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Inference for accelerated bivariate dependent competing

risks model based on Archimedean copulas under

progressive censoring

ZHANG Chun-fang1 SHI Yi-min2 WANG Liang3

Abstract. Dependent competing risks model is a practical model in the analysis of lifetime

and failure modes. The dependence can be captured using a statistical tool to explore the re-

lationship among failure causes. In this paper, an Archimedean copula is chosen to describe

the dependence in a constant-stress accelerated life test. We study the Archimedean copula

based dependent competing risks model using parametric and nonparametric methods. The

parametric likelihood inference is presented by deriving the general expression of likelihood

function based on assumed survival Archimedean copula associated with the model parameter

estimation. Combining the nonparametric estimation with progressive censoring and the non-

parametric copula estimation, we introduce a nonparametric reliability estimation method given

competing risks data. A simulation study and a real data analysis are conducted to show the

performance of the estimation methods.

§1 Introduction

Statistical analysis for competing risks model has recently attracted much attention with the

development of scientific technology. When the tested products suffer several different failure

causes and the lifetime of the product is the latent failure time of the first failure cause among

all the possible failure causes, we call those possible failure causes competing risks. The concept

of competing risks [5] is important for products. For example, the failures of rolling bearings

may be responsible for outer ring failure, inner ring failure, rolling element failure and cage

failure. As many competing risks products nowadays have a long lifetime, in order to observe

enough failure times and failure causes, it will cost much time and expenses. By extrapolating
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the reliability indexes under use conditions, the accelerated life test (ALT) can be applied to

shorten the total test time and costs for those products with long lifetimes.

The maximum likelihood estimation, optimal Fisher information and Bayesian prediction

for independent competing risks data have been studied respectively from Weibull distribution

[28], Lomax distribution [4] and half-logistic distribution [1]. Mao et al. [20] derived the exact

conditional distributions of unknown parameters for generalized type-I hybrid censoring data

with an exponential failure model. In accelerated life tests, Roy and Mukhopadhyay [29] pre-

sented the maximum likelihood analysis by using the expectation-maximization algorithm of

accelerated life test data with independent log-normal causes of failure. Han and Kundu [12]

considered the point estimates, and approximate confidence intervals of the step-stress model

when the failure factors were from generalized exponential lifetime distributions. The litera-

ture mentioned above was based on the assumption that the competing risks are statistically

independent. In practice, the competing risks may interact with each other. They are usually

dependent. The assumption of independence among competing risks is not practical and the

estimation results of reliability indexes may be incorrect. Therefore, it is of significance to focus

on the statistical inference for accelerated dependent competing risks.

To model the dependence among failure causes, the Marshall-Olkin bivariate Weibull dis-

tribution [7] and bivariate Birnbaum-Saunders distribution [32] have been used for bivariate

competing risks. However, the bivariate distribution has the same margins and can not capture

the tail dependence. Therefore, the copula function [22] is introduced to improve the bivariate

distribution. It has been developed as an important tool to model dependent competing risks

in biostatistics, econometrics and engineering ([15], [17-18], [27]). In ALT, Xu and Tang [31]

used Gumbel family to assess the exponential competing risks model and gave the maximum

likelihood estimates. Zhang et al. [34] introduced general copula theory to derive likelihood

function and parameter estimation in two-dimensional case and in multi-dimensional case. They

also presented a simple engineering-based multi-dimensional copula construction method. Wu

et al. [30] discussed the maximum likelihood estimators, approximate confidence intervals and

percentile bootstrap confidence intervals of dependent competing risks model in accelerated life

testing under progressively hybrid censoring using the Gumbel family.

Since Archimedean copulas, such as Clayton, Frank and Gumbel copulas, can be constructed

easily and describe the symmetric and nonsymmetric dependence structure, and the different

tail dependence ([10], [13-14], [25]), we derive the general expressions of likelihood function and

likelihood equations based on Archimedean copulas in constant-stress accelerated competing

risks model with progressive censoring scheme as a generalization of dependent competing risks

model in [30-31]. To avoid the model misspecification in this model, we further introduce a

nonparametric estimation method.

The remainder of this paper is organized as follows. In Section 2, we present the bivariate

dependent competing risks model in constant-stress accelerated life tests (CSALT) and make

the basic assumptions. In Section 3, we derive the likelihood function and obtain the likeli-

hood based point estimates and interval estimates of model parameters. The nonparametric

estimation method of the accelerated dependent competing risks model is proposed in Section

4. Section 5 presents a simulation study, and a real data set is analyzed in Section 6. Finally,

conclusions are drawn in Section 7.
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§2 CSALT model with bivariate competing risks

In this paper, we analyze CSALT with bivariate competing risks. Consider the case of two

competing risks (X1, X2) and k ≥ 2 accelerated stress levels in CSALT with S0 < S1 < · · · < Sk.

S0 is the common use stress level. Under accelerated stress level Si, ni products are tested and

ri failure times are observed. To study other product features besides the lifetime, it is necessary

to remove the tested products. Then at each observation time (tij , δij) of Ti = min(X1, X2) and

δi = I(Xi1 < Xi2),Rij ≥ 0 samples are removed. Here ni =
∑ri
j=1 (1 +Rij), i = 1, 2, . . . , k, j =

1, 2, . . . , ri.

The likelihood inference of competing risks model in CSALT is studied in need of the

following foundational assumptions.

A1: The cumulative probability function and survival function of each competing risk under

stress level Si are denoted as Fil(x; θil) and Sil(x; θil) for i = 1, 2, . . . , k, l = 1, 2. The distribution

type will not be changed by the stress levels. The accelerated stress levels have influence on

the distribution parameters.

A2: The two competing risks X1, X2 are dependent. The dependence structure between

the two competing risks is described by an Archimedean copula with the joint survival function

given by

S(xi1, xi2; θi1, θi2, θc) = φθc
[−1](φθc [Si1(xi1; θi1)] + φθc [Si2(xi2; θi2)]), (1)

where θc is the parameter of generator function. θc is assumed to be equal so that the depen-

dence structure of the two competing risks will not be affected with stress levels.

