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Multiple parametric Marcinkiewicz integrals with mixed

homogeneity along surfaces

SHEN Jia-weil HE Shao-yong?* CHEN Jie-cheng!

Abstract. In this paper, the multiple parametric Marcinkiewicz integral operators with mixed
homogeneity along surfaces are studied. The LP-mapping properties for such operators are
obtained under the rather weakened size conditions on the integral kernels both on the unit
sphere and in the radial direction. The main results essentially improve and extend certain

previous results.

81 Introduction

Let R (d = m or n), d > 2, be the d-dimensional Euclidean space and S¢~! be the unit
sphere in R? equipped with the induced Lebesgue measure dog. Let aq; > 1(j = 1,---,d) be
fixed real numbers. Define the function F : R? x (0,00) — R by F(z, pq) = Z?zl x?pgmd’j. It
is clear that for each fixed x € R?, the function F(x, pg) is a decreasing function in pg > 0. Let
pa(z) be the unique solution of the equation F(z, pg) = 1. Fabes and Riviere [21] showed that
(R9, pg) is a metric space which is often called the mixed homogeneity space related to {aq,; jy
For A > 0, let Ag» be the diagonal d x d matrix, namely, Ay y = diag{A¥',---, A\*44} For a
function ¢: RT — (0, 00), we shall let A7 : R? — R? be the mapping

ATY) = Adppw)y
where y' = A ,,)-1y € ST

We would like to remark that if ag1 = g2 = - - -aqq = 1, then py(z) = |z|. Indeed, the
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change of variables related to the space (R%, p,) is given by the transformation
T = pgd’l cosfy - --cosly_ncosbly_1,
To = pjy"? cosby - - cosfy_osinby_q,

Ta—1 :pddd ' cos 0 sin @5,

Tq = pd 44 sin 6,
where 2 € R?. Therefore, it is easy to check that
dx = p3¢~ " Jy(2)dpdoa(x'),
where pgd_le(m’) is the Jacobian of the above transform and ag = ijl ag,j. Furthermore,
it was proved that in [21] that Jy(2’) € C*°(S?7!) and that there exists My > 0 such that
1< Jy(z') < My, 2’ eS8t

Let 2 be a real valued and measurable function on R? with Q € L'(S9!) and satisfy

Q(Agz) = Qz),VA > 0, and /d 1 Qy')J(y")doa(y") = 0. (1)

For a suitable function h defined on (0,00), we define the parabolic Marcinkiewicz integral

> 1 P dt\ 1
h,0 / / QZ(T)) \2*)27) (2)
pa(y)<t pd y
WhereT:a+ib(ab€RW1tha>O andheA( *). Here A,(R") for v > 1 denotes the

set of all measurable functions satisfying the condition

-1 f 1/v
sup (R / Ih(t)[7de) Y <

R>0 0
We would like to note that the class of the operators p, o is related to the class of the parabolic

operator

singular integral operators

Qy)h(p(y
Ta(f)) = po. [ SO 5 yya
Rd p(y)
When h = 1, we denote pp, o by pg. Clearly, if oy = a3 =--- = ag =1 and 7 = 1, then the

operator pq is a natural analogy of higher-dimensional Marcinkiewicz integral introduced by
Stein [30], which has been investigated by many authors (see [8,10,18,34]). When a;; > 1,5 =

-,d, and 7 = 1, Xue ,Ding and Yabuta [37] first established that jg is bounded on LP(R%)
for 1 < p < oo, provided that 2 € L4(R?) for ¢ > 1. Subsequently, Chen and Ding [12, 13]
extended the result of [37] to the case Q € L(logt L)z (S41) and Q € H'(S91) respectively.
Moreover, it follows from Wang, Chen and Yu’s work [31] (also see [6]) that uq is bounded on

LP(RY) for 25 - < p<2Bif Qe Fg(99) for some B > 1, where
Fs(S971) = {Q € LS4 1) : sup / 1Q(y")|(log p )ﬁda(y’) < oo}, VB > 0.
gesd-1 Jga-1 1€ -y

