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Reduced differential transform and Sumudu transform

methods for solving fractional financial models of

awareness

A. M. S. Mahdy1,∗ K. A. Gepreel1 Kh. Lotfy2 A. El-Bary3

Abstract. In that paper, our new study has been carried out on previous studies of one of the most 

important mathematical models that describe the global economic movement, and that is described as a 
non-linear fractional financial model of awareness, where the studies are represented at the steps 
following: One: The schematic of the model is suggested. Two: The disease-free equilibrium point 
(DFE) and the stability of the equilibrium point are discussed. Three: The stability of the model is 
fulfilled by drawing the Lyapunov exponents and Poincare map. Fourth: The existence of uniformly 
stable solutions have discussed. Five: The Caputo is described as the fractional derivative. Six: 
Fractional optimal control for NFFMA is discussed by clarifying the fractional optimal control through 
drawing before and after control. Seven: Reduced differential transform method (RDTM) and Sumudu 
Decomposition Method (SDM) are used to take the resolution of an NFFMA. Finally, we display that 
SDM and RDTM are highly identical.

§1 Foreword

It is recognized that the declaration’s goal is to convince buyers to buy products, relying on 
the general necessity of these products to show that they differ as a distinctive brand from other 
products to support buyers to purchase them [3]. There are many ways to turn the customer’s 
thinking about the products and services offered to them. One of them is advertising through 
messages. These messages are through physical media, such as newspapers, magazines 
televisions, and radios. This mission can be through simple media, such as websites and drawing 
out messages [3]. It is very important to study advertising strategies to increase sales to achieve 
the highest profit for the company [32]. Thus, it is much more useful to study and create an
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Table 1. The parameter values and their definition.

Parameter Definition
N(t) Population total with time
x1(t) Number of a set of persons who do not know the entity of the produce
x2(t) Number of a set of persons who know about the product but have not yet buy
x3(t) Number of the group of people who have bought the product
u Knowledge, this changs x1(t) into the scope one x2(t)
v Try advertisement, this carries x2(t) into the purchased one x3(t)
a Trial rate
k Connect ratio
δ Transform ratio
µα
b Birth ratio

µα
d Death rate

ux1(t) Total number of persons carry to the aware group x2(t) via declaration
(N(t) − x1(t)) Connect and report a total of k(N(t) − x1(t)), out of which only x1(t) /N(t).

appropriate dynamic and to represent time-based selling and public opinion [5]. There are

also many approach models to appear in the relationship between advertising that identifies

snags from the marketing and economic management point of view. Advertising policies are

analyzed over time by dynamic models described as differential equations where sell a lot,

deals, and all severe conditions variables are constantly changing. Respect for time. The

purpose of advertising is always different. For example, some advertisements are to compare

two, three, or more brands, and for another purpose, such as introducing a novel product to the

mart based on these goals, advertising types are created. Commonly, the action of advertising

is forever late in time, and it is necessary to integrate the memory of different models of a

declaration, so models that rely on the previous cases in the current cases have not only their

initial previous cases appropriate to describe strategies for the declaration. Latterly, (FC) has

acquired great circulation and significance due to its catchy implementation as a new model

work in an assortment of engineering and scientific domains ([1]-[58]), such as viscoelasticity [1]

and thermoelasticity ([2], [3], [59]). The best method fractional models are led as FDEs.

The prime object of this manuscript is to propose a prorated discuss among STM and

RDTM for solving NFFMA [3]:

 Dαx1

Dαx2

Dαx3

 =

 −uα − µα
d 0 0 −kα µα

b

uα −aα − vα − µα
d δα kα 0

0 aα + vα −δα − µα
d 0 0




x1

x2

x3
x1(N−x1)

N

N

 , (1)

with given initial condition:

x1(t) = x10, x2(t) = x20, x3(t) = x30. (2)

Definition 1 The Dα is Caputo fractional derivative is known ([4]-[6], [37]):

Dαz (r) =

{
1

Γ(n−α)

∫ x

0
z(n)(η)

(r−η)α−n+1 dη, 0 ≤ n− 1 < α < n,

z(n) (r) , α = n ∈ N.
(3)

For further particular about the basal simplification and advantages of fractional derivatives

see ([4]-[6], [37]).

