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Solutions for Schrödinger-Poisson system involving

nonlocal term and critical exponent

MO Xiu-ming1 MAO An-min2 WANG Xiang-xiang2

Abstract. In this paper, we consider the following Kirchhoff-Schrödinger-Poisson system:
− (a+ b

∫
R3

|∇u|2)△u+ u+ ϕu = µQ(x)|u|q−2u+K(x)|u|4u, in R3,

−△ϕ = u2, in R3,

the nonlinear growth of |u|4u reaches the Sobolev critical exponent. By combining the variational

method with the concentration-compactness principle of Lions, we establish the existence of a

positive solution and a positive radial solution to this problem under some suitable conditions.

The nonlinear term includes the nonlinearity f(u) ∼ |u|q−2u for the well-studied case q ∈ [4, 6),

and the less-studied case q ∈ (2, 3), we adopt two different strategies to handle these cases. Our

result improves and extends some related works in the literature.

§1 Introduction

In this paper, we study the following Kirchhoff-Schrödinger-Poisson system − (a+ b

∫
R3

|∇u|2)△u+ u+ ϕu = µQ(x)|u|q−2u+K(x)|u|4u, in R3,

−△ϕ = u2, in R3,

(1.1)

where q ∈ (2, 3) or q ∈ [4, 6), a, b are positive constants, µ > 0 is a parameter. In recent years,

the following elliptic problem

−
(
a+ b

∫
RN

|∇u|2
)
△u+ V (x)u = f(x, u), u ∈ H1(RN ) (1.2)

has been extensively studied by many researchers, where V : RN → R, f ∈ C(RN × R,R),
N = 1, 2, 3 and a, b > 0 are constants. Such problems are viewed as being nonlocal because

of the term
∫
RN |∇u|2, which implies that (1.2) is not longer a pointwise identity and is very

different from classical elliptic equations. Similar nonlocal problems model several biological

systems where u describes a process that depends on the average of itself, for example, that of
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the population density. Problem (1.2) also arises in an interesting physical context, we refer

to [1,8,9,17] and the references therein. There have been many works about the existence of

nontrivial solutions to (1.2) by using variational methods only after Lions [13,14] introduced an

abstract framework to this problem. Ma and Rivera [16] proved the existence and nonexistence

of positive solutions of a class of Kirchhoff type system via variational methods. In [17], Mao

and Zhang proved the existence of at least a positive solution, a negative solution and a sign-

changing solution to (1.2) by using the method of invariant sets of descent flow. For the case of

an unbounded domain, by using the (symmetric) mountain pass theorem, Nie and Wu in [18]

studied the existence of infinitely many high-energy solutions for the following Kirchhoff type

problem on RN :  − (ε2a+ bε

∫
RN

|∇u|2)△u+ V (x)u = f(x, u), in RN ,

u ∈ H1(RN ), in RN .

If a = 1 and b = 0, then (1.1) reduces to the following Schrödinger-Poisson systems{
−△u+ V (x)u+ ϕu = f(x, u), in R3,

−△ϕ = u2, in R3,
(1.3)

many authors studied (1.3) under various assumptions on V and f . If V = 1 and f = |u|p−2u,

equation (1.3) has been studied sufficiently as p varies. In [3], Azzollini and Pomponio obtained

the existence of ground state solutions for the subcritical case 3 < p < 6 and the critical case

f = |u|p−2u+u5 with 4 < p < 6. We refer the readers to [2,11,23,26] and the references therein

for further related results.

Recently, a great deal of attention has been focused on nonlocal problems involving critical

exponent. Since Brezis and Nirenberg in [6] first studied a critical growth problem in a bounded

domain, many researchers considered kinds of critical problems by either pulling the energy level

down below some critical energy to recover certain compactness or using a combination of the

idea above with the concentration compactness principle of Lions [15]. In [22], Wang et al.

proved the existence of positive ground state solution for the following Kirchhoff problem with

critical growth  − (ε2a+ bε

∫
R3

|∇u|2)△u+ V (x)u = λf(u) + u5, in R3,

u ∈ H1(R3), u > 0 in R3,

by using the Nehari manifold and pulling the energy level down below the critical level

c1 , 1

3
(aS)

3
2 +

1

12
b3S6. (1.4)

For more related results, see [10,12,22,25].

Motivated by the above works, this paper aims to study Kirchhoff-Schrödinger-Poisson

system (1.1) which is more general than the above-mentioned problems. To our best knowl-

edge, there are few results on the problem (1.1). In this paper, by combining the variational

method with the concentration-compactness principle of Lions, we focus on the critical case

and existence of positive solutions, what’s more, the nonlinear term includes the nonlinearity

f(u) ∼ |u|q−2u for the well-studied case q ∈ [4, 6), and the less-studied case q ∈ (2, 3), we will

adopt two different strategies to handle these cases.
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Before state our main results, we make some assumptions on K and Q.

(H1)(i) K ∈ C(R3,R), lim
|x|→∞

K(x) = K∞ ∈ (0,∞) and K(x) ≥ K∞ for x ∈ R3,

(ii) Q ∈ C(R3,R), lim
|x|→∞

Q(x) = Q∞ ∈ (0,∞) and Q(x) ≥ Q∞ for x ∈ R3.

(H2) There exist x0 ∈ R3, δ > 0 and ρ > 0 such that K(x0) = max
x∈R3

K(x) and |K(x)−K(x0)| ≤
δ|x− x0|α for |x− x0| < ρ with 1 ≤ α < 3.

Our main results read as follows.

