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Sharp power-type Heronian and Lehmer means

inequalities for the complete elliptic integrals

ZHAO Tie-hong! CHU Yu-ming**

Abstract. In the article, we prove that the inequalities
™ . T
Hy( (), 6() > &, Lo(# (), 60r)) >

hold for all » € (0,1) if and only if p > —3/4 and ¢ > —3/4, where H,(a,b) and Ly(a,b) are
respectively the p-th power-type Heronian mean and ¢-th Lehmer mean of a and b, and % (r)

and &(r) are respectively the complete elliptic integrals of the first and second kinds.

81 Introduction

Let p,q € R and a,b > 0. Then the p-th power-type Heronian mean Hp(a,b) [1] and g-th
Lehmer mean L, (a,b) [2] of a and b are defined by

ap+(ab)”/2+b” 1/p 0
- S o 1)
Vab, p=0
and PR
a? + b4
Lq(a,b) = T—l—bq (2)

It is well-known that both H,(a,b) and L,(a,b) are continuous and strictly increasing with
respect to p,q € R for fixed a,b > 0 with a # b. More properties for the p-th power-type

Heronian and ¢-th Lehmer means can be found in the literature [3-8].

For r € (0,1), Legendre’s complete elliptic integrals .2 (r) and &(r) of the first and second
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kinds [9] are defined by
H(r) = [iF (1—r2sing) > do,
K1) = H ), 3)
H(0t)=3%, H(17)=00
and
z 2 . 1/2
E(r)=J7 (L —r?sinf) '~ db,
&' (r) = &), (4)
&0 = E17) =1,
where and in what follows we denote ' = /1 — r2. In the sequel, we denote . (r) and &(r)

by £ and & if no risk for confusion, respectively.

s
2

The complete elliptic integrals # and & play a very important role in many branches of
mathematics such as classical analysis, number theory, geometric function theory, and conformal
and quasi-conformal mappings [10-26]. Recently, the complete elliptic integrals .# and & have
attracted the attention of many researchers, in particular, many remarkable properties and

inequalities for them can be found in the literature [27-34].

In 1990, Anderson, Vamanamurthy and Vuorinen [35, Theorem 3.31] proved that the in-
equality
H(Er) > 5 (5)
holds for all r € (0,1).
Later, Wang et al. [36] gave a generalization of inequality (5) and proved that the inequality
T
My(H (), 6(r)) > (6)
holds for all r € (0,1) if and only if p > —1/2, where
aP 4+ bP

1/p
Mp(avb) = < ) ) (p 7£ 0)3 MO(avb) = \/%

is the p-th power mean of two positive numbers a and b.

From (1) and (2) we clearly see that inequality (5) can be rewritten as

Ho(H (1), 6(r)) = Loaja(H (1), 6(r)) > 3. (7)

Inequalities (6) and (7) together with the monotonicity of p — Hp(a,b) and ¢ — Lg(a,b)
inspired us to ask what are the best possible parameters p and ¢ such that the inequalities
H, (A (r),&(r)) > x/2 and Ly(# (r),&(r)) > m/2 hold for all r € (0,1). The main purpose of

this paper is to answer this question. Our main result is the following.

Theorem 1.1. Let p,q € R. Then the inequalities

Hy (H (), 6(r) > 5 8)
and
Ly (K (1), 6(r) > 5 (9)

hold for all r € (0,1) if and only if p > —3/4 and ¢ > —3/4.
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82 Lemmas

In order to prove our main result, we need several lemmas which we present in this section.
For 0 < r < 1, the following derivative formulas were presented in [35, Appendix E, pp.
474-475]:
ot & —r?x d& & -
Tar T oz dr r
d(& —d:@%/) . d(H — &) _ ré

dr 72’

Lemma 2.1. (See [35, Theorem 3.21(1), Exercise 3.43 (11) and (16)])

(1) The function v~ (& — r"?#")/r? is strictly increasing from (0,1) onto (m/4,1);
(2) The function v+ (& — &)/r? is strictly increasing from (0,1) onto (7/4,00);
(3) The function v+ (2 — r"2¢°2) /rt is strictly increasing from (0,1) onto (72/32,1).

Lemma 2.2. (See [36, Lemma 2.5]) For p € R, the function r +— (%)p_l % is strictly
increasing on (0,1) if and only if p > —1/2. In particular, the inequality

&—r?H (AN

2H =) (ﬁ)
holds for all r € (0,1).