A3: There exists a functional relationship between the distribution parameters θil and each

stress level Si. That is θil = ψl(Si;θψl
), where ψl(·) is a known function and θψl

is the parameter

vector of the function ψl(·). This is a general function for acceleration model. Usually, Arrhenius

model, inverse power law model and Eyring model are specified in ALT.

Note that θc can be specified by the known Kendall’s tau τ . In the bivariate Archimedean

copula, there are several common families with one-parameter generators, namely Gumbel, Ali-

Mikhail-Haq, Clayton, Frank copulas. The relationships between Kendall’s tau and θc of the

mentioned copulas above are given in Table 1 where D1(θ) =
∫ θ
0
t/[exp(t)− 1]dt/θ is the Debye

function of order one.

Table 1. Relationships between copula parameter and Kendall’s tau of bivariate Archimedean
copulas with one-parameter generators.

Family φθ(t) Parameter Kendall’s tau

Gumbel {− log(t)}θ θ ∈ [1,∞) (θ − 1)/θ
Ali-Mikhail-Haq log{[1− θ(1− t)]/t} θ ∈ [1,∞) 1− 2[θ + (1− θ)]/(3θ2)

Clayton (t−θ − 1)/θ θ ∈ [0,∞) θ/(θ + 2)
Frank − log{(e−θt − 1)/(e−θ − 1)} θ ∈ (0,∞) 1 + 4[D1(θ)− 1)]/θ
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§3 Likelihood inference

3.1 Likelihood function

Having the observed data (tij , δij) = (min(Xi1, Xi2), I(Xi1 < Xi2)) and Rij removals at

the time tij for i = 1, 2, . . . , k, j = 1, 2, . . . , ri, the likelihood function for the observed data in

ALT can be obtained. In addition to above assumptions, two theorems with assumed survival

copula are needed to derive the likelihood function.

Theorem 3.1. Let Xi1 and Xi2 be continuous random variables with distribution functions Fi1
and Fi2, density functions fi1(xi1) and fi2(xi2). There exists a continuous generator φ ∈ Ω and

an absolutely continuous Archimedean survival copula Ĉ such that Ĉ(1−Fi1(xi1), 1−Fi2(xi2)) =
φ−1(φ(1− Fi1(xi1)) + φ(1− Fi2(xi2)). Then the joint density function f(xi1, xi2) for Xi1 and

Xi2 is given by

f(xi1, xi2) =

−φ
′′(Ĉ(u, v))φ′(u)φ′(v)

[φ′(Ĉ(u, v))]
3

∣∣∣∣∣
u=1−Fi1(xi1),v=1−Fi2(xi2)

× fi1(xi1)fi2(xi2). (2)

Proof: for i = 1, 2, . . . , k, j = 1, 2, . . . , ri,

C(Fi1(xi1), Fi2(xi2)) = Fi1(xi1) + Fi2(xi2)− 1 + φ−1(φ(1− Fi1(xi1)) + φ(1− Fi2(xi2)),

dφ−1(x)

dx
=

1

φ′(φ−1(x))
.

∂C(Fi1(xi1), Fi2(xi2))

∂xi1
= fi1(xi1)−

fi1(xi1)

φ′(Ĉ(1− Fi1(xi1), 1− Fi2(xi2))
,

f(x1, x2) =
∂2C(Fi1(xi1), Fi2(xi2))

∂x1∂x2

=

−φ
′′(Ĉ(u, v))φ′(u)φ′(v)

[φ′(Ĉ(u, v))]
3

∣∣∣∣∣
u=1−Fi1(xi1),v=1−Fi2(xi2)


× fi1(xi1)fi2(xi2).

Therefore, Theorem 3.1 holds. �
In bivariate competing risks model under the stress level Si, the likelihood function is speci-

fied for the sub-densities f il(tij), i = 1, 2, . . . , k, j = 1, 2, . . . , ri, l = 1, 2. Based on Theorem 3.1,

the sub-densities are given in the following theorem.

Theorem 3.2. Let Xi1 and Xi2 be continuous random variables with distribution functions Fi1
and Fi2, density functions fi1(xi1) and fi2(xi2). There exists a continuous generator φ ∈ Ω and

an absolutely continuous Archimedean survival copula Ĉ such that Ĉ(1−Fi1(xi1), 1−Fi2(xi2)) =
φ−1(φ(1−Fi1(xi1))+φ(1−Fi2(xi2)). If |φ′(u)| → ∞ when u→ 0, then the sub-density functions

f il(tij) are expressed as

f il(tij) = fil(tij)
φ′[1− Fil(tij)]

φ′[S(tij)]
, (3)

where

S(tij) = Ĉ(1− Fi1(xi1), 1− Fi2(xi2))|xi1=xi2=tij ,

and i = 1, 2, . . . , k, j = 1, 2, . . . , ri, l = 1, 2.
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The proof is given based on Zheng [33] as follow.

F i1(tij) = P (Xi1 < tij , Xi1 < Xi2) =

∫ tij

0

[∫ ∞

xi1

f(xi1, xi2)dxi2

]
dxi1

=

∫ tij

0

[∫ ∞

xi1

∂2C(Fi1(xi1), Fi2(xi2))

∂x1∂x2
dxi2

]
dxi1

=

∫ F1(tij)

0

[∫ 1

F2F1
−1(u)

∂2C(u, v)

∂u∂v
dv

]
du

f i1(tij) =
dF i1(tij)

dtij
= fi1(tij)

∫ 1

F2(tij)

∂2C(u, v)

∂u∂v

∣∣∣∣
u=F1(tij)

dv

= fi1(tij)

[
∂C(u, v)

∂u

∣∣∣∣
u=F1(tij),v=1

− ∂C(u, v)

∂u

∣∣∣∣
u=F1(tij),v=F2(tij)

]
∂C(u, v)

∂u
= 1− ∂Ĉ(1− u, 1− v)

∂u
= 1− φ′(1− u)

φ′[φ[−1](φ(1− u) + φ(1− v))]
As lim

v→1
φ(1 − v) = φ(0), lim

v→1
φ[−1](φ(1 − u) + φ(1 − v)) = 0, and |φ′(u)| → ∞ when u → 0,

lim
v→1

φ′(1−u)
φ′[φ[−1](φ(1−u)+φ(1−v))] = 0. Then

f i1(tij) = fi1(tij)
φ′(1− F1(tij))

φ′[φ[−1](φ(1− F1(tij)) + φ(1− F2(tij)))]
.