For the general operator up o, the kernel of ;15 o has the additional roughness in the radial
direction, which has received a large moment of interest of many authors in the Euclidean
setting, for instance, see e.g. [15-17,19]. In order to extend the results in [23] to the singular
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integral operator T}, o in the Euclidean setting, Fan and Stao [22] introduced the function class
WZF5(S471) in more general form, namely, the set of all functions Q € L!(S97!) satisfying

1
5/:1;571 //Sd-lXSd_l 12(6)Q(w)] (log IC o(0)do(w) < o0, B> 0.

o)
w) - ¢l
Furthermore, they showed that Fg(S') C WF3(S'). However, for d > 2, the relation between
F5(S471) and WF(S?1) remains to be open. Recently, Liu, Wu and Zhang [27] showed that
pn.q is bounded on LP(R?) for some 8 > max{2,7'}/2 with |1/p — 1/2| < min{1/9/,1/2} —
min{1/9' 4+ 1/2,1}/(8 + 1), provided that h € A, (RT) for v > 1 and Q € WF(S%1).

In this paper, we will focus our attention on the multiple Marcinkiewicz integrals with mixed

homogeneity on product spaces. Suppose that € L!(S™~1 x S"~1) and satisfies the conditions
Q<Am,sxa Amt) = Q(xay)a stt > 07 (3)

/ Qs ) I (Yo () = / Q0 ) (v )dom () = 0. )
S'ln,fl n—1
Let 7, = a; +1ib;, a;,b; € R with a; > 0,7 =1,2. For v > 1, let A, denote the set of measurable
functions h: Rt x Rt — C satisfying
fu plta 1/y
sup h(r, t)[Ydrdt < 0.
R1>0,Ry>0 R1Rz / / ) )

A, for y1 > 72 and L™ = A,,. We consider the multiple parabolic

Observe that A

Marcinkiewicz integral operators defined by

Man(f </ / st$y|2d$dt) (5)

V(o (w), pn(v))
F,(z / / T —u,y — v)dudv.
@) STI 172 J o (w)<s S pu(v) <t pm )em T pp (V)2 T f Y )

When h =1, 71 = = 1, and aupy = apy = 1,4 = 1,---,m,j = 1,- - -,n, the operator

n &

where

Mg, (denoted by Mgq) is just the classical Marcinkiewicz integral on product domains, which
studied extensively by many authors (see [2,7,9,11,14,24,25,32,33,35,36] among others). In
particular, Al-Qassem et al. [2] proved that Mg is bounded on LP(R™ xR") for 1 < p < 00 if Q2 €
Llog™ L(S™~ 1 xS 1). It should be pointed out that the condition Q € Llog™ L(S™~ ! xS"1)
is optimal in the sense that the operator Mg may fail L? boundedness if €2 is assumed to be in
L(log™ L)!=¢(S™~1 x S"~1) for some € > 0. Afterward, Al-Salman extends the results in [2] to
Marcinkiewicz integrals with mixed homogeneity. On the other hand, Hu, Lu and Yan [24] (also
see Wu’s work [33,36]) obtained that Mg) is bounded on LP(R™ x R™) for 1 + % <p<2B
and > %, provided that 2 satisfies the following condition:

sw ] 0, 0V HGE )P dom()don(@) <00, (6)

(& m)esSm—txgn-1JJgm-1xgn-1

where

+ log + log log

I’ - o'

1 1 1
G ! / :1
(&) = log {7 108 [y 108 [

For the sake of simplicity, we denote that for 8 > 0,
Fp(Sm 1t x §" )y = {Q e L'(S™ ! x ") 1 Q satisfies (6)}.
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In 2013, Liu and Wu [26] extends the result of [24] to the case: h=1, 71 =72 =1, qp,; > 1
and o, ; > 1,9 =1,---,m,j =1,---,n. To study singular integral operator on product domains
with rough kernels both along a radial direction and on the spherical surface, Ma, Fan and

Wu [29] introduced the following size condition:

sup / / Q0,190 w)
(El’nl)es’m,—l XS”71 (Sm—lxsn—l)2

x {Ger o (0,w)YP doy, (v )do, (V') do, (0)doy, (w) < o0, (7)
where

Ger (0, w) = log

log + log + log

1 1 1
[{w = 0,&)] 7 [(v = w, )] (' = 0,¢)] (v —w,n)|

We set

WFp(S™ 1t x S" 1) ={Q e LY(S™ ! x §"71) : Q satisfies (7)}.
We note that the condition (7) introduced by Ma et al. in a more general form in [29]. Employing
the ideas in [22], one can check that Fg(S x §) C WFz(S x S) (see Proposition 2.1 in [29]).
When m > 2 or n > 2, the relation between F5(S™~! x S"~1) and WF5(S™~ ! x S"~1) remains
to be open.

