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Inhomogeneous Besov and Triebel-Lizorkin spaces

associated with a para-accretive function and their

applications

LIAO Fang-hui1,∗ LIU Zong-guang2 ZHANG Xiao-jin3

Abstract. In this paper, using inhomogeneous Calderón’s reproducing formulas and the space

of test functions associated with a para-accretive function, the inhomogeneous Besov and Triebel-

Lizorkin spaces are established. As applications, pointwise multiplier theorems are also obtained.

§1 Introduction

To study the L2 boundedness of generalized Calderón-Zygmund singular integral operators,

David and Journé [2] discovered the T1 theorem. However, the T1 theorem cannot be directly

applied to the Cauchy integral on Lipschitz curves. If the function 1 in the T1 theorem is

replaced by a bounded complex-valued function b which satisfies 0 < δ < Re b(x) a.e., Meyer

obtained L2 boundedness of the Cauchy integral on Lipschitz curves. McIntosh and Meyer [13]

verified the Tb theorem, where b is an accretive function.

Replacing the accretive function with a para-accretive function, David, Journé and Semmes

[3] proved a Tb theorem. Han and Sawyer [9] got a characterization of para-accretivity in

terms of the weak boundedness property and proved a sharp Tb theorem for the Besov and

Triebel-Lizorkin spaces. In [7], Han obtained Calderón’s reproducing formula associated with

a para-accretive function, introduced a class of Besov and Triebel-Lizokin spaces and verified a

Tb theorem of the Besov and Triebel-Lizorkin spaces with Tb = T ∗b = 0. For more results, see

[4], [11] and [12].

Yang [14] obtained the inhomogeneous Calderón’s reproducing formula associated with a

para-accretive function. As usual, using inhomogeneous Calderón’s reproducing formula and

the space of test functions, one can formally define the inhomogeneous Besov and Triebel-

Lizorkin spaces and obtain some properties of these spaces. A natural question arises: are
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these inhomogeneous Besov and Triebel-Lizorkin spaces well defined? And furthermore, do the

properties of classical Besov and Triebel-Lizorkin spaces still hold in this setting? The main

purpose of this paper is to answer these questions. More precisely, using the inhomogeneous

Calderón’s reproducing formula and the space of test functions, we establish a class of inhomo-

geneous Besov and Triebel-Lizorkin spaces. As applications, the pointwise multiplier theorems

on these spaces are also presented.

Throughout this paper, we use C to denote positive constants, whose value may change

from one occurrence to the next. f ∼ g means that there exists a constant C > 0 independent

of main parameters such that C−1g ≤ f ≤ Cg. For any 1 < q < ∞, let q′ be its conjugate

index, that is, 1/q+1/q′ = 1. Let Z+ = N∪{0}. Denote by M the Hardy-Littlewood maximal

operator and by Mb the multiplication operator: Mb(f) = bf .

The paper is organized as follows. In Section 2, we introduce the inhomogeneous Besov

and Triebel-Lizorkin spaces associated with a para-accretive function and verify that the spaces

are independent of the choice of approximations to the identity. Section 3 is devoted to the

pointwise multiplier theorems on these spaces.

§2 Definitions of Inhomogeneous Besov and Triebel-Lizorkin Spaces

First, we recall definitions of spaces of homogeneous type. A quasi-metric d on a set X is a

function d: X ×X → [0,∞) satisfying

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for x, y ∈ X;

(iii) There exists a constant A ∈ [1,∞) such that

d(x, y) ≤ A[d(x, z) + d(z, y)] for x, y, z ∈ X. (1)

A quasi-metric defines a topology for which the sets {B(x, r) : x ∈ X, r > 0} form a basis,

where B(x, r) = {y ∈ X : d(y, x) < r}.
The following definition of a space of homogeneous type was introduced by Coifman and

Weiss [1].

Definition 2.1. A space of homogeneous type (X, ρ, µ) is a non-empty set X with a quasi-

metric ρ and a nonnegative Borel regular measure µ on X such that 0 < µ(B(x, r)) < ∞ and

there exists a constant C < ∞ such that

µ(B(x, 2r)) ≤ Cµ(B(x, r)) (2)

for x ∈ X and r > 0, where µ is assumed to be defined on a σ−algebra which contains all Borel

sets and all balls B(x, r).

Throughout this paper, let µ(X) = ∞ and µ({x}) = 0 for x ∈ X. Further, suppose that

there exist constant C > 0 and 0 < θ < 1 such that for 0 < r < ∞ and x, x′, y ∈ X,

µ(B(x, r)) ∼ r, (3)
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and

|ρ(x, y)− ρ(x′, y)| ≤ Cρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ. (4)

Now we recall definitions of para-accretive functions and the space of test functions.

Definition 2.2.[14] A bounded complex-valued function b defined on X is said to be a para-

accretive if there exist constants C, r > 0, such that for any cube Q ⊂ X, there is subcube

Q′ ⊆ Q with rµ(Q) ≤ µ(Q′) and

1

µ(Q)

∣∣∣ ∫
Q′

b(x) dµ(x)
∣∣∣ ≥ C > 0.

Definition 2.3.[7] Fixed two exponents 0 < β ≤ θ and γ > 0. A function f defined on X is

said to be a test function of type (β, γ) centered at x0 ∈ X with width r > 0 if f satisfies

|f(x)| ≤ C
rγ

(r + d(x, x0))1+γ
(5)

for all x ∈ X, and

|f(x)− f(y)| ≤ C
( d(x, y)

r + d(x, x0)

)β rγ

(r + d(x, x0))1+γ
(6)

for d(x, y) ≤ 1
2A (r + d(x, x0)).