The sub-density function f i2(tij) can be similarly derived, and this theorem is proved. �

Corollary 3.1. Let Xi1, . . . , Xip, p > 2 be continuous random variables with distribution func-

tions Fi1, . . . , Fip, density functions fi1(xi1), . . . , fip(xip). There exists a continuous generator

φ ∈ Ω and an absolutely continuous multivariate Archimedean survival copula Ĉ such that

Ĉ(1− Fi1(xi1), . . . , 1− Fip(xip)) = φ−1(φ(1− Fi1(xi1)) + . . .+ φ(1− Fip(xip)).

If |φ′(u)| → ∞ when u→ 0, then the sub-density functions f il(tij) are expressed as

f il(tij) = fil(tij)
φ′[1− Fil(tij)]

φ′[S(tij)]
, (4)

where

S(tij) = Ĉ(1− Fi1(xi1), . . . , 1− Fip(xip))|xi1=...=xip=tij ,

and i = 1, 2, . . . , k, j = 1, 2, . . . , ri, l = 1, 2, . . . , p.

Corollary 3.1 is a multivariate extension of Theorem 3.2. The proof is similar with Theorem

3.2 using multivariate copula to replace bivariate copula. Thus we omit it here, and what

follows is the likelihood inference for the bivariate competing risks model.

Let ti = {(t∗i1, δ∗i1,Ri1), (t
∗
i2, δ

∗
i2,Ri2), . . . , (t

∗
iri
, δ∗iri ,Riri)} at stress level Si, t = {t1, t2, . . . , tk},

θi = (θi1, θi2), i = 1, 2 . . . , k. According to the theorems and assumptions above, the likelihood

function for the observed progressive censored data in CSALT with bivariate dependent com-

peting risks is expressed as

L(θ1,θ2, · · · ,θk; t)

=

k∏
i=1

Li(θi; ti) =

k∏
i=1

Bi

ri∏
j=1

[f i1(tij)]
δij

[f i2(tij)]
1−δij

[S(tij)]
Rij

ri∏
j=2

I(ti,j−1 < tij)
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=
k∏
i=1

Bi

ri∏
j=1

[
fi1(tij)

φ′[1− Fi1(tij)]

φ′[S(tij)]

]δij
× [fi2(tij)

φ′[1− Fi2(tij)]

φ′ × [S(tij)]
]
1−δij

[S(tij)]
Rij

ri∏
j=2

I(ti,j−1 < tij),

(5)

where Bi =
∏ri
j=1

∑ri
m=j (1 +Rim). The log-likelihood function under Si is

logLi(θi; ti) = logBi +

ri∑
j=1

δij [log fi1(tij) + log
φ′[1− Fi1(tij)]

φ′[S(tij)]
]

+

ri∑
j=1

(1− δij)[log fi2(tij) + log
φ′[1− Fi2(tij)]

φ′[S(tij)]
] +

ri∑
j=1

Rij logS(tij).

(6)

Suppose the marginal distribution function has one parameter. Let uij = 1−Fi1(tij ; θi1), vij
= 1− Fi2(tij ; θi2), Cij = φ[−1](φ(uij) + φ(vij)). and

θi1u
′
ij =

∂uij
∂θi1

, tiju
′
ij =

∂uij
∂tij

, tijθi1u
′′
ij =

∂2uij
∂tij∂θi1

,

θi2v
′
ij =

∂vij
∂θi2

, tijv
′
ij =

∂vij
∂tij

, tijθi2v
′′
ij =

∂2vij
∂tij∂θi2

.

Under stress level Si, the log-likelihood equations is given by

∂ logLi
∂θi1

=

ri∑
j=1

δij

{
tijθi1u

′′
ij

tiju
′
ij

+ θi1u
′
ijφ

′(uij)
φ(uij)

[φ′(uij)]
2

}

−
ri∑
j=1

θi1u
′
ijφ

′(uij)
Cijφ

′′(Cij)−Rijφ
′(Cij)

[φ′(Cij)]
2
Cij

= 0,

∂ logLi
∂θi2

=

ri∑
j=1

(1− δij)

{
tijθi2v

′′
ij

tijv
′
ij

+ θi2v
′
ijφ

′(vij)
φ(vij)

[φ′(vij)]
2

}

−
ri∑
j=1

θi2v
′
ijφ

′(vij)
Cijφ

′′(Cij)−Rijφ
′(Cij)

[φ′(Cij)]
2
Cij

= 0.

(7)

The likelihood function and likelihood equations are general expressions for competing risks

data with specified dependence structure of Archimedean copulas. In the parametric estimation

method, the family of Archimedean copulas, the marginal distribution function and density

function are assumed to be known. Using quasi-Newton method [21] for the log-likelihood

equations, the maximum likelihood estimates (MLEs) θ̂i = (θ̂i1, θ̂i2), i = 1, 2, . . . , k can be

obtained.