The paper is structured into five sections. In section 2, we discuss the equilibrium points,
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stability, existence of uniformly stable solution NFFMA, clarify the dynamics of the model

between Lyapunov exponents, and Poincare maps. Optimal control for NFFMA is discussed

in Section 3. In section 4, we show an example to display the activity of using (STM) and

(RDTM) to solve NFFMA. Finally, pertinent conclusions are drawn in section 5.

§2 Equilibrium and Stability of fractional financial models of

awareness

In this section, we discuss the equilibrium point and the stability of NFFMA (1).

2.1 Equilibrium points

We discuss the equilibrium points of the NFFMA. The model has one equilibrium point,

more details about the stability and equilibrium point of models fractional in ([27]-[31]).

Hence, we resolve the next equations to find the equilibrium point:

Dαx1 = −uαx1 −
kα

N
x1(N − x1) + µα

b N − µα
dx1 = 0,

Dαx2 = uαx1 +
kα

N
x1(N − x1)− (aα + vα)x2 + δαx3 − µα

dx2 = 0,

Dαx3 = (aα + vα)x2 − δαx3 − µα
dx3 = 0. (4)

Equation (4) leads to getting the one equilibrium point

E0

(
QN,

−δαQ+ µ
(−α)
d δαµα

b − µα
dQ+ µα

b

T
,
T1a

αµα
b −NvαQ+Nµ

(−α)
d vαµα

b

T

)
,

where Q=
√
µα
b − uα − µα

d and T=(δα + aα + vα + µα
d ) , T1 = −NaαQ+Nµ

(−α)
d .

2.2 Studying the stability

We calculate the Jacobian matrix J for the model (1) as next:

J =

 −uα − µα
d − kα + 2kα

N x1 0 0

uα + kα − 2kα

N x1 −aα − vα − µα
d δα

0 aα + vα −δα − µα
d

 ,

at the equilibrium point E0 the Jacobian matrix J(E0) model (1) is given via

J (E0) =

 −uα − µα
d − kα + 2kαQ 0 0

uα + kα − 2kαQ −aα − vα − µα
d δα

0 aα + vα −δα − µα
d

 .

Consequently, we have

|J − λI| =

∣∣∣∣∣∣∣
−uα − µα

d − kα + 2kαQ− λ 0 0

uα + kα − 2kαQ −aα − vα − µα
d − λ δα

0 aα + vα −δα − µα
d − λ

∣∣∣∣∣∣∣ = 0.
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Then, the eigenvalues given by

λ = −µα
d , λ2 = −aα − δα − µα

d − vα , λ3 = −(uα + µα
d + kα − 2kαQ),

the solution is stable.

2.3 Clarify Lyapunov exponents and Poincare map

Figures 2-4 clarify Lyapunov exponents in different time periods. Figures 5-10 clarify the

system by Poincare map for 3 several values of a, k and delta. All of which included model

stability. At the fixed point, eigenvalues have negative, which means stability, and we guarantee

its security by drawing its Lyapunov. The calculation utilized for deciding Lyapunov examples

has been suggested in [38], see Figures 2-4. In Figure 2-4, we see that all Lyapunov examples

have negative after little transient time that infers the framework is steady and approaches its

fixed point. Additionally, we guarantee its soundness by drawing the model’s Poincare guide as

shown in Figures 5-10. In Figures 5-10, plainly, all conditions of the framework go to its fixed

point.

x1

N x2

x3

x1
2

Figure 1. The suggested schematic of the model.
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Figure 2. Represent the Lyapunov exponents’ dynamics for the model.

2.4 Existence of Uniformly stable solution

Let

f1(x1, x2, x3) = −uαx1 −
kα

N
x1(N − x1) + µα

b N − µα
dx1,
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Figure 3. Represent the Lyapunov exponents’ dynamics for the model.