If f is a test function of type (β, γ) center at x0 ∈ X and with width r > 0, we write

f ∈ G(x0, r, β, γ) and the norm of f in G(x0, r, β, γ) is defined by

∥f∥G(x0,r,β,γ) = inf{C : (5) and (6) hold}.
We denote G(β, γ) = G(x0, 1, β, γ). It is easy to check that G(x1, r, β, γ) = G(β, γ) with

equivalent norms for any x1 ∈ X and r > 0. Furthermore, G(β, γ) is a Banach space with

respect to the norm on G(β, γ). Also, let the dual space (G(β, γ))′ be the set of all linear

functionals £ from G(β, γ) to C with the property that there exists a constant C such that

|£(f)| ≤ C∥f∥G(β,γ)
for all f ∈ G(β, γ). We denote by ⟨h, f⟩ the natural pairing of elements h ∈ (G(β, γ))′ and
f ∈ G(β, γ). Clearly, for all h ∈ (G(β, γ))′, ⟨h, f⟩ is well defined for all f ∈ G(β, γ).

For ϵ ∈ (0, θ], let G̃(β, γ) be the completion of the space G(ϵ, ϵ) in G(β, γ) with 0 < β, γ ≤ ϵ.

Obviously, G̃(ϵ, ϵ) = G(ϵ, ϵ). Moreover, f ∈ G̃(β, γ) if and only if f ∈ G(β, γ) with 0 < β, γ ≤ ϵ

and there exists {fj}j∈N ⊂ G(ϵ, ϵ) such that ∥f − fj∥G(β,γ) → 0 as j → ∞. If f ∈ G̃(β, γ), we
define ∥f∥G̃(β,γ) = ∥f∥G(β,γ). Obviously, G̃(β, γ) is a Banach space and we also have ∥f∥G̃(β,γ) =
lim
j→∞

∥fj∥G(β,γ) for above {fj}j∈N.

Define

bG(β, γ) =
{
f : f = bg for some g ∈ G(β, γ)

}
,

where b is a para-accretive function. If f ∈ bG(β, γ) and f = bg for g ∈ G(β, γ), then the norm

of f is defined by ∥f∥bG(β,γ) = ∥g∥G(β,γ). For f ∈
(
bG̃(β, γ)

)′
, we define bf ∈

(
G̃(β, γ)

)′
by

⟨bf, g⟩ = ⟨f, bg⟩ for g ∈ G̃(β, γ). Then it is easy to see that

f ∈
(
bG̃(β, γ)

)′
if and only if bf ∈

(
G̃(β, γ)

)′
. (7)

The approximation to the identity associated with a para-accretive function is defined by
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Definition 2.4. [7] Let b be a para-accretive function. A sequence {Sk}k∈Z+ of linear oper-

ators is said to be an approximation to the identity of order ϵ ∈ (0, θ] associated with b if there

exists C > 0 such that for all k ∈ Z+ and all x, x′, y, y′ ∈ X, Sk(x, y), the kernel of Sk, is a

function from X ×X into C satisfying

(i)

|Sk(x, y)| ≤ C
2−kϵ

(2−k + d(x, y))1+ϵ
;

(ii)

|Sk(x, y)− Sk(x
′, y)| ≤ C

( d(x, x′)

2−k + d(x, y)

)ϵ 2−kϵ

(2−k + d(x, y))1+ϵ

for d(x, x′) ≤ 1
2A

(
2−k + d(x, y)

)
;

(iii)

|Sk(x, y)− Sk(x, y
′)| ≤ C

( d(y, y′)

2−k + d(x, y)

)ϵ 2−kϵ

(2−k + d(x, y))1+ϵ

for d(y, y′) ≤ 1
2A

(
2−k + d(x, y)

)
;

(iv)

|[Sk(x, y)− Sk(x, y
′)]− [Sk(x

′, y)− Sk(x
′, y′)]|

≤C
( d(x, x′)

2−k + d(x, y)

)ϵ( d(y, y′)

2−k + d(x, y)

)ϵ 2−kϵ

(2−k + d(x, y))1+ϵ

for d(x, x′) ≤ 1
(2A)2

(
2−k + d(x, y)

)
and d(y, y′) ≤ 1

(2A)2

(
2−k + d(x, y)

)
;

(v) ∫
X

Sk(x, y)b(y) dµ(y) =

∫
X

Sk(x, y)b(x) dµ(x) = 1.

The following lemmas are Calderón’s reproducing formulas.

Lemma 2.5. [14] Let b be a para-accretive function, ϵ ∈ (0, θ], {Sk}k∈Z+ be an approximation

to the identity of order ϵ. Set Dk = Sk − Sk−1 when k ∈ N and D0 = S0. Then there

exist families of linear operators D̃k and
˜̃
Dk for k ∈ Z+ such that for all f ∈ G̃(β, γ) with

0 < β, γ < ϵ,

f =

∞∑
k=0

D̃kMbDkMb(f) =

∞∑
k=0

DkMb
˜̃
DkMb(f), (8)

where the series converges in the norm of G̃(β′, γ′) for 0 < β′ < β and 0 < γ′ < γ, and in the

norm of Lp with 1 < p < ∞. When f ∈ (bG̃(β, γ))′, the series (8) converges in the norm of

(bG̃(β′, γ′))′ with β < β′ < θ, γ < γ′ < θ. Moreover, D̃k(x, y), the kernel of D̃k, satisfies (i)

and (ii) in Definition 2.4 with ϵ is replaced by ϵ′ for 0 < ϵ′ < ϵ,∫
X

D̃0(x, y)b(y) dµ(y) =

∫
X

D̃0(x, y)b(x) dµ(x) = 1, (9)

and for k ∈ N ∫
X

D̃k(x, y)b(y) dµ(y) =

∫
X

D̃k(x, y)b(x) dµ(x) = 0. (10)

˜̃
Dk(x, y), the kernel of

˜̃
Dk, satisfies (i) and (iii) in Definition 2.4 with ϵ replaced by ϵ′ for
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0 < ϵ′ < ϵ, (9) and (10).

Lemma 2.6. [14] Suppose that all the notation as in Lemma 2.5, then for all f ∈ bG̃(β, γ),

f =

∞∑
k=0

MbD̃kMbDk(f) =

∞∑
k=0

MbDkMb
˜̃
Dk(f), (11)

where the series converges in the norm of bG̃(β′, γ′) with 0 < β′ < β, 0 < γ′ < γ, and in the

norm of Lp with 1 < p < ∞. When f ∈ (G̃(β, γ))′, the series (11) converges in the norm of

(G̃(β′, γ′))′ with β < β′ < θ, γ < γ′ < θ.