Theorem 1.1. Assume (H1) (H2) hold. Then, for 4 < q < 6, problem (1.1) has at least a

positive solution (u, ϕ) ∈ H1(R3) × D1,2(R3) for each µ > 0; for q = 4, problem (1.1) still

possesses a positive solution provided that µ is sufficiently large.

Theorem 1.2. Assume (H1)(H2) hold, 2 < q < 3 and assume furthermore that K and Q are

radial functions, then problem (1.1) has at least a positive radial solution (u, ϕ) ∈ H1(R3) ×
D1,2(R3) for µ > 0 sufficiently large.

Remark 1.3. As mentioned above, our main results extend and improve the related works

in [4,7,18,22]. The main difficulty is the lack of compactness since the embedding H1(R3) ↪→
Ls(R3)(2 ≤ s < 6) is not compact. When 4 ≤ q < 6, to overcome this difficulty, we make use of

the concentration-compactness principle of Lions [5] and the methods of Brezis and Nirenberg

[6], which allow us to determine the energy level of the functional for which the (PS) condition

holds. When 2 < q < 3, we restrict ourselves to H1
r (R3) since K and Q are radial functions.

In this case, the embedding H1
r (R3) ↪→ Ls(R3)(2 < s < 6) is compact. Moreover, a function in

H1
r (R3) has a decay like |x|−1 for x ∈ R3 far away from the origin, this fact plays an important

role in for boundedness of the (PS) sequence, similar argument once appeared in [20].

Remark 1.4. It is not easy to see that I ′ is weakly continuous by direct calculations since

equation (1.1) is no longer a pointwise identity. Indeed, in general, we do not know
∫
R3 |∇un|2 →∫

R3 |∇u|2 from un ⇀ u in H1(R3). We succeed in doing so by using the method used in [9],

which strongly relies on q ∈ [4, 6). Considering the nonlocal effect, the critical level c∗ is given

as follows

c∗ =
ab

4∥K∥∞
S3 +

[b2S4 + 4∥K∥∞aS]
3
2

24∥K∥2∞
+

b3S6

24∥K∥2∞
,

∥K∥∞ is the usual L∞ norm. When ∥K∥2∞ < 1
2 , c

∗ > c1, which means that we can verify the

(PS) condition in a wider scope.

The rest of this paper is organized as follows. The variational framework of our problem

and some preliminaries are given in Section 2. Section 3 is devoted to the proof of Theorem

1.1. Finally, the proof of Theorem 1.2 is presented in Section 4.

§2 Preliminaries and functional setting

Throughout this paper, we make use of the following notations

H1(R3) := {u ∈ L2(R3) : ∇u ∈ L2(R3)}, ∥u∥2H1 :=

∫
R3

(|∇u|2 + u2),

D1,2(R3) := {u ∈ L2∗(R3) : ∇u ∈ L2(R3)}, ∥u∥2D1,2 :=

∫
R3

|∇u|2.
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For fixed a > 0, we also use the notation ∥u∥a =
( ∫

R3(a|∇u|2 + u2)
)1/2

, which is a norm

equivalent to ∥u∥H1 . Lp , Lp(R3)(1 ≤ p < +∞) is the usual Lebesgue space with the standard

norm |u|p. Br(x) , {y ∈ R3||x − y| < r}. C will denote a positive constant unless specified.

The best Sobolev constant for the embedding of D1,2(R3) in L6(R3) is denoted by

S = inf
u∈D1,2(R3)\{0}

∫
R3 |∇u|2

|u|26
.

For u ∈ H1(R3), the Lax-Milgram theorem implies that there exists a unique ϕu ∈ D1,2(R3)

such that −∆ϕu = u2. Moreover, ϕu can be expressed as

ϕu(x) =
1

4π

∫
R3

u2(y)

|x− y|
,

then

−(a+ b

∫
R3

|∇u|2)△u+ u+ ϕuu = K(x)|u|4u+ µQ(x)|u|q−2u. (2.1)

Thus we can define a smooth functional F : H1(R3) → R by setting

F (u) =

∫
R3

ϕu(x)u
2(x).

It turns out that the functional

I(u) =
1

2
∥u∥2 + b

4

(∫
R3

|∇u|2
)2

+
1

4
F (u)−

∫
R3

(
1

6
K(x)|u|6 + µ

q
Q(x)|u|q)

is of class C1 and its critical points are classical solutions of (2.1); see for instance [3,13]. Define

the associated functional I∞ : H1(R3) → R by

I∞(u) =
1

2
∥u∥2 + b

4

(∫
R3

|∇u|2
)2

+
1

4
F (u)−

∫
R3

(
1

6
K∞|u|6 + µ

q
Q∞|u|q).

Set

N := {u ∈ H1(R3)\{0} : ⟨I ′(u), u⟩ = 0}, m := inf
u∈N

I(u),

N∞ := {u ∈ H1(R3)\{0} : ⟨I ′∞(u), u⟩ = 0}, m∞ := inf
u∈N∞

I∞(u).

The rest of this section is to estimate level sets of I for which the (PS) condition holds.

Lemma 2.1.([25]) (i) F : H1(R3) → R is weakly continuous in H1(R3).

(ii) F (u(·+ y)) = F (u), for y ∈ R3, u ∈ H1(R3).

(iii) Let un ⇀ u in H1(R3) and un → u a.e. in R3, then

F (un − u) = F (un)− F (u) + o(1) as n → ∞.

Lemma 2.2.([24]) Let r > 0 and 2 ≤ q < 2∗. If {un} is bounded in H1(RN ) and

sup
y∈RN

∫
Br(y)

|un|q → 0, n → +∞,

then un → 0 in Ls(RN ) for 2 < s < 2∗.