To extrapolate the parameter θ0l, l = 1, 2 under the use stress level S0, we can evaluate

θ̂0l, l = 1, 2 based on the accelerated function θil = ψl(Si; θψl
) in Assumption A3 by constructing

a regression model. When log θil = logψl(·) is a linear function, it means that, log θil =

al + blϕ(Si). Least square method can be used to estimate al, bl as

âl =

A
k∑
i=1

log θ̂il −B
k∑
i=1

ϕi log θ̂il

kA−B2
, b̂l =

k
k∑
i=1

ϕi log θ̂il −B
k∑
i=1

log θ̂il

kA−B2
,

where ϕi = ϕ(Si), A =
∑k
i=1 ϕi

2, B =
∑k
i=1 ϕi.
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3.2 Clayton and Frank copulas

Assume competing failures follow the exponential distribution with parameter θil = λil >

0 for i = 0, 1, . . . , k and l = 1, 2. Then, we have the simple derivatives
uij = exp{−λi1tij},

tiju
′
ij = −λi1 exp{−λi1tij},

λi1u
′
ij = −tij exp{−λi1tij},

tijλi1u
′′
ij = (λi1tij − 1) exp{−λi1tij},


vij = exp{−λi2tij},

tijv
′
ij = −λi2 exp{−λi2tij},

λi2v
′
ij = −tij exp{−λi2tij},

tijλi2v
′′
ij = (λi2tij − 1) exp{−λi2tij}.

For Clayton family, the generator function is φ(t) = (t−θc − 1)/θc. The copula is expressed as

Cij = [(exp{θcλi1tij}+ exp{θcλi2tij} − 1)]
−1/θcI(exp{θcλi1tij}+ exp{θcλi2tij} > 1).

Thus the exact likelihood equations under the stress level Si are expressed as
ri∑
j=1

δij

[
tijλi1u

′′
ij

tiju
′
ij

− (θc + 1)λi1u
′
iju

−1
ij

]

=

ri∑
j=1

[−λi1
u′ij(θc + 1)−Rij ]

× [(u−θcij + v−θcij − 1)I(u−θcij + v−θcij > 1)]
−1/θc

,
ri∑
j=1

(1− δij)

[
tijλi2v

′′
ij

tijv
′
ij

− (θc + 1)λi2v
′
ijv

−1
ij

]

=

ri∑
j=1

[−λi2v
′
ij(θc + 1)−Rij ]

× [(uθcij + v−θcij − 1)I(u−θcij + v−θcij > 1)]
−1/θc

.

(8)

When Frank family is considered,

φ(t) = − log{(e−θct − 1)/(e−θc − 1)}, Cij = − 1

θc
log

[
1 +

(e−θcuij − 1)(e−θcvij − 1)

e−θc − 1

]
.

We derive the likelihood equations under Si as
ri∑
j=1

δij

{
tijλi1u

′′
ij

tiju
′
ij

+ λi1
u′ijθc(e

−θcuij − 1)
−1
}

=

ri∑
j=1

λi1u
′
ijθc(e

−θcuij − 1)
−1

+

ri∑
j=1

λi1u
′
ij
θcRij{1 + (e−θc − 1)/[(e−θcuij − 1)(e−θcvij − 1)]}

e−θcuij (e−θcuij − 1)
−1
Cij

,

ri∑
j=1

(1− δij)

{
tijλi2

v′′ij

tijv
′
ij

+ λi2v
′θc(e

−θcvij − 1)
−1
}

=

ri∑
j=1

λi2v
′
ijθc(e

−θcvij − 1)
−1

(9)
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+

ri∑
j=1

λi2v
′
ijθc

θcRij{1 + (e−θc − 1)/[(e−θcuij − 1)(e−θcvij − 1)]}
e−θcvij (e−θcvij − 1)

−1
Cij

.

Having the MLEs of parameters θi = (θi1, θi2), i = 1, 2, . . . , k, the approximate confidence

interval, the parametric percentile bootstrap confidence interval and the parametric bootstrap-t

confidence interval of parameters from exponential competing risks can be obtained.

3.3 Asymptotic confidence interval

The approximate confidence intervals for the parameters are derived based on the asymptotic

distributions of the maximum likelihood estimates using large sample approximation. Under Si,

the asymptotic normality of θ̂i = (θ̂i1, θ̂i2) is I
1/2(θi)(θ̂i− θi)

d−→ N(0, I2) as ri → ∞, where I2
denotes the identity matrix in R2×2 and I(θi) is the observed information matrix. The (1−α)%
confidence interval of θil is approximated as [θ̂il − uα/2

√
var(θ̂il), θ̂il + uα/2

√
var(θ̂il)], l = 1, 2.

uα/2 is the α/2th upper quantile of the standard normal distribution function and var(θ̂il) is

denoted by the diagonal value of the inverse of I(θi). That is

I−1(θi) =

(
−∂2 logLi

∂θi12 −∂2 logLi

∂θi1∂θi2

−∂2 logLi

∂θi2∂θi1
−∂2 logLi

∂θi22

)−1
∣∣∣∣∣∣
(θi1,θi2)=(θ̂i1,θ̂i2)

=

(
var(θ̂i1) cov(θ̂i1, θ̂i2)

cov(θ̂i1, θ̂i2) var(θ̂i2)

)
. (10)

The second partial derivatives for Clayton copula are given by

∂2 logLi

∂θi1
2 =

ri∑
j=1

[−δijλ−2
i1 + (θc + 1)t2ije

−λi1tij (eθcλi1tij + eθcλi2tij − 1)
−θ−1

c ]

+

ri∑
j=1

tije
−θcλi1tij [(θc + 1)tije

−λi1tij −Rij ](e
θcλi1tij + eθcλi2tij − 1)

−θ−1
c −1

,

∂2 logLi
∂θi1∂θi2

=

ri∑
j=1

tije
−θcλi2tij [(θc + 1)tije

−λi1tij −Rij ](e
θcλi1tij + eθcλi2tij − 1)

−θ−1
c −1

,

∂2 logLi

∂θi2
2 =

ri∑
j=1

[−(1− δij)λ
−2
i2 + (θc + 1)t2ije

−λi2tij (eθcλi1tij + eθcλi2tij − 1)
−θ−1

c ]

+

ri∑
j=1

tije
−θcλi2tij [(θc + 1)tije

−λi1tij −Rij ](e
θcλi1tij + eθcλi2tij − 1)

−θ−1
c −1

.