A natural question, which arises from the above results, is the following:

Question: For the general case o, ; > 1 (¢ = 1,---,m) and ap; > 1 (j = 1,---,n),
determine whether the L? boundedness of the operator Mg ;, holds under the condition in the
form of Q € WFz(S™~! x §"~1) with h € A, for v > 1.

The main purpose of this paper is to settle this question. We will study a family of operators
broader than Mg ;. More precisely, let Py, and Py, be two non-negative polynomials on R
with Py, (0)=0 and deg(Px,) = N;(i = 1,2). For suitable functions ¢,1 : RT — R, we define
the multiple singular integral operator MQ ,, along surfaces S(Pn, (¢), Pn, (w)) by

ds dt
Mg’h (/ / |FPN1(SD PNz w)( )‘2 SS t) , (8)

where
FSPZ\H (LP):PNz(w)(x, y>
11 Q h(pm (u),
- ~ . / (Uy Uo)t (f)_[_ L(u) p;l(g)T) f(l' _ AZNl (‘P) (u)’ y _ ASNQ (w) (v))dudv
s t 2 pm(W)<s Jpy,(v)<t pm(u) " lpﬂ(v) nor
and

S(Pr (), Pry(@)) 1= {(An" 7 ), 772 (@) : (w,0) € R™ x R},
Clearly, Mg p, is the special case of MQ,h for Py, = o =1 =1,i = 1,2. Tt was verified in [1]
that Mgq p, is bounded on LP with [1/p — 1/2| < min{1/4/,1/2} if Q € L9(S™~! x S"~1) and
h € A, for some v > 1.

Our main results can be formulated as follows:

Theorem 1.1. Let Py, and P, be two real valued polynomials on R satisfying Py,(0) = 0
and Py, (t) > 0 for t # 0, where N; is the degree of Pn,, i = 1,2. Let ¢,1 € §, where § is the
set of functions ¢ satisfying the following properties:

1. ¢ : RY — RT is continuous strictly increasing and ¢ € CY(RT) satisfying that ¢' is
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monotonous;
2. there exist constants Cy and cy such that t¢'(t) > Cyo(t) and ¢(2t) < cy¢(t) for allt > 0.

Suppose that h € A, for some v > 1 and 2 € WFg(S™™! x S"71) for some > max{2,~'}/2
satisfying (3)-(4). Then Mgf defined as in (8) is bounded on LP(R™ x R™) for |1/p—1/2] <
min{l/~'}—min{l/+'+1/2,1}/(8+1). Furthermore, the bound is independent of the coefficients
of Pn, and Py, , but depends on ¢, ¢, N1, N2, m, n and 5.

Remark 1.1. It should be pointed out that the introduction of the class § is greatly motivated
by Al-Salman’s works [5-7]. There are some model examples in the class §, such as t*(a > 0),
t*(In(1 +t))? (o, B > 0),tInln(e + t), real-valued polynomials P on R with positive coefficients
and P(0) = 0 and so on. In addition, for any ¢ € §, there exists a constant By > 1 such
that ¢(2r) > Byo(r) for all v > 0 . In [6], Al-Salman established the LP—boundedness of
the parabolic Marcinkiewicz integrals with h(t) = 1 and Pn(t) = t along surfaces defined by
the functions ¢ in §, provided Q € Fz(S"~1) for B > 1 and 22—81 < p < 28 (see [7] for the
multiple-parameter case). In the current paper, our theorems show that the LP —boundedness of
the operator Mg’ffz, whose kernel has the additional roughness in the radial direction due to the

presence of h, depends on the index vy, which characterize the roughness of h.