We now introduce the inhomogeneous Besov and Triebel-Lizorkin spaces associated with a

para-accretive function.

Definition 2.7. Suppose that b is a para-accretive function. Let 1 < p, q < ∞, |s| < ϵ and

{Dk}k∈Z+ be defined as in Lemma 2.5. The inhomogeneous Besov spaces Bs,q
p,b−1 and Bs,q

p,b are

defined by

Bs,q
p,b−1 = {f ∈ (bG̃(β, γ))′ : ∥f∥Bs,q

p,b−1
< ∞}

and

Bs,q
p,b = {f ∈ (G̃(β, γ))′ : ∥f∥Bs,q

p,b
< ∞},

where

∥f∥Bs,q

p,b−1
= ∥D0Mb(f)∥Lp +

{ ∞∑
k=1

(
2ks∥DkMb(f)∥Lp

)q}1/q

and

∥f∥Bs,q
p,b

= ∥D0(f)∥Lp +

{ ∞∑
k=1

(
2ks∥Dk(f)∥Lp

)q}1/q

.

The inhomogeneous Triebel-Lizorkin spaces F s,q
p,b−1 and F s,q

p,b are defined by

F s,q
p,b−1 = {f ∈ (bG̃(β, γ))′ : ∥f∥F s,q

p,b−1
< ∞}

and

F s,q
p,b = {f ∈ (G̃(β, γ))′ : ∥f∥F s,q

p,b
< ∞},

where

∥f∥F s,q

p,b−1
= ∥D0Mb(f)∥Lp +

∥∥∥∥{ ∞∑
k=1

(
2ks|DkMb(f)|

)q}1/q∥∥∥∥
Lp

and

∥f∥F s,q
p,b

= ∥D0(f)∥Lp +

∥∥∥∥{ ∞∑
k=1

(
2ks|Dk(f)|

)q}1/q∥∥∥∥
Lp

.

To see that the Besov and Triebel-Lizorkin spaces are well defined, we need to show that

definitions of the spaces Bs,q
p,b−1 , B

s,q
p,b , F

s,q
p,b−1 and F s,q

p,b are independent of the choice of approx-

imations to the identity. This follows from

Theorem 2.8. Let b be a para-accretive function and 1 < p, q < ∞. Suppose that {Sk}k∈Z+
and

{Pk}k∈Z+ are two approximations to the identity associated with b. Let D0 = S0, Dk = Sk−Sk−1

and E0 = P0, Ek = Pk − Pk−1 for all k ∈ N. Then
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(i) for all f ∈
(
bG̃(β, γ)

)′
,

∥E0Mb(f)∥Lp +
∥∥∥{ ∞∑

l=1

(
2ls|ElMb(f)|

)q}1/q∥∥∥
Lp

∼∥D0Mb(f)∥Lp +
∥∥∥{ ∞∑

k=1

(
2ks|DkMb(f)|

)q}1/q∥∥∥
Lp

(12)

and

∥E0Mb(f)∥Lp +
{ ∞∑

l=1

(
2ls∥ElMb(f)∥Lp

)q}1/q

∼∥D0Mb(f)∥Lp +
{ ∞∑

k=1

(
2ks∥DkMb(f)∥Lp

)q}1/q

.

(13)

(ii) for all f ∈
(
G̃(β, γ)

)′
,

∥E0(f)∥Lp +
∥∥∥{ ∞∑

l=1

(
2ls|El(f)|

)q}1/q∥∥∥
Lp

∼∥D0(f)∥Lp +
∥∥∥{ ∞∑

k=1

(
2ks|Dk(f)|

)q}1/q∥∥∥
Lp

(14)

and

∥E0(f)∥Lp +
{ ∞∑

l=1

(
2ls∥El(f)∥Lp

)q}1/q

∼∥D0(f)∥Lp +
{ ∞∑

k=1

(
2ks∥Dk(f)∥Lp

)q}1/q

.

(15)

Noticing that
∫
X
b(y)D̃0(y, x)dµ(y) = 1, similar to the proof of [4] and [8], we get the

following almost orthogonality estimate. Here we omit the proof.

Proposition 2.9. Let b be a para-accretive function, ϵ ∈ (0, θ]. Suppose that El, D̃k are defined

as in Theorem 2.8, Lemma 2.5, respectively. For any ϵ′ ∈ (0, ϵ) and ϵ′′ ∈ (0, ϵ′), there exists a

constant C > 0 such that

|ElMbD̃k(x, y)| ≤ C2−|k−l|ϵ′′ 2−(k∧l)ϵ′(
2−(k∧l) + d(x, y)

)1+ϵ′
(16)

for all x, y ∈ X.

Using Calderón’s reproducing formula and the almost orthogonality estimate, we give the

Proof of Theorem 2.8. We first verify (12). By Lemma 2.5, we have

f(x) =

∞∑
k=0

D̃kMbDkMb(f)(x) =

∞∑
k=0

∫
X

D̃k(x, y)b(y)DkMb(f)(y) dµ(y),

and thus

ElMbf(x) =
∞∑
k=0

∫
X

ElMbD̃k(x, y)b(y)DkMb(f)(y) dµ(y).
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From Proposition 2.9, then

|ElMbf(x)| ≤ C

∞∑
k=0

∫
X

2−|k−l|ϵ′′ 2−(k∧l)ϵ′(
2−(k∧l) + d(x, z)

)1+ϵ′
|b(y)DkMb(f)(y)| dµ(y)

≤ C
∞∑
k=0

2−|k−l|ϵ′′M(DkMb(f))(x).