The second partial derivatives for Frank copula can be similarly obtained. We then omit the

derivatives here.

3.4 Bootstrap confidence intervals

Different from approximate confidence intervals based on the property of the asymptotic

normality, parametric bootstrap confidence intervals are given by bootstrapping. There are

parametric percentile bootstrap confidence interval and parametric bootstrap-t confidence in-

terval. Given the MLEs θ̂i = (θ̂i1, θ̂i2), i = 1, 2, . . . , k, the bootstrap confidence intervals can be

calculated using the following steps.
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3.4.1 Percentile bootstrap confidence interval

(1) Under the specified progressive censoring (Ri1, . . . ,Riri), apply θ̂i to generate a bootstrap

progressive censoring competing risk sample {(t∗i1, δ∗i1,Ri1), (t
∗
i2, δ

∗
i2,Ri2), . . . , (t

∗
iri
, δ∗iri ,Riri)}

at stress level Si, i = 1, 2, . . . , k. Then we obtain the bootstrap estimates θ̂
∗
i of θi using max-

imum likelihood method.

(2) Repeat Step (1) N times.

(3) Compute the empirical cumulative distribution function F̂ (x) = P (θ̂∗il ≤ x). Let θ̂ilBoot−p(p)

= F̂−1(p) be the p-th quantile of cumulative distribution function. Then, the 100(1− α)%

confidence interval for θil can be approximated by
(
θ̂ilBoot−p (α/2) , θ̂

il
Boot−p (1− α/2)

)
.

3.4.2 Bootstrap-t confidence interval

(1) Generate a bootstrap progressive censoring competing risk sample {(t∗i1, δ∗i1,Ri1), (t
∗
i2, δ

∗
i2,Ri2),

. . . , (t∗iri , δ
∗
iri
,Riri)} using θ̂i for i = 1, 2, ..., k, and obtain the bootstrap MLE θ̂

∗
i of θi.

(2) Resample the competing risks data {(t̃i1, δ̃i1,Ri1), (t̃i2, δ̃i2,Ri2), . . . , (t̃iri , δ̃iri ,Riri)} using

θ̂
∗
i , and compute a new bootstrap estimate θ̃i.

(3) Repeat Step (2) N1 times. The variance of θ̂∗il is given by V ar(θ̂∗il) = (θ̂∗il − θ̃il)
2
/N1.

(4) Determine the T ∗
i = (T ∗

i1, T
∗
i2) statistic where T ∗

il =
θ̂∗il−θ̂il√
V ar(θ̂∗il)

, l = 1, 2.

(5) Repeat Step (2)–(4) N times.

(6) Compute the empirical cumulative distribution function F̂ (x) = P (θ̂∗il ≤ x). Let θ̂
Tp

il be the

p-th quantile of θ̂∗il. The 100(1 − α)% confidence interval for θil can be approximated by(
θ̂ilBoot−t (α/2) , θ̂

il
Boot−t (1− α/2)

)
with

θ̂ilBoot−t(p) = θ̂
Tp

il −
√
V ar(θ̂∗il)F̂

−1(1− p).

§4 Nonparametric reliability estimation

The likelihood based reliability estimates under the normal stress level S0 can be given

by the parameter estimates in the accelerated dependent competing risks model above. For

comparison with parametric estimation, we introduce the nonparametric reliability estimation

method under S0.

The failure times ti = {ti1, . . . , tiri} at each stress level Si, i = 1, 2, . . . , k are not the real

failure times under S0. To estimate the reliability under S0, we transform the failure times

from Si to S0. It is also assumed that the failure cause for each failure time retain the same

from Si to S0. Let t′i = {t′i1, . . . , t′iri}, δ
′
ij and R′

ij be the transformed time, failure cause and

progressive censoring scheme under S0, respectively. We have the transformation expression of

competing risks data (t′ij , δ
′
ij ,R′

ij) given by

t′ij =

{
α1(Si)tij , if δij = 1

α2(Si)tij , if 1− δij = 1
, δ′ij = δij , R′

ij = Rij , (11)

where j = 1, 2, . . . , ri. The functions αl(S), l = 1, 2 are the acceleration functions for each

competing risk. We assume that the derivative of logαl(S) with regard to S is of linear form,
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which is expressed as d logαl(S)
dS =

∑M
m=1 clmhm(S). Then the acceleration function is given by

logαl(S) =

M∑
m=1

clmHm(S),

where Hm(S) =
∫ S
S0
hm(s)ds. More details of the transformation setting refers to [35].

Considering the progressive censoring scheme, we construct two linear models for bivariate

competing risks between the log p-th quantile log ξli,p and logαl(S)as

log ξli,p = cl0 −
M∑
m=1

clmHm(S) + εi, i = 1, 2, . . . , k, l = 1, 2. (12)

The least square estimates ĉl = (cl0, cl1, . . . , clM )T is given by

β̂
l
= (XTX)−1XTvlp

where

vlp =


log ξl1,p
log ξl2,p

...

log ξlk,p

 , X =


1 H1(S1) . . . HM (S1)

1 H1(S2) . . . HM (S2)
...

...
...

...

1 H1(Sk) . . . HM (Sk)

 , βl =


ĉl0
−ĉl1
...