Lemma 2.3. For t, s > 0 and λ is a positive constant, the following system{
f(t, s) , t− aSλ− 1

3 (t+ s)
1
3 = 0,

g(t, s) , s− bS2λ− 2
3 (t+ s)

2
3 = 0,
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has a unique solution (t0, s0). Moreover,{
f(t, s) ≥ 0,

g(t, s) ≥ 0,
=⇒

{
t ≥ t0,

s ≥ s0.

Proof. If f(t0, s0) = g(t0, s0) = 0, then t0 + s0 =
λt30
a3S3 . It is enough to solve the following(λt30 − a3S3t0

a3S3

)3

= b3λ−2S6
( λt30
a3S3

)2

,

then

t0 =
abS3 + a

√
b2S6 + 4aλS3

2λ
and

s0 =
b3S6 + 2λabS3 + b2S3

√
b2S6 + 4aS3

2λ2
.

If f(t, s) ≥ 0 and g(t, s) ≥ 0, then

t+ s ≥ aS(t+ s)
1
3 + bS2(t+ s)

2
3 ,

hence,

t+ s ≥ t0 + s0,

where we have used the fact that the function h(l) , l − aSλ− 1
3 l

1
3 − bS2λ− 2

3 l
2
3 , l > 0 has a

unique zero point l0 > 0 and h(l) ≥ 0, then l ≥ l0. Suppose that t < t0, then

f(t, s) = t− aSλ− 1
3 (t+ s)

1
3 < t0 − aSλ− 1

3 (t0 + s0)
1
3 = 0,

which is impossible, so t ≥ t0. Similarly, s ≥ s0. The proof is completed.

Lemma 2.4. Assume (H1) holds and 4 ≤ q < 6, then the following statements hold.

(i) For every u ∈ H1(R3) \ {0}, there exists a unique tu = t(u) > 0 such that tuu ∈ N and

I(tuu) = max
t≥0

I(tu).

(ii) Let {un} ⊂ H1(R3) be a sequence such that ⟨I ′(un), un⟩ → 0 and
∫
R3(K(x)|un|6+Q(x)|un|q)

→ a > 0 as n → ∞. Then up to a subsequence there exists tn > 0 such that ⟨I ′(tnun), tnun⟩ = 0,

and tn → 1 as n → ∞.

Proof.(i) For every u ∈ H1(R3) \ {0}, define g(t) := I(tu) and

f(t) := ∥u∥2 + bt2
(∫

R3

|∇u|2
)2

+ t2F (u)− tq−2µ

∫
R3

Q(x)|u|q − t4
∫
R3

K(x)|u|6.

Then we have g′(t) = tf(t), and for t > 0,

g′(t) = ⟨I ′(tu), u⟩ = 0 ⇔ tu ∈ N. (2.2)

Since supt>0 g(t) is achieved at some tu = t(u) > 0, one gets g′(tu) = 0, by (2.2), tuu ∈ N. It’s

easy to check that tu is unique and

I(tuu) = max
t≥0

I(tu).

(ii) The proof is standard, see e.g. [244]. We omit it here.

The following concentration-compactness principle is due to P.Lions.

Lemma 2.5.([15]) Let {ρn} be a sequence of nonnegative L1 functions on RN satisfying∫
RN ρn = l, where l > 0 is fixed. There exists a subsequence, still denoted by {ρn}, satisfy-
ing one of the following three possibilities:
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(i) (Vanishing) for all R > 0, it holds

lim sup
n→+∞y∈RN

∫
BR(y)

ρn = 0;

(ii) (Dichotomy) there exist α ∈ (0, l) and {yn} ⊂ RN such that for every ε > 0, ∃R > 0, for

all r ≥ R and r′ ≥ r, it holds

lim sup
n→+∞

∣∣∣α−
∫
Br(yn)

ρn

∣∣∣+ ∣∣∣(l − α)−
∫
RN\Br′ (yn)

ρn

∣∣∣ < ε;

(iii) (Compactness) there exists {yn} ⊂ RN such that, for all ε > 0, there exists R > 0 satisfying

lim inf
n→+∞

∫
BR(yn)

ρn ≥ l − ε.

Lemma 2.6. Assume (H1) − (H2) hold and q ∈ [4, 6). If c < min{m∞, c∗}, then I satisfies

the (PS)c condition, where c∗ := ab
4∥K∥∞

S3 + [b2S4+4∥K∥∞aS]
3
2

24∥K∥2
∞

+ b3S6

24∥K∥2
∞
.

Proof. Let {un} ⊂ H1 be a (PS)c sequence of I at the level c, i.e.

I(un) → c, I
′
(un) → 0 in H−1. (2.3)

Then, for n large enough,

c+ 1 + ∥un∥ ≥ I(un)−
1

4
I ′(un)un ≥ 1

4
∥un∥2,

which implies that {un} is bounded in H1.

Set

ρn(x) :=
a

4
|∇un|2 +

1

4
u2
n +

1

12
K(x)|un|6 + (

µ

4
− µ

q
)Q(x)|un|q,

Then {ρn} is bounded in L1(R3) and, we may assume

Φ(un) := ∥ρn∥1 → c, as n → ∞.

Now, we will apply Lemma 2.5 to {ρn}. To get the compactness of {ρn}, it is sufficient to

show that neither vanishing nor dichotomy occurs. If {ρn} vanishes, then {u2
n} also vanishes,

i.e. there exists R > 0 such that

lim sup
n→∞y∈R3

∫
BR(y)

|un|2 = 0.