83 Proof of Theorem 1.1

Proof of Theorem 1.1. We first prove that inequality (8) holds for all » € (0,1) if and only
if p > —3/4. If p = 0, then inequality (8) reduces to inequality (5), which gives a validity of
Theorem 1.1. Therefore, it suffices to show the inequality (8) for p # 0.

Let

H )P+ [ ()EM)] + &y “log T (10)

1
F, = -1
p(r) ? og 3 5

Then differentiating (10) yields
B -1 8—737:’,22‘%/ + %(%éa)pm_l(g;:i%@@ N <%/JKT—&) _ gr-1 Ji’r—o@

Fy(r) =
: v+ (HE) + v

EP2= 112 _ £V(2&P/2 & P2
_ ( )( - )[Fp(r) 1], (11)
27’2 [Ji/p-l- (Jfg) +éap]
h
where R - %p/g_l(g _ T/zjgf)@%/pm + gp/z)

Fy(r) = EP2=Lp12( — £)(26P/2 + HP/2)

For z € (1, +00), we define

xPt1/2(222/2 4 1)
xP/2 +2

fp-f:
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Then it follows from Lemma 2.2 that

=R N (p+1)/2 9. P/2 4 /2 N4
B> (% S = h () (12)
& HP/2 4 2&P/2 &
Taking the logarithmic derivative of f_% (z), one has
fls(@) 3/8 _ 1)2
i (@ ) >0 (13)

foa(z)  4x(2+ 5a3/8 + 223/4)
for z € (1, +00).

We clearly see from (13) that ff%(x) > fa(l)=1forze (1,400). This in conjunction
with (12) and £ /& > 1 yields ﬁfg(r) > f_s(A /&) > 1. Combining this with (11), we
conclude that F_3 (r) is strictly increasing on (0,1) and so F_3(r) > F_3(0) = 0 for r € (0,1).
It follows from (10) and the monotonicity of Hy(a,b) with respect to p that

Fyp(r) > F,g(r) >0 (14)
for all » € (0,1) and p > —3/4.

Therefore, if p > —3/4, then inequality (8) holds for all » € (0,1) following from (10) and
(14).

Next, we prove that p = —3/4 is the best possible parameter such that the inequality (8)

holds for all 7 € (0,1). Several limit values as 7 — 0 need to be used and presented as follows.

o It follows from Lemma 2.1 (1) and (2) that

. log )& 1 . E—rPH & 1
lim 22 /% _ _— 1
Rt T 2 ot [ r2r2 + r2& 2 (15)
e It follows from Lemma 2.1 that
2 /2 _
lim log(& —r?)/[r"*(H — &)) — lim H N 1 &
r—0+ r2 ro0t | 2(8 —r2) 2 2r2(H - &)
1 &2 2 2 r2 r2 3
— i : : 1=". 1
vt { r & - M}A ey (16)

e It follows from Lemma 2.1 (1) and (2) that
log(2P/2 + &7/2) /(P/? +267/2)  3p i (EHNVPI2(E? — 22 EH + 1% H?)

(I8, 2 4 10+ 1272 (2 P2 4 EPI2) (AP 4 26072)
_p o [EE—1PH) P -E)] _p
372 rgrg+ [ r2 T r? 12 1

For p < —3/4, we clearly see from (15)-(17) that
o 2 2 _
log Fy (1) _ (159 B 1) lim log 2 /& + lim log(& —r"*2")/[r'*(H — &)]

.
ey S r—0t 12 r—0+ r2
log (2.7 P/2  £r/2) /(¢ P/2 4 9LP/2 1
+ lim 108 HEVD)NATTH2ETT) L (L3 o,
r—0t r2 3 4

which implies that there exists a small §; € (0, 1) such that ﬁp(r) < 1lforr € (0,6;). Combining
this with (11) and F,(0) = 0, we conclude that F,(r) < 0 for r € (0,01) and p < —3/4. This in
conjunction with (10) yields H,(J# (r), & (r)) < w/2 for r € (0,61) if p < —3/4.

