.
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