Theorem 1.2. Let Py,, Py,, ¢ and ¢ be as in Theorem 1.1. Suppose that h € A, for some
v > 1, Q satisfies (3)-(4) with Q € Fz(S x S) for some 8 > max{2,7'}/2. Then Méf defined
as in (8) is bounded on LP(R™ x R™) for |1/p—1/2| < min{1/4'} —min{1/y' +1/2,1}/(8+1),
and the bound is independent of the coefficients of Pn, and Py, , but depend on ¢, 1, N1, Na,

m, n and f3.

Obviously, Theorem 1.2 follows from Theorem 1.1 and the relation F3(Sx.S) C WFg(Sx.S).
Therefore, it suffices to prove Theorem 1.1.

We end this introduction with the following remarks. First of all, all of our results are
new, even in the special case: Py, = Py, = ¢ = 1 = 1, moreover, even in the case where
Qmi = Qpj = 1,1 =1,---m,j = 1,-- -, n, namely, the Euclidean setting. Second, since
Uq>1 Li(S™=1 x 8§"~1) is a proper subset of WFz(S™~! x §"~1) for any 3 > 0, Theorem
1.1 gives an essential improvement of the result in [1]. However, we don’t know whether the
ranges of § and p in Theorems 1.1 and 1.2 are sharp, which is interesting. Third, we note that
the main ingredient of Theorem 1.1 is based on the use of Fourier transform estimates and
Littlewood-Paley theory which was originally introduced in [20]. Employing the ideas in [20],
there are many works to investigate the LP —boundedness of Marcinkiewicz integrals and related
operators, for example, see [3,4,6,7,26,36] and the references therein. Due to the presence of
h, our methods and techniques are more delicate and complex than those of [3,4,6,7,26,36].

This paper is organized as follows. In Section 2, we will introduce some notation and give
some preliminary lemmas. Section 3 is devoted to proving Theorem 1.1.

Finally, we make some conventions. Throughout this paper, we let p’ denote the conjugate
index of p, i.e., % + 1% = 1. The letter C, sometimes with additional parameters, stands for
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a positive constant which is independent of the essential variables, but whose value may vary

from line to line.
82 Some notations and preliminary lemmas

For given positive polynomials Pn, () = va:ll Bit!, Pn,(t) = Z;V:Ql vti, and for | €
{1,2,---,m}, k € {1,2,- - -,n}, we denote (Pn,(t))>m! = Zﬁﬁf‘mi a; t* and (Py,(t))** =
Z;vzf" b tl. Then for z,£ € R™, y,n € R™ and ¢,9 € §, we write

P ) m Nioum,
N1</7 5 ZPN1 0‘7an fl Z Z azl‘p pm xf-ﬁz,

n N2Oén,1c

P N ;
APy = ZPNQ Nty e =Y Y bikt(pn(¥) v - ke

k=1 j=1
Let N1 = max{Niapm; : 1 <1 < m}, Ny = max{Noan . : 1 < k < n}, let a;; = 0 when
i > Nitun,i, bjr = 0 when j > Noay, ;. Thus

m Niam, N1
AP @) e = 2 X ouelon(@)at &= 3 (L) Y )eln (@)
P i=1
where L; (&) = (%151,. . az,mfm) Similarly,
n Noon i N3
APNz(w) = Z Z bj kﬂ} Pn Mg = Z(Ij (77) y')d’((ﬂn(y)))],
k=1 j=1 J=1

where I;(n) = (bjim, - - bjﬂ]n) For any p € {0,1,--- N1} and v € {0,1,- - -, N2}, we set

Zaz 1-73190 Pm Zaz mmm@ pm (2 )) )’
Zb] 1y1¢ pn(y Zby nyn (pn(y)) )

Then

ORE Z(@(n) W) (Pn (), 0 < < No.
j=1
For i,j € Z,s,t € R* and 0 < p < N1,0 < v < Ny, we define the measures {0}, ;} and
{lo55s.41} by

P (), Pn(Y)) —i(Qu(a) €+ R0 (v)0)
UQu(@) €+ Ry (W)m) g
’j gt(& ) 21 1 2]t /ASt pm am Tlpn(y)an_TQG e

o al(€m) = 9 M ). D] (@065 01 g
©,738, 2z 1 27t To A t m am—np (y)an—ﬁ
where A:; = {2715 < p(z) < 213,23 4 < pu(y) < 27t}. One can easily check that for each
pwe{0,1,--- N}and v € {0,1, -, No},

/\/\

,]st(§ 77) ,gst(f 77)_0
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and
0

Fj’é\fl (¢),Pny (d’)(x y) — g7 Z 9iT19jT2 J st f(a:,y) (9)

1,j=—00

First we need the following estimate, which plays curial role in the proof of our main result.

