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Sharp power-type Heronian and Lehmer means

inequalities for the complete elliptic integrals

ZHAO Tie-hong1 CHU Yu-ming2,∗

Abstract. In the article, we prove that the inequalities

Hp(K (r), E (r)) >
π

2
, Lq(K (r), E (r)) >

π

2

hold for all r ∈ (0, 1) if and only if p ≥ −3/4 and q ≥ −3/4, where Hp(a, b) and Lq(a, b) are

respectively the p-th power-type Heronian mean and q-th Lehmer mean of a and b, and K (r)

and E (r) are respectively the complete elliptic integrals of the first and second kinds.

§1 Introduction

Let p, q ∈ R and a, b > 0. Then the p-th power-type Heronian mean Hp(a, b) [1] and q-th

Lehmer mean Lq(a, b) [2] of a and b are defined by

Hp(a, b) =


[
ap+(ab)p/2+bp

3

]1/p
, p ̸= 0,

√
ab, p = 0

(1)

and

Lq(a, b) =
aq+1 + bq+1

aq + bq
. (2)

It is well-known that both Hp(a, b) and Lq(a, b) are continuous and strictly increasing with

respect to p, q ∈ R for fixed a, b > 0 with a ̸= b. More properties for the p-th power-type

Heronian and q-th Lehmer means can be found in the literature [3-8].

For r ∈ (0, 1), Legendre’s complete elliptic integrals K (r) and E (r) of the first and second
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kinds [9] are defined by 
K (r) =

∫ π
2

0

(
1− r2 sin θ

)−1/2
dθ,

K ′(r) = K (r′),

K (0+) = π
2 , K (1−) = ∞

(3)

and 
E (r) =

∫ π
2

0

(
1− r2 sin θ

)1/2
dθ,

E ′(r) = E (r′),

E (0+) = π
2 , E (1−) = 1,

(4)

where and in what follows we denote r′ =
√
1− r2. In the sequel, we denote K (r) and E (r)

by K and E if no risk for confusion, respectively.

The complete elliptic integrals K and E play a very important role in many branches of

mathematics such as classical analysis, number theory, geometric function theory, and conformal

and quasi-conformal mappings [10-26]. Recently, the complete elliptic integrals K and E have

attracted the attention of many researchers, in particular, many remarkable properties and

inequalities for them can be found in the literature [27-34].

In 1990, Anderson, Vamanamurthy and Vuorinen [35, Theorem 3.31] proved that the in-

equality √
K (r)E (r) >

π

2
(5)

holds for all r ∈ (0, 1).

Later, Wang et al. [36] gave a generalization of inequality (5) and proved that the inequality

Mp(K (r),E (r)) >
π

2
(6)

holds for all r ∈ (0, 1) if and only if p ≥ −1/2, where

Mp(a, b) =

(
ap + bp

2

)1/p

(p ̸= 0), M0(a, b) =
√
ab

is the p-th power mean of two positive numbers a and b.

From (1) and (2) we clearly see that inequality (5) can be rewritten as

H0(K (r),E (r)) = L−1/2(K (r),E (r)) >
π

2
. (7)

Inequalities (6) and (7) together with the monotonicity of p 7→ Hp(a, b) and q 7→ Lq(a, b)

inspired us to ask what are the best possible parameters p and q such that the inequalities

Hp(K (r),E (r)) > π/2 and Lq(K (r),E (r)) > π/2 hold for all r ∈ (0, 1). The main purpose of

this paper is to answer this question. Our main result is the following.

Theorem 1.1. Let p, q ∈ R. Then the inequalities

Hp (K (r),E (r)) >
π

2
(8)

and

Lq (K (r),E (r)) >
π

2
(9)

hold for all r ∈ (0, 1) if and only if p ≥ −3/4 and q ≥ −3/4.
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§2 Lemmas

In order to prove our main result, we need several lemmas which we present in this section.