In view of Lemma 2.2, one has un → 0 in Ls(R3), 2 < s < 6. Thus,∫
R3

Q(x)|un|q ≤ ∥Q∥∞
∫
R3

|un|q → 0,

F (un) ≤ C∥un∥412
5
→ 0,

as n → ∞. Furthermore,

I(un) =
1

2
∥un∥2 +

b

4

(∫
R3

|∇un|2
)2

− 1

6

∫
R3

K(x)|un|6 + o(1), (2.4)

I ′(un)un = ∥un∥2 + b
(∫

R3

|∇un|2
)2

−
∫
R3

K(x)|un|6 + o(1). (2.5)

We may therefore assume that there exist li ≥ 0 (i = 1, 2, 3) such that

∥un∥2 → l1, b
(∫

R3

|∇un|2
)2

→ l2,

∫
R3

K(x)|un|6 → l3, as n → ∞,

then by l1 + l2 = l3, it is easy to see that l1 > 0 and hence that l2, l3 > 0. By the Sobolev
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inequality, we have

a3
∫
R3

K(x)|un|6 ≤ a3∥K∥∞
∫
R3

|un|6 ≤ a3∥K∥∞
(
S−1

∫
R3

|∇un|2
)3

≤ ∥K∥∞S−3∥un∥6

and

b
(∫

R3

K(x)|un|6
) 2

3 ≤ b∥k∥
2
3∞

(
S−1

∫
R3

|∇un|2
)2

= b∥k∥
2
3∞S−2

(∫
R3

|∇un|2
)2

,

and so

l1 ≥ aS∥K∥
−1
3∞ (l1 + l2)

1
3 and l2 ≥ bS2∥K∥

−2
3∞ (l1 + l2)

2
3 .

By Lemma 2.3, we have

1

3
l1 +

1

12
l2 ≥1

3

abS3 + a
√

b2S6 + 4a∥K∥∞S3

2∥K∥∞

+
1

12

(b2S3
√

b2S6 + 4a∥K∥∞S3 + b3S6 + 2∥K∥∞abS3

2∥K∥2∞

)
=

ab

4∥K∥∞
S3 +

[b2S4 + 4∥K∥∞aS]
3
2

24∥K∥2∞
+

b3S6

24∥K∥2∞
= c∗.

(2.6)

Hence, it follows from (2.3)− (2.5) that

c = I(un)−
1

6
I ′(un)un + o(1) =

1

3
∥un∥2 +

b

12

(∫
R3

|∇un|2
)2

+ o(1) =
1

3
l1 +

1

12
l2 ≥ c∗,

which contradicts with c < c∗. Hence, vanishing does not occur.

Now, we show that dichotomy does not occur. Suppose by contradiction that there exist

α ∈ (0, c) and {yn} ⊂ R3 such that for εn → 0, we can choose {Rn} ⊂ R+ with Rn → +∞
satisfying

lim sup
n→+∞

∣∣∣α−
∫
BRn (yn)

ρn

∣∣∣+ ∣∣∣(c− α)−
∫
R3\B2Rn (yn)

ρn

∣∣∣ < εn. (2.7)

Let ξ : R+ → [0, 1] be a cut-off function satisfying ξ(s) ≡ 1 for s ≤ 1, ξ(s) ≡ 0 for s ≥ 2 and

|ξ′(s)| ≤ 2. Set

vn(x) := ξ
( |x− yn|

Rn

)
un(x), wn(x) :=

(
1− ξ

( |x− yn|
Rn

))
un(x),

then by (2.7), we see that

lim inf
n→+∞

Φ(vn) ≥ α and lim inf
n→+∞

Φ(wn) ≥ c− α. (2.8)

In fact,

Φ(vn) =

∫
R3

(a
4
|∇vn|2 +

1

4
v2n +

1

12
K(x)|vn|6 + (

µ

4
− µ

q
)Q(x)|vn|q

)
=

∫
BRn (yn)

ρn + C

∫
R3\BRn (yn)

ρn,

then by (2.7),

lim inf
n→∞

Φ(vn) ≥ lim inf
n→∞

∫
BRn (yn)

ρn + lim inf
n→∞

C

∫
R3\BRn (yn)

ρn ≥ α.

Similarly, one has lim inf
n→+∞

Φ(wn) ≥ c− α.

Denote Ωn := B2Rn(yn) \ BRn(yn), then
∫
Ωn

ρn → 0 as n → +∞. Therefore, by direct

computations, we have∫
Ωn

(a|∇vn|2 + v2n) → 0 and

∫
Ωn

(a|∇wn|2 + w2
n) → 0,
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as n → +∞. Hence, we conclude that

a

∫
R3

|∇un|2 = a

∫
R3

|∇vn|2 + a

∫
R3

|∇wn|2 + o(1),∫
R3

u2
n =

∫
R3

v2n +

∫
R3

w2
n + o(1), (2.9)∫

R3

Q(x)uq
n =

∫
R3

Q(x)vqn +

∫
R3

Q(x)wq
n + o(1),∫

R3

K(x)u6
n =

∫
R3

K(x)v6n +

∫
R3

K(x)w6
n + o(1).

Moreover, (∫
R3

|∇un|2
)2

≥ (

∫
R3

|∇vn|2
)2

+ (

∫
R3

|∇wn|2
)2

+ o(1) (2.10)

and

F (un) ≥ F (vn) + F (wn) + o(1). (2.11)

Hence, from (2.9), we deduce that

Φ(un) = Φ(vn) + Φ(wn) + o(1).