Lemma 2.1. ([25], Lemma 2.5) Let v, € F. Then for p € {1,--- N1}, v € {1,---,Na} and
r >0,

i, L) oo P =1/
| = " | < Clo(r)Ly(§) - o' H,

r/2 Pm
r . v ’ j d n
| //2 et 25=1 Li(m)-y"d(pn)’ pL| < Cl(r)” Ly (n) - y/|71/u.

Lemma 2.2. Let ¢, € F, let h € Ay(RT) for some 1 <y < 0o and ¥ = max{2,7'}. Suppose
that @ € WFg(S™! x S"=1) for some B > 0 and satisfies (1). Then for p € {1,-- -, N1},
ve{l, -, No}, there exists a constant C > 0 such that

(i)
(X T,J;i\jt"(f,n)l < Clo(2's)# L, (¢)|min {1, ([ L(M) "7} (10)
(i)
ot (€m) — ?f;s\ff(f,n)lSClw(?t)“lu(n)lmin{L(1n|<p(2"5)Lu(§)l)’%}; (11)
(iii) 3
o (Em)] < Cmin {1, (In|p(2°) L, (&) )%, (In [(294)T, (m)]) 7,
(In[(2's) L (&) - (n |2 )L, ()75 }1 (12)
(iv)

—

oI (6m) — ot (Em) — otV (e m) + ot LT (e )|
< Cmin {1, [p(2'8)* L, (€)], [0 (276)" L, (n)], |p(2°8) P Lu(€)] - [0 (276)" I, (1)

L (13)

Proof. By a change of variable, we have
|M15t(f77) “Jifﬁnﬂ
|e_ZQu(1) & —lQH 1(x)- §| |Q(.’E y)h(pm( ) p”(y))‘dxdy
21 T1 2Jt Ast

P ()T pp (y) T2
29t
< Clp( 21 VL, (& |/ / h(ry,7r2)
2L 18 Jj— lt

drid
e // (261, 62) [T (61) T (62) dorn (61 ) dorn (6)
Sm—lxgn-1

r1ir2

< Cle(2's)"Lyu(€)]-
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On the other hand, by the Holder’s inequality, we have

1
|t t(f ) — ol :(g )|

29¢ | |
/ / // e BTy )02y (ra) o=t 0 (Lal€) 1) (ra)’
21 T1 2315 2i—1g JQi—1¢ gm—1yx gn—1

¢ S @005 10, 0) Ty (61) T (B2) A (61)dr (B) (1, ) ol

1—71,1—72
’I"l 7"2

s 20¢ | !
< C(/ / ‘ // et 25=1 (L (m)-02)d(r2)’ [e—i S (Li(8)-01)e(r1)"
= 2i—1lg Joi—1¢ Sm—1yxgn—1

1
Dory i rdrydry\ Y
= e R O OLO001,05) i (02) 1 (02)dorm (61)don (02)] )
27 ¢
< Clp(2is) L, (5>|”“‘X{1_”0}</ / | L) (e
2i— 15 2i—1¢ Sm—1ygn—1

™ [e—ZZizl( #(€)01)p(r1)" _ =i 320 (Li(€)-01)p(r1)’ }

|2 dr1d7‘2> 3

T1ir2

27t v |
J s, t / / | // et =1 (L3 (m)-02)(r2)’ [efizle(Li(ﬁ)'el)ga(rl)l
5T 2i—1g Joi—1¢ gm—1ygn—1

(017 02) (91) (92)d0'7n(01)d0'n(02)
Let

N e_izi;f(Li(s)ﬂl)w(n)"]g(el,92)Jm(91)Jn(Gz)dam(@l)dan(@?)|2dilfr2
Then we can write h
R (&) ‘ / / e @ 0re(n)” ][t uae(r)” _q]
2i—1g Joi—1¢ Sm—1x8n— 1)2
% et 28 (Li(€) (Or—w1)p(r1) o—i 325y (1 () (02— w2)¥(r2)”) Q(gvaQ)W
Tun(01)7 (92>mdom<91>d0n<92>d0m<w1>d%‘w2>%‘
(15)