For 0 < r < 1, the following derivative formulas were presented in [35, Appendix E, pp.

474-475]:

dK

dr
=

E − r′2K

rr′2
,

dE

dr
=

E − K

r
,

d(E − r′2K )

dr
= rK ,

d(K − E )

dr
=

rE

r′2
.

Lemma 2.1. (See [35, Theorem 3.21(1), Exercise 3.43 (11) and (16)])

(1) The function r 7→ (E − r′2K )/r2 is strictly increasing from (0, 1) onto (π/4, 1);

(2) The function r 7→ (K − E )/r2 is strictly increasing from (0, 1) onto (π/4,∞);

(3) The function r 7→ (E 2 − r′2K 2)/r4 is strictly increasing from (0, 1) onto (π2/32, 1).

Lemma 2.2. (See [36, Lemma 2.5]) For p ∈ R, the function r 7→
(

K
E

)p−1 E−r′2K
r′2(K −E ) is strictly

increasing on (0, 1) if and only if p ≥ −1/2. In particular, the inequality

E − r′2K

r′2(K − E )
>

(
K

E

)3/2

holds for all r ∈ (0, 1).

§3 Proof of Theorem 1.1

Proof of Theorem 1.1. We first prove that inequality (8) holds for all r ∈ (0, 1) if and only

if p ≥ −3/4. If p = 0, then inequality (8) reduces to inequality (5), which gives a validity of

Theorem 1.1. Therefore, it suffices to show the inequality (8) for p ̸= 0.

Let

Fp(r) =
1

p
log

K (r)p +
[
K (r)E (r)

]p/2
+ E (r)p

3
− log

π

2
. (10)

Then differentiating (10) yields

F ′
p(r) =

K p−1 E−r′2K
rr′2 + 1

2 (K E )p/2−1(E−r′2K
rr′2 E − K K −E

r )− E p−1 K −E
r

K p +
(
K E

)p/2
+ E p

=
E p/2−1r′2(K − E )(2E p/2 + K p/2)

2rr′2
[
K p +

(
K E

)p/2
+ E p

] [
F̂p(r)− 1

]
, (11)

where

F̂p(r) =
K p/2−1(E − r′2K )(2K p/2 + E p/2)

E p/2−1r′2(K − E )(2E p/2 + K p/2)
.

For x ∈ (1,+∞), we define

fp(x) =
x(p+1)/2(2xp/2 + 1)

xp/2 + 2
.
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Then it follows from Lemma 2.2 that

F̂p(r) >

(
K

E

)(p+1)/2
2K p/2 + E p/2

K p/2 + 2E p/2
= fp

(
K

E

)
. (12)

Taking the logarithmic derivative of f− 3
4
(x), one has

f ′
− 3

4

(x)

f− 3
4
(x)

=
(x3/8 − 1)2

4x(2 + 5x3/8 + 2x3/4)
> 0 (13)

for x ∈ (1,+∞).

We clearly see from (13) that f− 3
4
(x) > f− 3

4
(1) = 1 for x ∈ (1,+∞). This in conjunction

with (12) and K /E > 1 yields F̂− 3
4
(r) > f− 3

4
(K /E ) > 1. Combining this with (11), we

conclude that F− 3
4
(r) is strictly increasing on (0, 1) and so F− 3

4
(r) > F− 3

4
(0) = 0 for r ∈ (0, 1).

It follows from (10) and the monotonicity of Hp(a, b) with respect to p that

Fp(r) ≥ F− 3
4
(r) > 0 (14)

for all r ∈ (0, 1) and p ≥ −3/4.

Therefore, if p ≥ −3/4, then inequality (8) holds for all r ∈ (0, 1) following from (10) and

(14).

Next, we prove that p = −3/4 is the best possible parameter such that the inequality (8)

holds for all r ∈ (0, 1). Several limit values as r → 0+ need to be used and presented as follows.