(17)

Using Minkowski’s inequality, Hölder’s inequality, Fefferman-Stein’s vector-valued maximal in-

equality in [5] and (17), we have

∥E0Mbf∥Lp ≤ C
∥∥∥ ∞∑

k=0

2−kϵ′′M(DkMb(f))
∥∥∥
Lp

≤ C∥M(D0Mb(f))∥Lp + C
∥∥∥ ∞∑

k=1

2−k(s+ϵ′′)2ksM(DkMb(f))
∥∥∥
Lp

≤ C∥D0Mb(f)∥Lp + C
∥∥∥{ ∞∑

k=1

(
2ksM(DkMb(f))

)q}1/q∥∥∥
Lp

≤ C∥D0Mb(f)∥Lp + C
∥∥∥{ ∞∑

k=1

(
2ks|DkMb(f)|

)q}1/q∥∥∥
Lp

and ∥∥∥{ ∞∑
l=1

(
2ls|ElMb(f)|

)q}1/q∥∥∥
Lp

≤C
∥∥∥{ ∞∑

l=1

( ∞∑
k=0

2ls2−|k−l|ϵ′′M(DkMb(f))
)q}1/q∥∥∥

Lp

≤C
∥∥∥{ ∞∑

l=1

∞∑
k=0

2−(k−l)s2−|k−l|ϵ′′
(
2ksM(DkMb(f))

)q}1/q∥∥∥
Lp

≤C
∥∥∥{ ∞∑

k=0

(
2ksM(DkMb(f))

)q}1/q∥∥∥
Lp

≤C∥D0Mb(f)∥Lp +
∥∥∥{ ∞∑

k=1

(
2ks|DkMb(f)|

)q}1/q∥∥∥
Lp

,

where

sup
k∈Z+

∞∑
l=1

2−(k−l)s2−|k−l|ϵ′′ < ∞,

sup
l∈N

∞∑
k=0

2−(k−l)s2−|k−l|ϵ′′ < ∞
(18)

with |s| < ϵ′′.

We now consider (13). Applying Lemma 2.5, Minkowski’s inequality, Hölder’s inequality

and (17) yields

∥E0Mb(f)∥Lp ≤C
∞∑
k=0

2−kϵ′′∥M(DkMb(f))∥Lp
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≤C∥D0Mb(f)∥Lp + C
∞∑
k=1

2−k(ϵ′′+s)2ks∥DkMb(f)∥Lp

≤C∥D0Mb(f)∥Lp + C
{ ∞∑

k=1

(
2ks∥DkMb(f)∥Lp

)q}1/q

.

Consequently, { ∞∑
l=1

(
2ls∥ElMb(f)∥Lp

)q}1/q

≤C
{ ∞∑

l=1

(
2ls

∞∑
k=0

2−|k−l|ϵ′′∥M(DkMb(f))∥Lp

)q}1/q

≤C
{ ∞∑

k=0

∞∑
l=1

2(l−k)s2−|k−l|ϵ′′
(
2ks∥M(DkMb(f))∥Lp

)q}1/q

≤C∥D0Mb(f)∥Lp + C
{ ∞∑

k=1

(
2ks∥DkMb(f)∥Lp

)q}1/q

,

where s satisfies (18).

By Lemma 2.6 and Proposition 2.9, we can get the estimates (14) and (15) by an argument

similar to the estimate of (12) and (13). Here we omit the details. �

Remark 2.10. Let Dk,
˜̃
Dk be the same as in Lemma 2.5 for k ∈ Z+. Since, in the proof of

Theorem 2.8, only the smoothness condition of Dk for the second variable was used, we see

that Theorem 2.8 continues to hold when Dk is replaced by
˜̃
Dk. The proof of this result is

similar to the remark in [10].

The following result gives the relationship between different inhomogeneous Besov and

Triebel-Lizorkin spaces.

Proposition 2.11. Suppose that b is a para-accretive function. Let |s| < ϵ and 1 < p, q < ∞.

Then

(i) f ∈ Bs,q
p,b−1 if and only if bf ∈ Bs,q

p,b . Moreover,

∥f∥Bs,q

p,b−1
∼ ∥bf∥Bs,q

p,b
.

(ii) f ∈ F s,q
p,b−1 if and only if bf ∈ F s,q

p,b . Moreover,

∥f∥F s,q

p,b−1
∼ ∥bf∥F s,q

p,b
.

Proof. We only verify (i), since the proof of (ii) is similar. Let f ∈ Bs,q
p,b−1 , we get f ∈(

bG̃(β, γ)
)′
. Thus, bf ∈

(
G̃(β, γ)

)′
and

∥f∥Bs,q

p,b−1
∼ ∥D0Mb(f)∥Lp +

{ ∞∑
k=1

(
2ks∥DkMb(f)∥Lp

)q}1/q

∼ ∥Mb(f)∥Bs,q
p,b

.

If bf ∈ Bs,q
p,b , we have bf ∈

(
G̃(β, γ)

)′
. So we have f ∈

(
bG̃(β, γ)

)′
and

∥f∥Bs,q
p,b

∼ ∥D0Mb(f)∥Lp +
{ ∞∑

k=1

(
2ks∥Dk(bf)∥Lp

)q}1/q

∼ ∥f∥Bs,q

p,b−1
,
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which finishes the proof of (i).

We now show the density property of the space of test functions in the inhomogeneous Besov

and Triebel-Lizorkin spaces associated with a para-accretive function.

Proposition 2.12. Suppose that b is a para-accretive function. Let 0 < β, γ < ϵ and |s| < ϵ.

Then

(i) bG(σ, σ) is dense in Bs,q
p,b and F s,q

p,b with |s| < σ < ϵ.

(ii) G(σ, σ) is dense in Bs,q
p,b−1 and F s,q

p,b−1 with |s| < σ < ϵ.

Proof. (i) Let f ∈ Bs,q
p,b . For N ∈ N, we put

fN =
N∑

k=0

MbDkMb
˜̃
Dk(f).