Let )
27¢

Lioltun) = [t Ei b Gy &2,
” 2i—1¢ 72
Applying Lemma 2.1, we have
|Lj (B2, w2, m)| < Cin{L, [(276) Ly, () - (62 — w2)| "}
is increasing in (e, 00), it must satisfy the estimate
In|(L,(n)) - (62 —w2)| )"
|Lj,y(02,w2,n)\gc( (Lo (m)" - (02 — wa) |~ )"

(In [(278)" Ly, ()])?
Combining (14)-(15) with the fact that @ € WFz(S™~! x S"~1) yields (10). Similarly, (11)

3 _t
Since )P
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holds. Next we return to prove 111) By a change of variable and Holder’s inequality, we have

29¢
—i 300 (Li(€)-0)e(r)’
| zjst(§ 77)‘ ’ 21 T1 2]t7’2/21 1q/27 lt//Sm71><Sn716

_isw - dridr
e Ejzl(l( )02)%(r2) ><Q(01792) (91792)d01(91)d0’2(92)h(7‘1,7“2) 172

T 1
ri TryT

2%s 29t )
§C||h||Aw(/_ / \// S (L) D) i S (1 (1) 02)0(r2)?
2i—1g J2i—1¢ Sm—1xgn—1

drid
xQ(Gl,Hg) (91,92)d0’1(91)d0’2 92 ’PY :170;‘2)

27¢
/ / }// o=t S (L) 0)p(r)t =i Sy (1 (1) 02)(r2)?
2i-1g J2i—1¢ Sgm—1y gn—1

dridrg\ L
X 9(91,92)J(91,92)d01(6‘1)d02(92)|2¥) 5

1
)

rir2
Repeating the same argument as in (i), we get (12) (13) follows from the inequality

o —

]st(§ TI) f];ty(g TI) f]us_tl(g 77)+ ‘u];; 1(£a77)|

29¢ ) )
/ / / / | T (@00 () o= S (@ 00)e(r)'
2’8 1 2Jt T2 Sgm—1xgn—1 Joi-1g4 Joi—1¢

X [e=i Sima sy 02)(ra)’ _ =i Y1 (I;(n): 92)1/1(7“2)JHQ 01,02) T (01) T (62)]

drydr
x |h(r1,m)\ﬁdam(al)dan(%).

1 2
This completes the proof of Lemma 2.2. O

Lemma 2.3. Let Q € L'(S™ ™1 x S"71) satisfy (3) and (4). Suppose that h € A, for some
v > 1 and p,vb € F, then for any p € {1,-- - N1} and any v € {1,- - -, Na}, the mazimal
operator defined by

oy (F)(@,y) = sup sup [0} [ * f(z,y)|

i,JE€Z 5,t>0
is bounded on LP(R™ x R™) for v < p < cc.

Proof. We first define the measures {A}"]_;} and maximal operator {A*"} as

1Q(z, )| —i(Qu(2)-€+Ro () )
(5377) 21 ko) 2-7t /~/A§t pm amf'rlp ( )Otn*‘rze dmdy

AL

and
A:,,V(f)(m y) = Sup sup HAlj st‘ * (l’,y)‘
©,JEZ 5,t>0

By a change of variable, we have

27 ¢
A (F)(y) < C sup / / / / £ — Qu(Amrst!)y — Ry (An ')
1,J€EZ J2i—1g J2i—1¢ Sm—1y gn—1
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dridry
T17T2

2t , S dridrsg
<C sup fle — Qu(Am '),y — Ry (Ap "))
Sm—1lxgn—1435€Z.J2i-1s J2i— 1t 172

X |Qu, 02)| T (u') T (V) do s (01)dory, (02).
Following the same arguments as those in the proof of Lemma 5 in [28], we obtain that