It follows from (2.8) that

c = lim
n→+∞

Φ(un) ≥ lim inf
n→+∞

Φ(vn) + lim inf
n→+∞

Φ(wn) ≥ α+ c− α = c.

Furthermore,

lim
n→+∞

Φ(vn) = α, lim
n→+∞

Φ(wn) = c− α. (2.12)

By (2.3) and (2.9)− (2.11),

0 = I ′(un)un + o(1) ≥ I ′(vn)vn + I ′(wn)wn + o(1). (2.13)

Now, we distinguish two cases.

Case 1. Up to a subsequence, we may assume that either I ′(vn)vn ≤ 0 or I ′(wn)wn ≤ 0.

Without loss of generality, suppose that I ′(vn)vn ≤ 0, then

a

∫
R3

|∇vn|2 +
∫
R3

v2n + F (vn) + b
(∫

R3

|∇vn|2
)2

− µ

∫
R3

Q(x)vqn −
∫
R3

K(x)v6n ≤ 0. (2.14)

By Lemma 2.4, for each n ∈ N, there exists tn > 0 such that tnvn ∈ N and I ′(tnvn)tnvn = 0,

i.e.,

at2n

∫
R3

|∇vn|2 + t2n

∫
R3

v2n+ t4nF (vn)+ bt4n

(∫
R3

|∇vn|2
)2

− tqnµ

∫
R3

Q(x)vqn − t6n

∫
R3

K(x)v6n = 0.

(2.15)

Combining (2.14) and (2.15), we have

(t2n − tqn)∥vn∥2 + (t4n − tqn)F (vn) + b(t4n − tqn)
(∫

R3

|∇vn|2
)2

+ (tqn − t6n)

∫
R3

K(x)v6n ≥ 0,

which implies that tn ≤ 1. Then, by (2.12)

c ≤ I(tnvn) = I(tnvn)−
1

4
I ′(tnvn)tnvn

=
1

4
t2n∥vn∥2 +

(1
4
− 1

q

)
tqn

∫
R3

Q(x)vqn +
t6n
12

∫
R3

K(x)v6n

≤ Φ(vn) → α < c

which is a contradiction.

Case 2. Up to a subsequence, we may assume that I ′(vn)vn > 0 and I ′(wn)wn > 0. By

(2.13), we see that I ′(vn)vn → 0 and I ′(wn)wn → 0 as n → +∞. In view of (2.9)− (2.11), we
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have

I(un) ≥ I(vn) + I(wn) + o(1). (2.16)

If {yn} ⊂ R3 is bounded. we deduce a contradiction by comparing I(wn) and m∞. In this

case,∫
R3

(Q(x)−Q∞)|wn|q ≤ sup
x∈R3

|Q(x)−Q∞||wn|qq = sup
|x−yn|≥Rn

|Q(x)−Q∞||wn|qq → 0 as n → ∞,

and ∫
R3

(K(x)−K∞)|wn|6 → 0, as n → ∞.

It follows that

I(wn) = I∞(wn) + o(1) and o(1) = I ′(wn)wn = I ′∞(wn)wn + o(1).

Then by Lemma 2.4, there exist two sequence positive constants tn → 1 and sn → 1, such that

tnwn ∈ N∞, snvn ∈ N. Thus,

I(wn) = I∞(wn) + o(1) = I∞(tnwn) + o(1) ≥ m∞ + o(1) (2.17)

and

I(vn) = I(snvn) + o(1) ≥ m+ o(1). (2.18)

Therefore, from (2.16)− (2.18), we have c ≥ m∞ +m ≥ m∞, a contradiction.

If {yn} ⊂ R3 is unbounded, in a similar way, we are led to a contradiction by comparing

I(vn) and m∞. Thus, dichotomy does not happen.

So far, by Lemma 2.5, we know that the sequence {ρn} is compact, i.e., there exist {yn} ⊂ R3

such that for every ε > 0, there exists R > 0, we have
∫
Bc

R(yn)
ρn(x) < ε, which implies that∫

Bc
R(yn)

(K(x)|un|6 +Q(x)|un|q) < ε.

That is to say, the sequence {K(x)|un|6 + Q(x)|un|q} is also compact. Then {yn} must be

bounded. Otherwise,∫
R3

(K(x)−K∞)|un|6 =

∫
R3

(Q(x)−Q∞)|un|q = o(1)

and thus I(un) = I∞(un) + o(1) and ⟨I ′∞(un), un⟩ = o(1). By Lemma 2.4, there exist tn → 1

such that tnun ∈ N∞. Hence,

c = I(un) + o(1) = I∞(un) + o(1) = I∞(tnun) + o(1) ≥ m∞ + o(1),

a contradiction. Let un ⇀ u in H1(R3). Since {yn} is bounded, it is easy to see that un → u

in Lq(R3).

Set hn = un − u, then

F (hn) ≤ C∥hn∥412
5
→ 0.

By the Brezis-Lieb Lemma [28] and Lemma 2.1, we have

∥un∥ = ∥u∥+ ∥hn∥+ o(1),∫
R3

K(x)u6
n =

∫
R3

K(x)u6 +

∫
R3

K(x)h6
n + o(1),

F (hn) = F (un)− F (u) + o(1).
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Therefore, we have

I(un)− I(u) =
1

2
∥hn∥2 +

b

4

((∫
R3

|∇hn|2
)2

+ 2

∫
R3

|∇hn|2
∫
R3

|∇u|2
)

− 1

6

∫
R3

K(x)h6
n + o(1)

(2.19)

and

o(1) = I ′(un)un − I ′(u)u

= ∥hn∥2 + b
(∫

R3

|∇hn|2
)2

+ 2b

∫
R3

|∇hn|2
∫
R3

|∇u|2 −
∫
R3

K(x)h6
n + o(1).