Similar to the proof of Proposition 2.9, for any σ ∈ (0, ϵ), we have the following almost orthog-

onality estimate

|ElMbDk(x, y)| ≤ C2−|k−l|σ 2−(k∧l)ϵ

(2−(k∧l) + d(x, y))1+ϵ
, (19)

where El and Dk are defined as in Theorem 2.8 for k, l ∈ Z+. By the definition of test functions,

we see that fN ∈ bG(σ, σ), and repeating the proof of the Theorem 2.8, we obtain ∥fN∥Bs,q
p,b

≤
∥f∥Bs,q

p,b
. It follows from the almost orthogonality estimate (19), Minkowski’s inequality and

Hölder’s inequality that

∥f − fN∥Bs,q
p,b

=
∥∥∥ ∞∑

k=N+1

MbDkMb
˜̃
Dk(f)

∥∥∥
Bs,q

p,b

=
{ ∞∑

l=0

(
2ls

∥∥∥El

( ∞∑
k=N+1

MbDkMb
˜̃
Dk(f)

)∥∥∥
Lp

)q}1/q

≤C
{ ∞∑

l=0

(
2ls

∞∑
k=N+1

∥ElMbDkMb∥L1∥ ˜̃Dk(f)∥Lp

)q}1/q

≤C
{ ∞∑

l=0

(
2ls

∞∑
k=N+1

2−|k−l|σ∥ ˜̃Dk(f)∥Lp

)q}1/q

≤C
{ ∞∑

k=N+1

(
2ks∥ ˜̃Dk(f)∥Lp

)q}1/q

,

where |s| < σ < ϵ. This implies that fN tends to f in Bs,q
p,b as N tends to infinity. In the same

way, we can prove that bG(σ, σ) is dense in F s,q
p,b with |s| < σ < ϵ. And proof of (ii) is similar

to the proof of (i). Here we omit the details.

§3 Pointwise Multiplier Theorems

In this section, we study the pointwise multiplier theory on the inhomogeneous Besov and

Triebel-Lizorkin spaces associated with a para-accretive function b. When b = 1 , the results in

this section are the related results in [15], [16] and [6].



502 Appl. Math. J. Chinese Univ. Vol. 38, No. 4

We first recall definitions of Hölder-Zygmund spaces.

Definition 3.1. The Hölder-Zygmund space Cα, α > 0, consists of all bounded continuous

functions f such that

∥f∥Cα = ∥f∥∞ + sup
x ̸=y

|f(x)− f(y)|
d(x, y)α

< ∞. (20)

Now we present the definitions of pointwise multipliers for the inhomogeneous Besov and

Triebel-Lizorkin spaces associated with a para-accretive function.

Definition 3.2. A function g on X is called a pointwise multiplier for Bs,q
p,b−1 if f → gf admits

a bounded linear mapping from Bs,q
p,b−1 into itself. Similarly, g is called a pointwise multiplier

for Bs,q
p,b if f → gf admits a bounded linear mapping from Bs,q

p,b into itself.

Definition 3.3. A function g defined on X is called a pointwise multiplier for F s,q
p,b−1 if f → gf

admits a bounded linear mapping from F s,q
p,b−1 into itself. Similarly, g is called a pointwise

multiplier for F s,q
p,b if f → gf admits a bounded linear mapping from F s,q

p,b into itself.

The main results in this section are as follows.

Theorem 3.4. Let |s| < ϵ, 1 < p, q < ∞, then g ∈ Cα is a multiplier for Bs,q
p,b−1 with

max(s,−s) < α < ϵ. Moreover, f → gf yields a bounded linear mapping from Bs,q
p,b−1 into

itself and there exists a positive constant C such that

∥gf∥Bs,q

p,b−1
≤ C∥g∥Cα∥f∥Bs,q

p,b−1

for all g ∈ Cα and f ∈ Bs,q
p,b−1 .

Theorem 3.5. Let all the notation be the same as in Theorem 3.4. Then the conclusion of

Theorem 3.4 continues to hold when Bs,q
p,b−1 is replaced by Bs,q

p,b(or F s,q
p,b−1 , or F s,q

p,b ).

Before presenting the proof of these main results, we first give the following technical version

of Theorems 3.4 and 3.5.

Proposition 3.6. Let |s| < ϵ, 1 < p, q < ∞ and max(s,−s) < β < ϵ, 0 < γ < ϵ. Suppose that

g ∈ Cα with max(s,−s) < α < ϵ.

(i) If f ∈ G̃(β, γ), then
∥fg∥Bs,q

p,b−1
≤ C∥g∥Cα∥f∥Bs,q

p,b−1
(21)

and

∥fg∥F s,q

p,b−1
≤ C∥g∥Cα∥f∥F s,q

p,b−1
; (22)

(ii) If f ∈ bG̃(β, γ), then
∥fg∥Bs,q

p,b
≤ C∥g∥Cα∥f∥Bs,q

p,b
(23)

and

∥fg∥F s,q
p,b

≤ C∥g∥Cα∥f∥F s,q
p,b

. (24)

In order to prove Proposition 3.6, we need the following almost orthogonality estimate.
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Lemma 3.7. Let 0 < σ < ϵ and Dk, El be defined as in Theorem 2.8 for k, l ∈ Z+. For any

ϵ ∈ (0, θ] and g ∈ Cα with 0 < α < ϵ, we have

|DkMbgEl(x, y)b(y)| ≤ C∥g∥Cα2−|k−l|(α∧σ) 2−(k∧l)ϵ

(2−(k∧l) + d(x, y))1+ϵ
. (25)

Proof. We first consider the case k = l = 0. By definitions of Hölder-Zygmund spaces and the

size conditions of D0 and E0, we get

|D0MbgE0(x, y)b(y)| =
∣∣∣ ∫

X

D0(x, z)b(z)g(z)E0(z, y)b(y) dµ(z)
∣∣∣

≤C∥g∥Cα

∫
X

1

(1 + d(x, z))1+ϵ

1

(1 + d(z, y))1+ϵ
dµ(z)

≤C∥g∥Cα

1

(1 + d(x, y))1+ϵ
.