−ĉlM

 .
We calculate the p-th quantile ξli,p using the nonparametric distribution function F̂ li , which

is estimated based on the competing risks data with progressive censoring at Si. Bordes [2]

introduced the product limit estimation method of nonparametric reliability estimation for the

progressive censoring observation. We improve this method for progressive censoring data in

the presence of competing risks ti = (tij , δij ,Rij). The reliability function Rli(t) is estimated

by

R̂li(t) =
∏

{1≤j≤ri,tij≤t}

[
1− I(l = 1, δij = 1) + I(l = 2, δij = 0)

αij

]
, (13)

where αij =
∑ri
j1=j

Rij1 + m − j + 1 and I(·) is an indicator function. Then we get the

approximate estimates ξ̂li,p using R̂li(t). To summarize the time transformation procedures, a

diagram is presented in Figure 1.

Figure 1. Transformation diagram of failure times.

We obtain the reliability estimate R̂li(t) of competing risk under S0 using Equation (13)

for the transformed competing risks data with progressive censoring. Afterwards, the overall

reliability function R0(t) for the dependent competing risks model is estimated using a kernel
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copula estimation Ĉ0(u, v). The kernel copula density estimation ĉ0(u, v) of Ĉ0(u, v) has been

introduced by Chen and Fan [6], Nalger [23] and Geenens et al. [9]. In this method, the uniform

data (u, v) need to be transformed using the inverse function of standard normal cumulative

distribution function. The copula density is expressed as

ĉ0(u, v) =
f̂(Φ−1(u),Φ−1(v))

ϕ(Φ−1(u))ϕ(Φ−1(v))
(14)

where f̂(·, ·) is a standard kernel estimator on the transformed data (Φ−1(u),Φ−1(v)). The

reliability estimate under S0 is of the form

R̂0(t) = Ĉ0(u, v)|u=R̂1
0(t),v=R̂

2
0(t)

=

∫ R̂1
0(t)

0

∫ R̂2
0(t)

0

ĉ0(u, v)dudv. (15)

In Equation (15) the nonparametric kernel copula and nonparametric margins are used to

express the nonparametric reliability estimator. It is remarked that the semiparmetric estimates

of reliability R̃0(t) can be obtained when the nonparametric margins R̂l0(t) in Equations (14)-

(15) is replaced by the parametric margins u = R1
0(t; θ̂01), v = R2

0(t; θ̂02).

§5 Simulation study

We simulate the accelerated model in the two cases that the dependence of bivariate and

trivariate exponential competing risks is measured by Clayton family. The comparison of esti-

mation methods is presented in this section.

5.1 Bivariate dependent competing risks

Consider k = 3 stress levels as S1 = 240, S2 = 280, S3 = 300, respectively, and the use

stress level S0 = 220. Specify the accelerated function log θil = al + bl logSi for i = 1, 2, 3, l =

1, 2. The coefficients in the acceleration function are set as a1 = −22.8518, b1 = 4.1717, a2 =

−8.9373, b2 = 1.7551.

Under each stress Si in CSALT, there are ni tested products, and Rij products are with-

drawn when the j-th failure takes place. The test under Si is terminated until ri failures are

observed for j = 1, 2, . . . , ri, i = 1, 2, 3. To compare the numerical results, we consider two

progressive schemes given in Table 2 in the constant-stress accelerated life test.

Table 2. Removal schemes under different sample sizes.

Scheme Sample size Stress Removals

Scheme 1
(n1, n2, n3) = (60 60 80)
(r1, r2, r3) = (30 30 40)

S1 ((2, . . . , 2)1×15, (0, . . . , 0)1×15)
S2 ((2, . . . , 2)1×15, (0, . . . , 0)1×15)
S3 ((2, . . . , 2)1×20, (0, . . . , 0)1×20)

Scheme 2
(n1, n2, n3) = (100 100 100)
(r1, r2, r3) = (50 50 50)

S1

S2 ((2, . . . , 2)1×25, (0, . . . , 0)1×25)
S3

Denote cu(v) = ∂C(u,v)
∂u . The competing risks data is simulated by means of the below

algorithm using the conditional approach for an Archimedean copula C(u, v).
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(1) Generate two independent progressive uniform (0,1) samples uij and wij using (Ri1,Ri2, . . . ,

Riri) for j = 1, 2, . . . , ri, i = 1, 2, 3 using the algorithm in [3].

(2) Set v = c−1
u (w), where c−1

u (w) is the quasi-inverse of cu(w). When the Archimedean copula

is Clayton family,

vij = c−1
uij

(wij) =
[
wij

−θc/(θc+1)uij
−θc − uij

−θc + 1
]−1/θc

.

(3) Set xij1 = − log(1− uij)/λi1 and xij2 = − log(1− vij)/λi2.

(4) Obtain (tij , δij) = (min(xij1, xij2), I(xij1 < xij2)) for j = 1, 2, . . . , ri, i = 1, 2, 3.

Based on the simulated competing risks data, we obtain MLEs by solving the log-likelihood

equations in Equation (8), the mean square errors (MSEs), the absolute errors (AEs), the

relative errors (REs). The interval lengths (ILs) and the coverage probabilities (CPs) of the

95% confidence intervals of parameters, namly asymptotic confidence intervals (ACI), percentile

bootstrap (Boot-p) confidence intervals and bootstrap-t (Boot-t) confidence intervals, are pre-

sented. As larger ILs impliy higher CPs, it is not expected to separately compare ILs and CPs.

An alternative method using interval scores (IS) is introduced in [11] to improve the separate

comparision of confidence intervals. This score is often used for quantile and interval predic-

tion. As this score evaluates ILs and CPs simultaneously, it is also a good choice to show the

performance of intervals. Then we apply it to compare the performance (Perfm) of interval

estimation for model parameters. Let lj and uj for j = 1, 2, . . . , N be the lower and upper

intervals in the (1− α)100% confidence intervals of certain accelerated distribution parameter

θ at levels α/2 and 1−α/2 for each simulated data. θ0 is the real value of θ. The interval score

of θ is defined as

IS(α) =
1

N

N∑
j=1

[
(uj − lj) +

2

α
(lj − θ0)I(θ0 < lj) +

2

α
(θ0 − uj)I(θ0 > uj)

]
,

where N is the simulation number. In this study, we set N = 500. These results are shown in

Tables (3)-(5) in the case that the Kendall’s tau is τ = 0.5 for bivariate Clayton family.