• It follows from Lemma 2.1 (1) and (2) that

lim
r→0+

logK /E

r2
=

1

2
lim

r→0+

[
E − r′2K

r2r′2K
+

K − E

r2E

]
=

1

2
. (15)

• It follows from Lemma 2.1 that

lim
r→0+

log(E − r′2K )/[r′2(K − E )]

r2
= lim

r→0+

[
K

2(E − r′2K )
+

1

r′2
− E

2r′2(K − E )

]
= −1

2
lim

r→0+

[
E 2 − r′2K 2

r4
· r2

K − E
· r2

E − r′2K

]
+ 1 =

3

4
. (16)

• It follows from Lemma 2.1 (1) and (2) that

lim
r→0+

log(2K p/2 + E p/2)/(K p/2 + 2E p/2)

r2
=

3p

4
lim

r→0+

(E K )p/2−1(E 2 − 2r′2E K + r′2K 2)

r2r′2(2K p/2 + E p/2)(K p/2 + 2E p/2)

=
p

3π2
lim

r→0+

[
E (E − r′2K )

r2
+

r′2K (K − E )

r2

]
=

p

12
. (17)

For p < −3/4, we clearly see from (15)-(17) that

lim
r→0+

log F̂p(r)

r2
=

(p
2
− 1

)
lim

r→0+

logK /E

r2
+ lim

r→0+

log(E − r′2K )/[r′2(K − E )]

r2

+ lim
r→0+

log(2K p/2 + E p/2)/(K p/2 + 2E p/2)

r2
=

1

3

(
p+

3

4

)
< 0,

which implies that there exists a small δ1 ∈ (0, 1) such that F̂p(r) < 1 for r ∈ (0, δ1). Combining

this with (11) and Fp(0) = 0, we conclude that Fp(r) < 0 for r ∈ (0, δ1) and p < −3/4. This in

conjunction with (10) yields Hp(K (r),E (r)) < π/2 for r ∈ (0, δ1) if p < −3/4.

Secondly, we prove the inequality (9).
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Let

Gq(r) = log
K (r)q+1 + E (r)q+1

K (r)q + E (r)q
− log

π

2
. (18)

Differentiation of (18) gives rise to

G′
q(r) =

(q + 1)K q E−r′2K
rr′2 − (q + 1)E q K −E

r

K q+1 + E q+1
−

qK q−1 E−r′2K
rr′2 − qE q−1 K −E

r

K q + E q

=
E q−1(K − E )

[
E q+1 + (q + 1)E K q − qK q+1

]
r(K q+1 + E q+1)(K q + E q)

[
Ĝq(r)− 1

]
, (19)

where

Ĝq(r) =
K q−1(E − r′2K )

[
K q+1 + (q + 1)K E q − qE q+1

]
E q−1r′2(K − E )

[
E q+1 + (q + 1)E K q − qK q+1

] .

It follows from Lemma 2.2 that

Ĝq(r) >

(
K

E

)q+1/2 [
(K /E )q+1 + (q + 1)(K /E )− q

][
1 + (q + 1)(K /E )q − q(K /E )q+1

] = gp

(
K

E

)
, (20)

where

gq(x) =
xq+1/2[xq+1 + (q + 1)x− q]

1 + (q + 1)xq − qxq+1

for x ∈ (1,+∞).

The logarithmic derivative of g− 3
4
(x) yields

g′− 3
4

(x)

g− 3
4
(x)

=
3(x1/4 − 1)2(1 +

√
x)

2x
[
3(x1/4 − 1)4 + 4x1/4(1− x1/4 +

√
x)
] > 0

for x ∈ (1,+∞). This in conjunction with (20) and K /E > 1 implies that Ĝ− 3
4
(r) >

g− 3
4
(K /E ) > g− 3

4
(1) = 1. Combining this with (18) and (19), we clearly see that G− 3

4
(r) >

G− 3
4
(0) = 0, that is,

L− 3
4
(K (r),E (r)) >

π

2
(21)

for r ∈ (0, 1).