When l ≥ k ≥ 1, since
∫
X
b(z)El(z, y)dµ(z) = 0, we have

|DkMbgEl(x, y)b(y)| =
∣∣∣ ∫

X

Dk(x, z)b(z)g(z)El(z, y)b(y) dµ(z)
∣∣∣

≤
∫
X

|Dk(x, z)−Dk(x, y)||b(z)g(z)||El(z, y)b(y)| dµ(z)

+

∫
X

|Dk(x, y)||g(z)− g(y)||b(z)||El(z, y)b(y)| dµ(z)

:=L1 + L2.

We now estimate L1 by dividing it into

L1 ≤
∫
W1

|Dk(x, z)−Dk(x, y)||b(z)g(z)||El(z, y)b(y)| dµ(z)

+

∫
W2

|Dk(x, z)||g(z)b(z)||El(z, y)b(y)| dµ(z)

+

∫
W2

|Dk(x, y)||g(z)b(z)||El(z, y)b(y)| dµ(z)

:=L1.1 + L1.2 + L1.3,

where W1 = {z ∈ X : d(z, y) ≤ 1
2A (2−k + d(x, y))} and W2 = X\W1.

For L1.1, we have

L1.1 ≤C∥g∥Cα

∫
W1

( d(z, y)

2−k + d(x, y)

)σ 2−kϵ

(2−k + d(x, y))1+ϵ

2−lϵ

(2−l + d(z, y))1+ϵ
dµ(z)

≤C∥g∥Cα

2−kϵ

(2−k + d(x, y))1+ϵ
2−(l−k)σ

∫
X

2−l(ϵ−σ)

(2−l + d(z, y))1+ϵ−σ
dµ(z)

≤C∥g∥Cα2−(l−k)σ 2−kϵ

(2−k + d(x, y))1+ϵ
,

where 0 < σ < ϵ.

To estimate L1.2, noticing that d(z, y) ≥ 1
2A (2−k + d(x, y)), we then have

L1.2 ≤C∥g∥Cα

∫
W1

2−kϵ

(2−k + d(x, z))1+ϵ

2−lϵ

(2−l + d(z, y))1+ϵ
dµ(z)
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≤C∥g∥Cα

2−lϵ

(2−k + d(x, y))1+ϵ

∫
X

2−kϵ

(2−k + d(x, z))1+ϵ
dµ(z)

≤C∥g∥Cα2−(l−k)ϵ 2−kϵ

(2−k + d(x, y))1+ϵ
.

As for L1.3, we have

L1.3 ≤C∥g∥Cα

2−kϵ

(2−k + d(x, y))1+ϵ

∫
W2

2−lϵ

(2−l + d(z, y))1+ϵ
dµ(z).

Denote a = 1
2A (2−k + d(x, y)). Then∫

W2

2−lϵ

(2−l + d(z, y))1+ϵ
dµ(z) =

∞∑
j=0

∫
2ja<d(z,y)≤2j+1a

2−lϵ

(2−l + d(z, y))1+ϵ
dµ(z)

≤
∞∑
j=0

2−lϵ

(2ja)1+ϵ

∫
d(z,y)≤2j+1a

dµ(z)

≤C
∞∑
j=0

2−lϵ 2j+1a

(2ja)1+ϵ

≤C2−(l−k)ϵ.

Thus

L1.3 ≤ C∥g∥Cα2−(l−k)ϵ 2−kϵ

(2−k + d(x, y))1+ϵ
.

Combining the above estimates for L1.1, L1.2 and L1.3, we have

L1 ≤ C∥g∥Cα2−(l−k)σ 2−kϵ

(2−k + d(x, y))1+ϵ
,

where 0 < σ < ϵ.

We turn now to estimate L2. From the size condition of Dk, El and the definition of Cα, we

have

L2 ≤C∥g∥Cα

2−kϵ

(2−k + d(x, y))1+ϵ

∫
X

d(z, y)α
2−lϵ

(2−l + d(z, y))1+ϵ
dµ(z)

≤C∥g∥Cα2−lα 2−kϵ

(2−k + d(x, y))1+ϵ

≤C∥g∥Cα2−(l−k)α 2−kϵ

(2−k + d(x, y))1+ϵ
,

where 0 < α < ϵ.

Hence

L1 + L2 ≤C∥g∥Cα2−(l−k)(α∧σ) 2−kϵ

(2−k + d(x, y))1+ϵ
,

where 0 < α, σ < ϵ.

When k ≥ l ≥ 1, the above estimate continues to hold by symmetry. The cases k = 0, l ≥ 1

and l = 0, k ≥ 1 can be handled similarly. We thus complete the proof of Lemma 3.7.

Now we can give the

Proof of Proposition 3.6. We only prove (22) and (23), since the proof of (21) and (24) are

similar. For any g ∈ Cα with 0 < α < ϵ, f ∈ G̃(β, γ) with max(s,−s) < β < ϵ, 0 < γ < ϵ, we
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have

∥fg∥F s,q

p,b−1
=∥D0Mb(fg)∥Lp +

∥∥∥{ ∞∑
k=1

(
2ks|DkMb(fg)|

)q}1/q∥∥∥
Lp

:=Y1 + Y2.

Applying Lemma 2.5, Minkowski’s inequality, Hölder’s inequality, Fefferman-Stein’s vector-

valued maximal inequality in [5], Lemma 3.7 and Remark 2.10, we have

Y1 ≤
∥∥∥D0Mbg

( ∞∑
l=0

ElMb
˜̃
ElMb(f)

)∥∥∥
Lp

≤
∥∥∥D0MbgE0Mb

˜̃
E0Mb(f)

∥∥∥
Lp

+
∥∥∥ ∞∑

l=1

D0MbgElMb
˜̃
ElMb(f)

∥∥∥
Lp

≤C∥g∥Cα

∥∥∥˜̃E0Mb(f)
∥∥∥
Lp

+ C∥g∥Cα

∥∥∥ ∞∑
l=1

2−l(α∧σ)M(
˜̃
ElMb(f))

∥∥∥
Lp

≤C∥g∥Cα

∥∥∥˜̃E0Mb(f)
∥∥∥
Lp

+ C∥g∥Cα

∥∥∥ ∞∑
l=1

2−l((α∧σ)+s)2lsM(
˜̃
ElMb(f))

∥∥∥
Lp

≤C∥g∥Cα

∥∥∥˜̃E0Mb(f)
∥∥∥
Lp

+ C∥g∥Cα

∥∥∥{ ∞∑
l=1

(
2ls

∣∣∣ ˜̃ElMb(f)
∣∣∣)q}1/q∥∥∥

Lp

≤C∥g∥Cα∥f∥F s,q

p,b−1
,

where (α ∧ σ) + s > 0.