Table 3. Parameter estimates for accelerated bivariate competing risks distributions under
Scheme 1.

Method Perfm λ11 λ12 λ21 λ22 λ31 λ32
MLE MLEs 0.9574 1.8378 2.1122 2.4444 2.6085 2.9147

MSEs 0.0018 0.0263 0.0126 0.0031 0.0118 0.0073
AEs 0.0426 0.1622 0.1122 0.0556 0.1085 0.0853
REs 0.0426 0.0811 0.0561 0.0222 0.0434 0.0284

ACI ILs 1.3210 1.4278 2.0943 2.1085 2.1891 2.2025
CPs 0.9340 0.8700 0.9780 0.9500 0.9940 0.9540
IS 1.6930 2.3858 2.2549 2.3862 2.2731 2.5623

Boot-p ILs 1.0991 1.3840 1.8602 1.9840 1.9136 2.0313
CPs 0.8400 0.8640 0.9360 0.9480 0.9400 0.9460
IS 2.2557 2.4300 2.4315 2.3078 2.4373 2.4514

Boot-t ILs 2.5014 3.1648 3.8361 4.3162 3.9071 4.3183
CPs 0.9900 0.9980 1.0000 1.0000 1.0000 1.0000
IS 2.6039 3.1648 3.8361 4.3162 3.9071 4.3183
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Table 4. Parameter estimates for accelerated bivariate competing risks distributions under
Scheme 2.

Method Perfm λ11 λ12 λ21 λ22 λ31 λ32
MLE MLEs 0.9711 1.8296 2.1007 2.4013 2.5862 2.8741

MSEs 0.0008 0.0290 0.0101 0.0097 0.0074 0.0159
AEs 0.0289 0.1704 0.1007 0.0987 0.0862 0.1259
REs 0.0289 0.0852 0.0503 0.0395 0.0345 0.0420

ACI ILs 1.0378 1.1004 1.6045 1.6054 1.9367 1.9447
CPs 0.9540 0.8480 0.9880 0.9540 0.9740 0.9540
IS 1.1707 1.9027 1.7115 1.7856 2.1046 2.4183

Boot-p ILs 0.8714 1.0318 1.3792 1.4665 1.6776 1.7765
CPs 0.8440 0.7660 0.9240 0.9360 0.9340 0.9380
IS 1.8412 2.4778 1.7553 1.7516 2.1150 2.3325

Boot-t ILs 1.9186 2.3333 2.7973 3.1287 3.4068 3.7604
CPs 1.0000 0.9980 1.0000 1.0000 1.0000 0.9980
IS 1.9186 2.3338 2.7973 3.1287 3.4068 3.7627

Table 5. Parameter estimates in the bivariate case under S0.

Scheme Perfm a1 b1 a2 b2 λ01 λ02
Scheme 1 MLEs -25.2326 4.5995 -10.5270 2.0306 0.6542 1.5301

MSEs 5.6684 0.1831 2.5274 0.0759 0.0025 0.0281
AEs 2.3808 0.4278 1.5898 0.2755 0.0497 0.1676
REs 0.1042 0.1026 0.1779 0.1570 0.0706 0.0987

Scheme 2 MLE -24.6342 4.4928 -10.2578 1.9804 0.6693 1.5279
MSEs 3.1772 0.1031 1.7439 0.0508 0.0012 0.0288
AEs 1.7825 0.3211 1.3206 0.2253 0.0346 0.1697
REs 0.0780 0.0770 0.1478 0.1284 0.0492 0.1000

From Tables 3 and 4, we see that the MSEs, AEs and REs of parameter estimators from the

first competing failure cause decrease when the sample size ni at each accelerated stress level

increases. This imply that more failure information on the first cause occurs than the other

cause. Comparing the interval scores, it shows that ACI performs better than the bootstrap

approach. From the estimates under the normal stress level in Table 5, it indicates that likeli-

hood based estimation method on the accelerated dependent competing risks with progressive

censoring scheme has a good performance.

For the nonparametric estimation, we set M = 1 and H1(S) = log(S)− log(S0) in Equation

(12). Two nonparamteric reliability estimates using nonparametric copula are obtained when

the marginal distributions of failure causes are fitted in parametric and nonparametric methods,

which are presented in Figure 2 along with parametric methods. The parametric reliability

under the assumption of independence is also displayed.

From Figure 2, we observe that the reliability estimates using parametric margins in the

dependent competing risks perfom better than the nonparametric copula and margins and the

independent parametric method. The error of the method using parametric copula and margins

has a small change with increasing t. The nonparamtric copula based reliability estimate with
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Figure 2. Comparision of reliability estimation.

parametric margins is close to the true model when t is small. However, the error becomes

larger as t increases.

5.2 Trivariate dependent competing risks

In the trivariate competing risks model, the setting of accelerated life testing and the first

two competing risks remain the same with the bivariate case. The coefficients of the third

competing risk are set as a3 = −15.5174 and b3 = 2.8984. The random samples of three-

dimensional variables for Clayton copula are generated using the Marchall-Olkin approach [19]

instead of the conditional sampling approach in Step (2) of the bivariate simulation algorithm.

Here we consider the removal Scheme 1. The likelihood based parameter estimates are presented

in Tables 6 and 7.

Table 6. Parameter estimates for accelerated trivariate competing risks distributions.