(2.20)

Let

∥hn∥2 → l̃1, b
(∫

R3

|∇hn|2
)2

+ 2b

∫
R3

|∇hn|2
∫
R3

|∇u|2 → l̃2,

∫
R3

K(x)h6
n → l̃3.

then l̃1 + l̃2 = l̃3. If l̃1 > 0, then l̃2, l̃3 > 0. It follows from (2.19), (2.20) and I(u) ≥ 0 that

c ≥ 1

3
∥hn∥2 +

b

12

((∫
R3

|∇hn|2
)2

+ 2

∫
R3

|∇hn|2
∫
R3

|∇u|2
)
+ o(1)

=
1

3
l̃1 +

1

12
l̃2 + o(1).

then like in the proof of (2.6), we have c ≥ c∗, a contradiction. Thus l̃1 = 0, that is un → u in

H1(R3).

§3 Proof of Theorem 1.1

First of all, it is easy to verify that the functional I possesses the mountain pass geometry,

that is, I(0) = 0 and

(i) there exists ρ′ > 0 such that inf∥u∥=ρ′ I(u) > 0,

(ii) there exists e ∈ H1(R3) such that ∥e∥ > ρ′ and I(e) < 0.

Now we define

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ = {γ ∈ C([0, 1], H1(R3))|γ(0) = 0, γ(1) = e}.
We will estimate the mountain pass value c. For this purpose, we introduce the function

uε,x0
∈ D1,2(R3) defined by

uε,x0 := C
ε1/4

(ε+ |x− x0/ε|2)1/2
,

where C is normalizing constant and x0 is given in (H2). Set vε := φ(x − x0/ε)uε,x0 , where

φ ∈ C∞
0 (R3) satisfies 0 ≤ φ(x) ≤ 1 and φ(x) ≡ 1 on Br(0), suppφ ⊂ B2r(0), where r is a

positive constant. It is well known that S is attained by the functions ε1/4

(ε+|x−x0/ε|2)1/2
. Direct

calculation shows that∫
R3

|∇vε|2 = K1 +O(ε
1
2 ),

∫
R3

|vε|6 = K2 +O(ε
3
2 ). (3.1)

∫
R3

|vε|t =


O(ε

t
4 ), t ∈ [2, 3),

O(ε
t
4 | ln ε|), t = 3,

O(ε
6−t
4 ), t ∈ (3, 6),

(3.2)
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where K1, K2 are positive constants. Moreover, S = K1

K
1
3
2

. Using (3.1) and (3.2), we have∫
R3 |∇vε|2( ∫
R3 |vε|6

) 1
3

= S +O(ε
1
2 ).

Lemma 3.1. Let 4 < q < 6, then for any µ > 0,

c < c∗ :=
ab

4∥K∥∞
S3 +

[b2S4 + 4∥K∥∞aS]
3
2

24∥K∥2∞
+

b3S6

24∥K∥2∞
.

Moreover, if 2 < q ≤ 4, the above inequality still holds provided µ is sufficient large.

Proof. It is easy to know that c = c1 := inf
u∈H1\{0}

max
t≥0

I(tu) > 0, see for instance [10,24], we

infer that c ≤ max
t≥0

I(tvε). Define function

g(t) :=
t2

2
∥vε∥2 +

bt4

4

(∫
R3

|∇vε|2
)2

− t6

6

∫
R3

K(x0)|vε|6.

It is clear that g(t) attains its maximum at

t0 =
(b(∫R3 |∇vε|2)2 +

√
b2(

∫
R3 |∇vε|2)4 + 4∥K∥∞∥vε∥2

∫
R3 |vε|6

2∥K∥∞
∫
R3 |vε|6

) 1
2

and

g(t0) =
ab

4∥K∥∞
S3 +

[b2S4 + 4∥K∥∞aS]
3
2

24∥K∥2∞
+

b3S6

24∥K∥2∞
+O(ε

1
2 ).

By (H2),

|K(x)−K(x0)| ≤ δ|x− x0|α, for |x− x0| < ρ,

thus∫
R3

|K(x)−K(x0)||vε|6 ≤ Cδ

∫
Bρ(x0)

|x− x0|αε
3
2

(ε+ |x− x0|2)3
+ C

∫
Bc

ρ(x0)

ε
3
2

(ε+ |x− x0|2)3

≤ Cδε
3
2

∫ ρ

0

r2+α

(ε+ r2)3
dr + Cε

3
2

∫ ∞

ρ

r−4dr

= Cδε
α
2

∫ ρε−
1
2

0

ϱ2+α

(1 + ϱ2)3
dϱ+ Cρ−3ε

3
2

≤ Cδε
α
2 + Cε

3
2 ≤ O(ε

1
2 ).