By an analogous argument, we obtain

Y2 ≤
∥∥∥{ ∞∑

k=1

(
2ksDkMbg

( ∞∑
l=0

ElMb
˜̃
ElMb(f)

)q}1/q∥∥∥
Lp

≤C∥g∥Cα

∥∥∥{ ∞∑
k=1

(
2k(s−(α∧σ)M(

˜̃
E0Mb(f))

)q}1/q∥∥∥
Lp

+ C∥g∥Cα

∥∥∥{ ∞∑
k=1

( ∞∑
l=0

2(k−l)s2−|k−l|(α∧σ)2lsM(
˜̃
ElMb(f))

)q}1/q∥∥∥
Lp

≤C∥g∥Cα∥E0Mb(f)∥Lp + C∥g∥Cα

∥∥∥{ ∞∑
l=0

(
2ls| ˜̃ElMb(f)|

)q}1/q∥∥∥
Lp

≤C∥g∥Cα∥f∥F s,q

p,b−1
,

where we have used

sup
k∈N

∑
l∈Z+

2(k−l)s2−|k−l|(α∧σ) < ∞,

sup
l∈Z+

∑
k∈N

2(k−l)s2−|k−l|(α∧σ) < ∞
(26)

with |s| < (α ∧ σ).

Hence we obtain

Y1 + Y2 ≤ C∥g∥Cα∥f∥F s,q

p,b−1
,

which finishes the proof of (22).
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We turn to prove (23). For any g ∈ Cα with 0 < α < ϵ, f ∈ bG̃(β, γ) with max(s,−s) < β

< ϵ, 0 < γ < ϵ, we have

∥fg∥Bs,q
p,b

= ∥D0(fg)∥Lp +
{ ∞∑

k=1

(
2ks∥Dk(fg)∥Lp

)q}1/q

:= Z1 + Z2.

Applying Lemma 2.6, Minkowski’s inequality, Hölder’s inequality, Lemma 3.7 and Remark 2.10,

we conclude that

Z1 ≤
∥∥∥D0g

( ∞∑
l=0

MbElMb
˜̃
El(f)

)∥∥∥
Lp

≤
∥∥∥D0gMbE0Mb

˜̃
E0(f)

∥∥∥
Lp

+
∞∑
l=1

∥∥∥D0gMbElMb
˜̃
El(f)

∥∥∥
Lp

≤C∥g∥Cα

∥∥∥˜̃E0(f)
∥∥∥
Lp

+ C∥g∥Cα

∞∑
l=1

2−l(α∧σ)
∥∥∥˜̃El(f)

∥∥∥
Lp

≤C∥g∥Cα

∥∥∥˜̃E0(f)
∥∥∥
Lp

+ C∥g∥Cα

( ∞∑
l=1

2−l((α∧σ)+s)q′
)1/q′{ ∞∑

l=1

(
2ls

∥∥∥˜̃El(f)
∥∥∥
Lp

)q}1/q

≤C∥g∥Cα∥f∥Bs,q
p,b

,

where s+ (α ∧ σ) > 0. Similarly,

Z2 ≤
{ ∞∑

k=1

(
2ks

∥∥∥Dkg
( ∞∑

l=0

MbElMb
˜̃
El(f)

)∥∥∥
Lp

)q}1/q

≤C∥g∥Cα

{ ∞∑
k=1

(
2k(s−(α∧σ))

∥∥∥˜̃E0(f)
∥∥∥
Lp

)q}1/q

+ C∥g∥Cα

{ ∞∑
k=1

( ∞∑
l=1

2(k−l)s2−|k−l|(α∧σ)2ls
∥∥∥˜̃El(f)

∥∥∥
Lp

)q}1/q

≤C∥g∥Cα

∥∥∥˜̃E0(f)
∥∥∥
Lp

+ C∥g∥Cα

{ ∞∑
l=1

(
2ls

∥∥∥˜̃El(f)
∥∥∥
Lp

)q}1/q

≤C∥g∥Cα∥f∥Bs,q
p,b

,

where s satisfies (26) with |s| < (α ∧ σ). This concludes the proof of (23). �
For f ∈ Bs,q

p,b−1(B
s,q
p,b) or f ∈ F s,q

p,b−1(F
s,q
p,b ), f could be, in general, a distribution. Thus, the

multiplication of gf may not make sense even for g ∈ Cα. In the following lemmas, we define

gf as a distribution acting on test functions.

Lemma 3.8. Let |s| < ϵ, 0 < ϵ′ < ϵ and 1 < p, q < ∞. For any f ∈ Bs,q
p,b−1 or f ∈ F s,q

p,b−1

and g ∈ Cα with max(s,−s) < α < ϵ, there exists a sequence {fj}j∈N such that fj ∈ G̃(ϵ′, ϵ′),
∥fj∥Bs,q

p,b−1
. ∥f∥Bs,q

p,b−1
or ∥fj∥F s,q

p,b−1
. ∥f∥F s,q

p,b−1
and lim

j→∞
⟨gfj , h⟩ converges for any h ∈ G̃(β, γ)

with β, γ satisfying max(s,−s) < β < ϵ′, 0 < γ < ϵ′.

Proof. Let As,q
p,b−1 = Bs,q

p,b−1 or As,q
p,b−1 = F s,q

p,b−1 . For any f ∈ As,q
p,b−1 with 1 < p, q < ∞, |s| < σ,

denote

fM =
M∑
k=0

MbD̃kMbDk(f).
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By Proposition 2.12 and the definitions of test functions, we can show that fM ∈ G̃(ϵ′, ϵ′) and
∥fM∥As,q

p,b−1
≤ ∥f∥As,q

p,b−1
.