Method Perfm λ11 λ12 λ13 λ21 λ22 λ23 λ31 λ32 λ33

MLE MLEs 0.6240 2.1008 1.5252 1.8574 2.4912 1.8464 2.2895 2.9444 2.9478
MSEs 0.1414 0.0102 0.0006 0.0203 0.0001 0.0236 0.0443 0.0031 0.0027
AEs 0.3760 0.1008 0.0252 0.1426 0.0088 0.1536 0.2105 0.0556 0.0522
REs 0.3760 0.0504 0.0168 0.0713 0.0035 0.0768 0.0842 0.0185 0.0174

ACI ILs 1.3355 1.8203 1.77l16 2.3265 2.4016 2.3140 2.6106 2.6945 2.6890
CPs 0.6640 0.9580 0.9440 0.9320 0.9440 0.9120 0.9240 0.9420 0.9420
IS 4.7063 2.1024 2.2260 3.0428 2.8598 3.3238 3.5071 3.1426 3.0793

Boot-p ILs 0.6927 1.9051 1.6725 2.0589 2.3773 2.0717 2.2316 2.4826 2.4859
CPs 0.6050 0.9560 0.9000 0.8220 0.9400 0.8100 0.7600 0.9200 0.9180
IS 9.9845 2.1383 2.6994 5.0832 2.9645 5.3893 7.9495 3.7096 3.5736

Boot-t ILs 2.0576 4.1773 3.7208 4.9489 5.1207 4.9384 5.5558 5.3139 5.3611
CPs 0.7580 1.0000 0.9980 0.9900 1.0000 0.9960 0.9920 1.0000 1.0000
IS 4.9429 4.1773 3.7921 5.0809 5.1207 5.1237 5.7065 5.3139 5.3611

Table 7. Parameter estimates in the trivariate case under S0.

Perfm a1 b1 a2 b2 a3 b3 λ01 λ02 λ03

MLEs -33.5114 6.0354 -7.1876 1.4446 -14.2396 2.6657 0.3833 1.8299 1.1483
MSEs 113.6275 3.4732 3.0612 0.0964 1.6328 0.0542 0.1028 0.0175 0.0007
AEs 10.6596 1.8637 1.7496 0.3105 1.2778 0.2327 0.3206 0.1323 0.0256
REs 0.4665 0.4467 0.1958 0.1769 0.0823 0.0803 0.4554 0.0779 0.0228
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From Tables 6 and 7, it can be seen that MLEs of parameters at the accelerated stress levels

perform good. The ILs and IS of ACI are smaller than the bootstrap method. Comparing

Tables 3 and 6, we find that ILs and IS in three-dimensional case are larger than the bivariate

case for the same parameters. The estimates of the coefficients in the acceleration functions

have larger MSEs, AEs and REs from Tables 5 and 7 under Scheme 1. This indicates the

accuracy of likelihood based estimation is reduced with the increasing number of failure causes.

§6 Real data analysis

For illustration of the parametric and nonparametric method, we analyze a competing

risks data of Class-H insulation systems for electric motors in a constant accelerated life

test. The setting of the stress levels are at 4 accelerated temperatures (S1, S2, S3, S4) =

(453K, 463K, 493K, 513K) and the normal stress level S0 = 423K. The details of this dataset

refer to Klein and Basu [16] and Nelson [24]. We choose two failure causes, namely Turn and

Phase causes in the bivariate competing risks, and the failure times are used by dividing 104 in

case of the occurring of likelihood tending to zero. The failure times of each competing risk are

considered to be from exponential distribution Exp(λil), i = 1, 2, 3, 4, l = 1, 2. The acceleration

function is expressed as log λil = al + bl log(Si).

The parametric inference in Section 3 is based on a copula with the specified copula pa-

rameter θc. Here we consider three copulas, namely Clayton, Gumbel and Frank, to capture

the dependence between the two competing risks. The three copulas show three tail behaviors.

Clayton copula can capture the lower tail dependence, and Gumbel copula shows the opposite

behavior. For Frank copula, it is a symmetric copula. We use the Akaike information criterion

(AIC) ([8], [26]) to select the copula. According to the relationship between Kendall’s τ and

copula parameter, we discretize the τ interval [0, 1] with the length 0.005 to get the possible

copula parameters. For each θc corresponding to the discrete τ , AIC is calculated and com-

pared to select the copula and θc. For this dataset, Frank copula with θ̂c = 0.2883 is determined

corresponding to τ̂ = 0.1260.

The simulation study shows that the asymptotic confidence intervals of dependent model

parameters are better than the bootstrap method. Thus we present the parameter estimates un-

der S0 and asymptotic confidence intervals in Tables 8 and 9. The overall reliability estimation

under S0 is shown in Figure 3.

Table 8. Parameter estimates under accelerated stress levels.

Perfm λ11 λ12 λ21 λ22
MLE 0.8796 1.4431 3.0456 4.9805
ACI-Lower 0.4346 0.8778 1.5071 3.0326
ACI-Upper 1.3245 2.0085 4.5842 6.9285
ACI-IL 0.8899 1.1307 3.0771 3.8958

λ31 λ32 λ41 λ42
MLE 3.4257 5.5874 5.5312 11.1010
ACI-Lower 1.6981 3.4064 2.5315 6.9262
ACI-Upper 5.1533 7.7684 8.5308 15.2758
ACI-ILs 3.4552 4.3620 5.9993 8.3496
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Table 9. Parameter estimates under S0.

Parameters Estimates
a1 -71.3253
b1 11.7123
a2 -79.2305
b2 13.0808
λ01 0.6086
λ02 0.8814

Figure 3. Reliability estimation under S0 in the Data analysis.

From Figure 3, we see that the reliability function using frank copula model is close to the

independence copula. It can be interpreted by the determined small τ = 0.126 using AIC.

§7 Conclusion

In this paper, the explicit functional forms of the likelihood function and likelihood equa-

tions are presented for specified Archimedean copula-based dependent competing risks model in

constant-stress accelerated life test. The progressive censoring competing risks data is analyzed

using the parametric estimation method, and a non-parametric method is introduced to obtain

the nonparametric reliability at the use condition. The simulation study and data analysis

indicate that the estimation methods have a good performance, and the asymptotic confidence

interval is better than bootstrap confidence intervals. The non-parametric reliability method

can be extended to multivariate competing risks model in future work.
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