HA*7V(f)||Lp(Rm><Rn) S C||f||Lp(]R7n X]Rn), 1 < p < . (16)
By Holder’s inequality,

x |Q(u’,6)2)|Jm(u')Jn(v’)dam(gl)don(Qg)

1
7

o0 (D@ y)] < C(ALL (ST ) ()

Plugging this estimate into (16) yields Lemma 2.3. O

Now we take two radial functions ¢1 € C§°(R™) and ¢ € C§°(R™) such that ¢;(t) = 1 for
[t| <1 and ¢;(t) =0 for |[t| > min{B,, By},i = 1,2, where B, B, are as in Remark 1.1. We
define the measures {w}"/’, ;} as

W (6 m) = o (6 T () TLa(v) — 0?22 (€ )Ty (i — 1)TLa(v)

— ot €M T — 1)+ o €T (= DT = 1),
where II; () = II 1u+1¢1( (288)F L. (€)), Ta(v) = HN2V+1¢)2(w(2jt)£Ig(77)). Here we use the

convention Il jeza; = 1. Observe that

NN L&
zyhst2 Zzw2jst (17)
p=1rv=1

Applying Lemma 2.2 and the same arguments as in the proof of Lemma 2.7 in [25], we get

Lemma 2.4. For pu=1,2,- SNy andv =1,2,-- -, Ns,

(i) \w” (&) < C|90(21 Ly ()1 (27)* 1, (n);
(ii) if |p(2's)“L,, (/)|_i B, then

[l (&) < Clnlp(2) L, ()T (20" L, () ;
(iii) if [V (27t)HTv(€)| > By, then

|/,j\st(§ )| < Clo(28)" L, (€)1 [ (274) L, (n) )7
() if |o(2's)* L, (€)] > B, and [¢(27t)*Iv(£)| > By, then

|7,jit(§ )| < C(In|(28) L, ()~ (I [(270) L, (n)) 7

From the definition of w!" J s and Lemma 2.3, we get

i,JEL s,t

for p € (v, 00).

Lemma 2.5. For arbitrary functions {g;},

1

Z / / |wﬂ,jys t ¥ gi,jIQdet ?

1,jEZL

1

Z ‘gz,j| 5

i,JEL

<c‘
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and
1 1
‘ D lwl e giglPdsdt)? || < 0‘ > lgisl?)?
1,jEZ i,jEZ
for |7 — 7| < where the constant s mdependent of the coefficients of PN1 and Py, .

Applying (18), the proof of Lemma 2.5 follows from the arguments similar to the proof of
Lemma 4 in [27]. Here, we omit it.

83 Proof of Theorem 1.1

Take two collections of C*° functions {®y }rez and {¥;}scz such that
()supp @x; C [p(25F1) 7, (2571 7#], supp Uy C [p(2'F1) 7 (2871
(i) 0 < @p, U1 <1, 37507 PR(H) = e, Vi) = 1
(iil) [d®x(t)/dt] < C/t,|d¥,(t)/dt] < C/t.
For k,1 € Z, we define the multiplier operator S;; on R™ x R"™ by

S F(€m) = @x(Lu(ENT(L (€ ):

By taking Fourier transform, it is easy to see that for any test function f,
)= Sy (19)
k,l

To show Theorem 1.1, we first consider the mapping G defined by
G {9 @ W) Yijezhicz — { > 5i+k,j+l(gf,f;k,z)(ﬂ%y)} :
0,J €2

E,IEZ
Then we have the following result.

Lemma 3.1. (i)For1<p<2and1<q<p,

L
Z/ / | Z Sith,j+ gwkz)| det <C Z Z / / |g”kl| det)E
1,JEZ k€L k,EZ i,JEZL p

(20)

(i) For2<p<ooand1<q<yp,

Z / / | Z Sz+k,]+l g;jkl)| det)§
i,jEL k,lEZ p
<C)y (/ / 1O 1955 2| dsdt) : (21)

k,l€EZ i,JEL

By the arguments similar to those used in [24], one can easily establish the above lemma.
The details are omitted.