(3.3)

where we use the fact that 1 ≤ α < 3. Thus, for vε, there exists tε > 0, such that tεvε ∈ N and

I(tεvε) ≤ sup
t>0

g(t) +
t4ε
4
F (vε)−

tqεµ

q

∫
R3

Q(x)|vε|q +
t6ε
6

∫
R3

(K(x0)−K(x))|vε|6

≤ ab

4∥K∥∞
S3 +

[b2S4 + 4∥K∥∞aS]
3
2

24∥K∥2∞
+

b3S6

24∥K∥2∞
+O(ε

1
2 ) + C3∥vε∥412

5
− µC4

∫
R3

|vε|q,

where Ci(i = 3, 4) are positive constants, independent from ε. Thus to complete the proof, it

suffice to show that

lim
ε→0

1

ε
1
2

(∫
R3

−µvqε + ∥vε∥412
5

)
= −∞. (3.4)
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In fact, the following estimate holds as ε → 0 :

∫
R3

−µvqε +
(∫

R3

|vε|
12
5

) 5
3 ≤


− C1µε

6−q
4 + C2ε, 3 < q < 6,

− C1µε
q
4 | ln ε|+ C2ε, q = 3,

− C1µε
q
4 + C2ε, 2 < q < 3,

(3.5)

where Ci(i = 1, 2) are positive constants independent from ε. If 4 < q < 6, (3.4) follows from

(3.5) for any µ > 0. If 2 < q ≤ 4, in the above inequality one can stress the parameter choosing

µ = ε−σ, σ > 0, to obtain (3.4).

Lemma 3.2. If 4 < q < 6, then c < m∞ for any µ > 0. If q = 4, then c < m∞ provided µ is

sufficiently large.

Proof. It is easy to check that I∞ has the mountain pass geometry. Let

Γ =
{
γ ∈ C([0, 1],H1(R3)) : γ(0) = 0, I∞(γ(1)) < 0

}
and

c∞ = inf
γ∈Γ

max
t∈[0,1]

I∞(γ(t)).

Since 4 ≤ q < 6, it is easy to verify that

m∞ = inf
u∈H1(R3)

max
t≥0

I∞(tu) > 0.

and then using an argument like that in [18], we have

c∞ = m∞. (3.6)

As a consequence of mountain pass principle [23], there exists a sequence {un} ⊂ H1(R3) such

that

I∞(un) → c∞ I ′∞(un) → 0.

It is easy to see that {un} is bounded since 4 ≤ q < 6.

Define wn(x) := un(x + yn), for yn ∈ R3. We claim that there exists yn ∈ R3 such that

wn ⇀ w ̸= 0 in H1(R3). Suppose, on the contrary, that for any yn ∈ R3, wn ⇀ 0 in H1(R3).

We will get a contradiction by proving un → 0 in Ls(R3), 2 < s < 6. In this case, we claim for

all s ∈ [2, 6),

lim sup
n→∞,y∈R3

∫
B1(y)

|un|s = 0. (3.7)

If this is not true, then there exists s ∈ [2, 6), δ > 0, such that

lim sup
n→∞,y∈R3

∫
B1(y)

|un|s > δ > 0.

Thus there exists yn ∈ R3 such that lim
n→∞

∫
B1(yn)

|un|s > δ
2 > 0. Therefore we have lim

n→∞

∫
B1(0)

|wn|s > δ
2 > 0, that is wn ⇀ w ̸= 0, a contradiction. Thus (3.7) holds. By Lemma 2.2, we get

un → 0 in Ls(R3), 2 < s < 6. In particular, we have un → 0 in Lq(R3) and in L
12
5 (R3). By the

same argument as in the proof of Lemma 2.6, we have c ≥ ab
4∥K∥∞

S3+ [b2S4+4∥K∥∞aS]
3
2

24∥K∥2
∞

+ b3S6

24∥K∥2
∞
,

which contradicts Lemma 3.1, thus the claim holds. Since I∞(wn) = I∞(un) → c∞, I ′∞(wn) =
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I ′∞(un) + o(1) → 0, it is standard to show that I ′∞(w) = 0, which implies

c∞ = lim inf
n→∞

(
I∞(wn)−

1

4
⟨I ′∞(wn), wn⟩

)
= lim inf

n→∞

[1
4
∥wn∥2 +

1

12

∫
R3

K∞|wn|6 +
(µ
4
− µ

q

)∫
R3

Q∞|wn|q
]

≥ 1

4
∥w∥2 + 1

12

∫
R3

K∞|w|6 +
(µ
4
− µ

q

)∫
R3

Q∞|w|q

= I∞(w).

Since w ̸= 0, I∞(w) ≥ m∞. From (3.6), I∞(w) = m∞. Let u∞ be the minimizer of m∞, then

I∞(u∞) = max
t≥0

I∞(tu∞). Thus there exists t∗ > 0 such that

c ≤ sup
t≥0

I(tu∞) = I(t∗u∞) < I∞(t∗u∞) ≤ I∞(u∞) = m∞.

The proof is finished.

Now we are in a position to give the proof of Theorem 1.1.

Proof of Theorem 1.1. It follows from Lemma 2.6, 3.1 and 3.2 that I has a nontrivial critical

point u ∈ H1(R3). If we replace I by the following functional

I+(u) =
1

2
∥u∥2 + b

4

(∫
R3

|∇u|2
)2

+
1

4
F (u)−

∫
R3

(
1

6
K|u+|6 + µ

q
Q|u+|q),

where u± = max{±u, 0}, then we see that all the above calculations can be repeated word by

word, so I+ has a nontrivial critical point u ∈ H1(R3). Hence,

0 = ⟨I ′+(u), u−⟩ = ∥u−∥2 + b

∫
R3

|∇u|2
∫
R3

|∇u−|2 +
∫
R3

ϕu|u−|2 ≥ ∥u−∥2,

which implies u ≥ 0, and u is not identically zero, the maximum principle yield u > 0. Thus

(u, ϕu) is a positive solution of (1.1).

§4 Proof of Theorem 1.2

When 2 < q < 3, the structure of the Nehari manifold N∞ is delicate, so it seems to be

impossible to compare c∞ and m∞, which is important to overcome the lack of compactness.