Secondly, we prove the inequality (9).
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Let
H(r)att + &(r)att T

T+ &) —log —. (18)

Gy(r) = log B

Differentiation of (18) gives rise to
(q+ DA IEDHE — (g4 NEIEZE el €DK _ gpa1 A=

/ _ r rr/2 B
Go(r) = At { Satl 4+ &a
1Nt — &)[&g1H! DEHT — g9+ [
A A e e gy 1) (19

P( AL 1 Fat) (A1 + £9)

where
HTHE ) [T+ (q+ 1) ET— q&T]

& () — .
q(7) E2 (= E)[EIT + (q+ 1)EX T — g 9]

It follows from Lemma 2.2 that
- AN )EY T + (q+ ) H)E) —q) [
60> (%) 1+ (a0 + 06—t Ey] (%) o

2[4 4 (g + D — g]
14 (g + 1)z — gzat!

where

gq(z) =

for x € (1, +00).

The logarithmic derivative of g_z (x) yields

9 g(z) 3(z* —1)2(1 4 )
g_z(@)  2z[3(aV/* — 1) + a4 (1 — 2/t + /)]
for x € (1,400). This in conjunction with (20) and .# /& > 1 implies that é_%(r) >

g_2(A/&) > g_s(1) = 1. Combining this with (18) and (19), we clearly see that G_z(r) >
G,%(O) = 0, that is,

>0

5 (21)
for r € (0,1).

Therefore, the inequality (9) holds for all r € (0, 1) if ¢ > —3/4 following from (21) together
with the monotonicity of Ly(a, b) with respect to g.

We now prove p = —3/4 is sharp for the inequality (9).

It follows from Lemma 2.1 (1) and (2) that
log [ + (q+ 1) ET — g8 [T + (q+ 1)EH T — g8 1]

lim 5
r—0t r
g+1 (E2 = 228X + 122 (6T + H V) + P(EX )T HH - E)?

= m

2 S0t P22 [T 1 (g + DA ET— &I [ET + (q+ DEHT — g ]

2 2 —

:2(q—|—1) lim EE —r f%/)_’_r H(H — &) :q—i—l. (22)

w2 rsot 72 r2 2



472 Appl. Math. J. Chinese Univ. Vol. 38, No. 3

If ¢ < —3/4, we clearly see from (15), (16) and (22) that

G _ 2 2 _
i 28Ca() _ gy gy, JBHYE Log(E AN [r(A — 8)
r—0+ r2 r—0+ T r—0+ 72
L B[ (a4 DA ET— g8/ [ETH + (g + 1)EX — g X ]
r—l)%lJr r2
3

which yields that there exists a small d2 € (0, 1) such that @q (r) < 1forr € (0,d2). Combining
this with (18) and (19), we conclude that G,(r) < G4(0) = 0 for r € (0,d2) and ¢ < —3/4. This
in conjunction with (18) yields L, (¢ (r), & (r)) < w/2 for r € (0,d9) if ¢ < —3/4.

Remark 3.1. For p # 0, it is easy to verify by (1) that
aP + b7 (aP/? — bP/?)? r [ < My(a,b), p>0,
2 6 > M,(a,b), p<D0.
This in conjunction with (6) yields H_q,5(%# (r),&(r)) > n/2 for all » € (0,1). Theorem 1.1

enables us to know that p = —1/2 is not the optimal value to make the inequality (8) valid.

Hp(a7 b) =

On the other hand, Liu [5] studied the inequalities between the power and Lehmer means
and established the inequality Mayi1 < Ly(z,y) for all z,y > 0if A € (—1,—-1/2) U (0, 4+00)
and the reverse inequality May41 > Ly(z,y) for all z,y > 0 if A € (—o0,—1) U (—1/2,0).

Combining this with (6), we clearly see that

Logpa(H (1), 6(r) = Moy po(H (), E(r)) > 5

for all r € (0, 1), which gives the sufficient condition of the second inequality in Theorem 1.1.

Remark 3.2. From (10) and (18), we clearly see that

2  log3
lim F, =log — — 23
Jim Fp(r) =log - = ==, (23)
if p< —3/4 and
+00, —1<q<—%,
lim Gy(r) ={log?, ¢=-1, (24)
r—1- L
log%7 qg<—1.

The necessary conditions for the reverse inequalities of (8) and (9) are lim Fj(r) < 0 and
r—1-
hr{l G4(r) <0, which are equivalent to p < —log3/log(n/2) and ¢ < —1 from (23) and (24).
r—1"

By numerical experiments, it enables us to present the following open problem.

Open Problem. Inequalities
Hy(H (1), 6() < 5 and Ly(H (1), £(m) < 5
hold for all » € (0,1) if and only if p < —log3/log(n/2) and ¢ < —1.
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