Now we claim that lim
n→∞

⟨gfn, h⟩ converges for any h ∈ G̃(β, γ) with max(s,−s) < β < ϵ′, 0 <

γ < ϵ′. For n,m ∈ N,m < n, by Propositions 3.6 and duality spaces properties of Besov and

Triebel-Lizorkin spaces (see Propositions 3.10 and 3.11 below), we have

|⟨fn − fm, gh⟩| ≤∥fn − fm∥As,q

p,b−1
∥gh∥

A−s,q′

p′,b−1

≤C∥g∥Cα∥fn − fm∥As,q

p,b−1
∥h∥

A−s,q′

p′,b−1

.

Notcing that ∥h∥
A−s,q′

p′,b−1

≤ C∥h∥G̃(β,γ) and ∥fn−fm∥As,q

p,b−1
tends to zero as n,m tend to infinity.

This implies that |⟨fn − fm, gh⟩| → 0 as n,m → ∞. The proof of Lemma 3.8 is concluded.

Lemma 3.9. Let |s| < ϵ, 0 < ϵ′ < ϵ and 1 < p, q < ∞. For any f ∈ Bs,q
p,b or f ∈ F s,q

p,b and

g ∈ Cα with max(s,−s) < α < ϵ, there exists a sequence {fj}j∈N such that fj ∈ bG̃(ϵ′, ϵ′),
∥fj∥Bs,q

p,b
. ∥f∥Bs,q

p,b
or ∥fj∥F s,q

p,b
. ∥f∥F s,q

p,b
and lim

j→∞
⟨gfj , h⟩ converges for any h ∈ bG̃(β, γ) with

β, γ satisfying max(s,−s) < β < ϵ′, 0 < γ < ϵ′.

Proof. The proof is similar to that of Lemma 3.8. We leave the details to the interested

reader.

We are ready to give the

Proof of Theorems 3.4 and 3.5. For any g ∈ Cα with max(−s, s) < ϵ, f ∈ Bs,q
p,b−1 with

1 < p, q < ∞, by Lemma 3.8, lim
n→∞

⟨gfn, h⟩ exists. We thus define

⟨gf, h⟩ = lim
n→∞

⟨gfn, h⟩

for h ∈ G̃(β, γ) with β, γ satisfying max(s,−s) < β < ϵ′, 0 < γ < ϵ′ for 0 < ϵ′ < ϵ, and the limit

is independent of the choice of fn. From Fatou’s lemma and Proposition 3.6, we have

∥gf∥Bs,q

p,b−1
≤ lim inf

n→∞
∥gfn∥Bs,q

p,b−1
≤ ∥g∥Cα∥f∥Bs,q

p,b−1
,

which concludes the proof of Theorem 3.4. Theorem 3.5 can be verified similarly. We omit the

details. �
In the last part of this section, we identify the dual spaces of the inhomogeneous Besov and

Triebel-Lizorkin spaces. Using Proposition 2.12, the proof is similar to that of Theorem 7.1 in

[10] and the details are omitted.

Proposition 3.10. Let |s| < ϵ, 1 < p, q < ∞ with 1
p + 1

p′ =
1
q + 1

q′ = 1.

(i)
(
Bs,q

p,b−1

)∗
= B−s,q′

p′,b−1 . More precisely, given g ∈ B−s,q′

p′,b−1 , then £g(f) = ⟨f, g⟩ defines a linear

functional on Bs,q
p,b−1 ∩ G(ϵ′, ϵ′) with |s| < ϵ′ < ϵ such that

|£g(f)| ≤ C∥f∥Bs,q

p,b−1
∥g∥

B−s,q′

p′,b−1

,

and this linear functional can be extended to Bs,q
p,b−1 with norm at most C∥g∥

B−s,q′

p′,b−1

.

Conversely, if £ is a linear functional on Bs,q
p,b−1 , then there exists a unique g ∈ B−s,q′

p′,b−1 such

that

£g(f) = ⟨f, g⟩
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defines a linear functional on Bs,q
p,b−1 ∩ G(ϵ′, ϵ′) with |s| < ϵ′ < ϵ, and £ is the extension of £g

with ∥g∥
B−s,q′

p′,b−1

≤ C∥£∥.

(ii)
(
Bs,q

p,b

)∗
= B−s,q′

p′,b . More precisely, given g ∈ B−s,q′

p′,b , then £g(f) = ⟨f, g⟩ defines a linear

functional on Bs,q
p,b ∩ bG(ϵ′, ϵ′) with |s| < ϵ′ < ϵ such that

|£g(f)| ≤ C∥f∥Bs,q
p,b

∥g∥
B−s,q′

p′,b
,

and this linear functional can be extended to Bs,q
p,b with norm at most C∥g∥

B−s,q′
p′,b

.

Conversely, if £ is a linear functional on Bs,q
p,b , then there exists a unique g ∈ B−s,q′

p′,b such

that

£g(f) = ⟨f, g⟩
defines a linear functional on Bs,q

p,b ∩ bG(ϵ′, ϵ′) with |s| < ϵ′ < ϵ, and £ is the extension of £g

with ∥g∥
B−s,q′

p′,b
≤ C∥£∥.

Proposition 3.11. Let all notation be the same as in Proposition 3.10, then Proposition 3.10

also holds when Bs,q
p,b−1 , B−s,q′

p′,b−1 , Bs,q
p,b , B−s,q′

p′,b are replaced by F s,q
p,b−1 , F−s,q′

p′,b−1 , F s,q
p,b , F−s,q′

p′,b ,

respectively.

Declarations
Conflict of interest The authors declare no conflict of interest.

References

[1] R Coifman, G Weiss. Analyse harmonique non-commutative sur certains espaces homogènes,
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[16] H Triebel. Theory of Function Spaces II, Birkhäuser-Verlag, Basel, 1992.
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