Thus we restrict ourselves to radial functions space H1
r (R3). As shown in [3], I is invariant

under the group action of O(3), the orthogonal transform in R3, since we assume K and Q are

radial symmetric. By the symmetry critical principle in [24], a critical point u ∈ H1
r (R3) for

I|H1
r (R3) is also a critical point for I.

Lemma 4.1. Assume (H1), (H2) hold and K, Q are radial functions. If I has a bounded (PS)c
sequence with c ∈ (0, c∗), then I has a nontrivial critical point u ∈ H1

r (R3), for 2 < q < 3, and

µ > 0 large.

Proof. Let {un} ⊂ H1
r (R3) be a bounded (PS)c sequence of I. Since H1

r (R3) is compactly

embedded in Ls(R3)(2 < s < 6), we may therefore assume that there exists u ∈ H1
r (R3) such

that

un ⇀ u in H1
r (R3), un → u in Ls(R3).

Plainly, I ′(u) = 0. In this case, we only show that u ̸= 0. Suppose, on the contrary, that u = 0.

Then un → 0 in Lq(R3), and F (un) → 0. Thus

I(un) =
1

2
∥un∥+

b

4
(

∫
R3

|∇un|2)2 −
1

6

∫
R3

K(x)|u+
n |6 + o(1),
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⟨I ′(un), un⟩ = ∥un∥2 + b
(∫

R3

|∇un|2
)2

−
∫
R3

K(x)|u+
n |6 + o(1),

we also assume that as n → ∞, there exist li ≥ 0(i = 1, 2, 3) such that

∥un∥2 → l1, b
(∫

R3

|∇un|2
)2

→ l2,

∫
R3

K(x)|u+
n |6 → l3.

then l1 + l2 = l3. It is clear that l1 > 0 and hence that l2, l3 > 0. then

c = I(un)−
1

6
I ′(un)un + o(1)

=
1

3
∥un∥2 +

b

12

(∫
R3

|∇un|2
)2

+ o(1)

=
1

3
l1 +

1

12
l2 + o(1).

Similarly to the proof of (2.6), c ≥ c∗, a contradiction. Thus u ̸= 0.

Proof of Theorem 1.2. By Lemma 4.1, it is sufficient to construct a bounded (PS)c sequence

{un} with c ̸= 0 for I. It is easy to see that I has the mountain pass geometry, then there

exists a (PS)c sequence {un} with c > 0 for I, that is

I(un) → c > 0, I ′(un) → 0, in H−1(R3).

Multiplying −△ϕu = u2 by |un| and integrating by parts, we have∫
R3

|un|3 =

∫
R3

−△ϕun |un| ≤
∫
R3

|∇un|2 +
1

4

∫
R3

ϕunu
2
n.

Thus we deduce that

c+ 1 + ∥un∥ ≥ I(un)−
1

6
⟨I ′(un), un⟩

≥ 1

6
∥un∥2 +

1

24

∫
R3

ϕun
u2
n + g(un)

=
1

24
∥un∥2 +

1

8
∥un∥2 +

1

24

∫
R3

ϕunu
2
n + g(un).

for g(u) := 1
8

∫
R3 |u|3 + 1

6

∫
R3 u

2 − (µq − µ
6 )|Q|∞

∫
R3 |u+|q.

We claim that {un} is bounded in H1
r (R3). If not, the following inequality must hold for n

large enough:
1

8
∥un∥2 +

1

24

∫
R3

ϕunu
2
n + g(un) ≤ 0.

Similar to the idea of [19]. Define m = min g, clearly, m < 0. Then, the set {u > 0 : g(u) < 0}
is of the form (α, β), with α > 0. Note that α, β,m are constants depending only on q. For each

function un, define An = {x ∈ R3 : un(x) ∈ (α, β)}. Note that An is spherically symmetric,

and define ρn = sup{|x| : x ∈ An}. Since

0 ≥ 1

8
∥un∥2 +

1

24

∫
R3

ϕunu
2
n + g(un)

≥ 1

8
∥un∥2 +

1

24

∫
R3

ϕunu
2
n +

∫
un∈(α,β)

g(un)

≥ 1

8
∥un∥2 +

1

24

∫
R3

ϕunu
2
n +m|An|,

(4.1)

one has

|m||An| >
1

8
∥un∥2, (4.2)

which, in particular, implies that |An| → +∞.
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We now recall the following general result due to Strauss [21]

|u(x)| ≤ c0|x|−1∥u∥ ∀u ∈ H1
r . (4.3)

for some c0 > 0. Take x ∈ R3, |x| = ρn. Clearly, un(x) = α > 0. We use inequalities (4.2), (4.3)

to obtain

0 < α = un(x) ≤ c0ρ
−1
n ∥un∥ ≤

√
8c0ρ

−1
n (|m||An|)1/2 ⇒ c1ρn ≤ |An|1/2 (4.4)

for some c1 > 0. On the other hand, by (4.1), we have that |m||An| ≥ 1
24

∫
R3 ϕun

u2
n, then

24|m||An| ≥
∫
R3

ϕun
u2
n =

1

4π

∫
R3

∫
R3

u2
n(x)u

2
n(y)

|x− y|

≥ 1

4π

∫
An

∫
An

u2
n(x)u

2
n(y)

|x− y|
≥ 1

4π
α4 A

2
n

2ρn

⇒ c2ρn ≥ |An|
for some c2 > 0, which is a contradiction with (4.4). Thus {un} is a bounded (PS)c sequence

with c > 0 for I, by Lemma 3.1, 4.1 and the symmetry critical principle [23], I has a nontrivial

critical point u, and as in the proof of Theorem 1.1, (u, ϕu) is a positive solution to problem

(1.1). The proof is completed.
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