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. By (9), (17) and Mlnkowskl s inequality, it follows that

v dsdt L
MELDED = ([ [T X 2ty P
71__00
0 dsdt 3
S 2”12sz/ / zj Gt )|2 )E
1,j=—00
dsdt. L
. 22 ([ [ ot e P
i,j=—00
" dsdt. 1
// 2,’l;s’t*f($,y)|2j)2
1 kiez
Ny N
<eX ([ [ 5wt e
k,EZ

Thus, it suffices to consider the LP (Rm x R™) boundedness for the operator

MEL ()@ // ST lfl, o fa,y) 2dsdt) .

L oklez
By (19), one can write

Mg, Z / _/ | Z Sitk,j+l wklst*SijJrlf(x y))| det)E

k(€L 1,JEZ
We now establish the LP(R™ x R™) boundedness for /\;lg 1+ We consider two cases.

25(8+1)
Case 1: Giop <P < 2.

By (20), we have that, for any 1 < g < p,

Mgl SIS / / fl, o Sien g fPdsdt) 1 (22)

ijEL k€L
For every fixed i,j € Z, define the operator

Ui;f(z,y) = Z/ / Wi ties * Sitk,j+if] dsdt)%.

k€T
By Plancherel’s theorem, we have

Wwstli= [ [ X ([ WP LD 1 o0

k,EZL
x | f(€,m)|*dédndsdt

// 577\2// [l (€, ) Pdsdtdedn,
k,EZ Eitk,j+1

where By j1 = {(§n) €R™ x R" : (2171 < L, () < (2717 gp(27H1H) 7 <
L,(n) < ¢(27+=1)=¥}. Then by Lemma 2.4 and Remark 1.1, we have that

Ui fll2 < OByl fll L2, (23)
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where ) .

B;’“B;J”,i,j > —2;

i|=PABY i< =2, > =

B MjI=o0 i > =2,5 < =2

i =P/31517P7 4, < 2.

On the other hand, applying Lemma 2.5 and the Littlewood-Paley theory, we get

Bij =

1 1 1 1
1T fllp < CICY [Sivngrf)Z s < Cllflps |- — Sl <= (24)
k,lcZ p v
By interpolating between (23) and (24), there exists a 0, € (2(/3+1)’ 1) such that
0 27(8+1)
Uiifllp OB\ fllp, for ————= <p<2.
e lly < CBE s for 5
Then for fixed 2(1(_;_85}2 < p < 2, we can choose 1 < ¢ < p such that # > 1. Therefore,
—i —jvb, = 5 »—Jvlp
)YV FEIEl D DR A SR DRI A
ij€EL ij>—2 i<—2,j>—2
+ Z B;iuf)pquq@pﬁ/ﬁ + Z |i|q0p5/ﬁjq9pﬁ/‘y> I £11%
i>-2,j<—2 i,j<—2
< CIIfI5,
which yields
- 27(8+ 1)
MEY <C , e <p< 2 25
IMER (Do < ClLA G+2)8 (25)
. 29(8+1
Case 2: 2<p< (ﬁjé)%

By (21), we have that, for 2 <p < ocoand 1 < g < p/,

aq
v 12 2
HM S C Z </ / || Z:l;s,t* i+k,j+lf2)2||pd8dt>
i,jEZ k,l€Z
For each fixed i, j € Z, let

V) = (3 [ Senaia(a))

N|=

k,lEZ
Applying the Lemma 2.5 and the Littlewood- Paley theory, we get
s, 1 1 1
% tf||p < C||( Z |Sitk,jif] ) H <C|fllp |1; - §| < 5 (26)

k,lcZ

Also, by Plancherel’s theorem as in Case 1, we have
IV fllz < OBl fll2, (27)

where B; ; is the same as before. By interpolating between (26) and (27), for

2<p< (%(’BH) 1) such that # > 1 and

W,Wecanchooseqe(l p') and 9, € (5555 5

ﬁ+1)
V5 flly < OB
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. This shows that

~ —3 —jvb, L -
”Mé’f}f(f)"g < C( Z B@ Mequw] ! + Z |7,| qepﬁ/’YBwJ q

i,j>—2 1<—2,5>-2
N Z B;m@pqurq@pﬂﬁ + Z |i|qepﬁ/ﬁjq9pﬁ”> 1713
i>-2,j<-2 nIsT2

< CIIfII3

for2 <p< M This together with (25) finishes the proof of Theorem 1.1.

¥=2)B+2%"
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