Therefore, the inequality (9) holds for all r ∈ (0, 1) if q ≥ −3/4 following from (21) together

with the monotonicity of Lq(a, b) with respect to q.

We now prove p = −3/4 is sharp for the inequality (9).

It follows from Lemma 2.1 (1) and (2) that

lim
r→0+

log
[
K q+1 + (q + 1)K E q − qE q+1

]
/
[
E q+1 + (q + 1)E K q − qK q+1

]
r2

=
q + 1

2
lim

r→0+

(E 2 − 2r′2E K + r′2K 2)
[
(E q + K q)2 + q2(E K )q−1(K − E )2

]
r2r′2

[
K q+1 + (q + 1)K E q − qE q+1

][
E q+1 + (q + 1)E K q − qK q+1

]
=

2(q + 1)

π2
lim

r→0+

[
E (E − r′2K )

r2
+

r′2K (K − E )

r2

]
=

q + 1

2
. (22)
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If q < −3/4, we clearly see from (15), (16) and (22) that

lim
r→0+

log Ĝq(r)

r2
= (q − 1) lim

r→0+

logK /E

r2
+ lim

r→0+

log(E − r′2K )/[r′2(K − E )]

r2

+ lim
r→0+

log
[
K q+1 + (q + 1)K E q − qE q+1

]
/
[
E q+1 + (q + 1)E K q − qK q+1

]
r2

= q +
3

4
< 0,

which yields that there exists a small δ2 ∈ (0, 1) such that Ĝq(r) < 1 for r ∈ (0, δ2). Combining

this with (18) and (19), we conclude that Gq(r) < Gq(0) = 0 for r ∈ (0, δ2) and q < −3/4. This

in conjunction with (18) yields Lp(K (r),E (r)) < π/2 for r ∈ (0, δ2) if q < −3/4.

Remark 3.1. For p ̸= 0, it is easy to verify by (1) that

Hp(a, b) =

[
ap + bp

2
− (ap/2 − bp/2)2

6

]1/p ≤ Mp(a, b), p > 0,

≥ Mp(a, b), p < 0.

This in conjunction with (6) yields H−1/2(K (r),E (r)) > π/2 for all r ∈ (0, 1). Theorem 1.1

enables us to know that p = −1/2 is not the optimal value to make the inequality (8) valid.

On the other hand, Liu [5] studied the inequalities between the power and Lehmer means

and established the inequality M2λ+1 ≤ Lλ(x, y) for all x, y > 0 if λ ∈ (−1,−1/2) ∪ (0,+∞)

and the reverse inequality M2λ+1 ≥ Lλ(x, y) for all x, y > 0 if λ ∈ (−∞,−1) ∪ (−1/2, 0).

Combining this with (6), we clearly see that

L−3/4(K (r),E (r)) ≥ M−1/2(K (r),E (r)) >
π

2
for all r ∈ (0, 1), which gives the sufficient condition of the second inequality in Theorem 1.1.

Remark 3.2. From (10) and (18), we clearly see that

lim
r→1−

Fp(r) = log
2

π
− log 3

p
, (23)

if p < −3/4 and

lim
r→1−

Gq(r) =


+∞, −1 < q < −3

4 ,

log 4
π , q = −1,

log 2
π , q < −1.

(24)

The necessary conditions for the reverse inequalities of (8) and (9) are lim
r→1−

Fp(r) ≤ 0 and

lim
r→1−

Gq(r) ≤ 0, which are equivalent to p ≤ − log 3/ log(π/2) and q < −1 from (23) and (24).

By numerical experiments, it enables us to present the following open problem.

Open Problem. Inequalities

Hp(K (r),E (r)) <
π

2
and Lq(K (r),E (r)) <

π

2
hold for all r ∈ (0, 1) if and only if p ≤ − log 3/ log(π/2) and q < −1.
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