0 200 400 600 800 1000
−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
Dynamics of Lyapunov exponents

Time

Lya
pun

ov 
exp

one
nts

 

 

LE1
LE2
LE3

Figure 4. Represent the Lyapunov exponents’ dynamics for the model.
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Figure 5. Clarify the Poincare map of the model between x1, x2 and a.
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Figure 6. Clarify the Poincare map of the model between x1,x3 and a.
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Figure 7. Clarify the Poincare map of the model between x1, x2 and δ.
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Figure 8. Clarify the Poincare map of the model between x1, x2 and δ.
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Figure 9. Clarify the Poincare map of the model between x1, x2 and k.
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Figure 10. Clarify the Poincare map of the model between x1, x3 and k.
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f2(x1, x2, x3) = uαx1 +
kα

N
x1(N − x1)− (aα + vα)x2 + δαx3 − µα

dx2,

f3(x1, x2, x3) = (aα + vα)x2 − δαx3 − µα
dx3.

Let

D = {x1, x2, x3 ∈ ℜ : |x1, x2, x3| ≤ a, t ∈ [0, T ]} .
We have at D :

∂f1
∂x1

= −uα − µα
d − kα + 2kαQ,

∂f1
∂x2

= 0,
∂f1
∂x3

= 0,

∂f2
∂x1

= uα + kα − 2kαQ,
∂f2
∂x2

= −aα − vα − µα
d ,

∂f2
∂x3

= δα,

∂f3
∂x1

= 0,
∂f3
∂x2

= aα + vα,
∂f3
∂x3

= −δα − µα
d ,∣∣∣∣ ∂f1∂x1

∣∣∣∣ ≤ k1,

∣∣∣∣ ∂f2∂x2

∣∣∣∣ ≤ k2,

∣∣∣∣ ∂f3∂x3

∣∣∣∣ ≤ k3,

where k1k2 and k3 are positive constants. This means that each of the three functions f1, f2

and f3 fulfill the condition Lipschitz with the three cases, and consequently any of the three

functions are continuous absolutely with the three cases.

§3 Optimal control

Let us see the case model given in Eqs. (1), in ℜ3, with the set of accepted control functions

for more details in ([33]-[36], [39]):

Ω =
{
u(.)v(.) ∈ (L∞(0, Tf )

2) | 0 ≤ u(.)v(.) ≤ 1,∀t ∈ [0, Tf ]
}
,

where Tf is the final time, u(.) and v(.) are controls functions.

The objective function is known as the next.

J(u(.), v(.)) =

∫ Tf

0

[
Ax1(t) +Bu2(t) + Cv2(t)

]
dt, (5)

where A, B, and C illustrate the rule constants.

The premier point in FOCPs is to get the optimal controls u(.) and v(.), which minimizes

the dependent objective function:

J(u, v) =

∫ Tf

0

η [x, y, z, u, v, t] dt, (6)

subjected to the constraint

Dαx1 = ξ1, D
αx2 = ξ2, D

αx3 = ξ3, D
αx1 = ξi = ξ(x1, x2, x3, u, v, t), i = 1, 2, 3. (7)

The dependent initial cases are contented:
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x1(0) = x10, x2(0) = x20, x3(0) = x30. (8)

To realize the FOCP, let us think of a revised objective (cost) function as directed:

J =

∫ Tf

0

[
H(x1, x2, x3, u, v, t)−

3∑
i=1

λiξi(x1, x2, x3, u, v, t)

]
dt, (9)

where the Hamiltonian for the goal functional (9) and the control financial models of aware-

ness (1) are given as follows:

H(x1, x2, x3, u, v, t) = η(x1, x2, x3, u, v, t) +
3∑

i=1

λiξi(x1, x2, x3, u, v, t), (10)

H = Ax1 +Bu2 + Cv2 + λ1

[
−uαx1 −

kα

N
x1(N − x1) + µα

b N − µα
dx1

]
+ λ2

[
uαx1 +

kα

N
x1(N − x1)− (aα + vα)x2 + δαx3 − µα

dx2

]
+ λ3 [(a

α + vα)x2 − δαx3 − µα
dx3] .

(11)

From (9) and (11), we can deduce the sufficient and necessary conditions for FOPC as

Dαλ1 =
∂H

∂x1
, Dαλ2 =

∂H

∂x2
, Dαλ3 =

∂H

∂x3
, (12)

∂H

∂u
= 0,

∂H

∂v
= 0, (13)

Dαx1 =
∂H

∂λ1
, Dαx2 =

∂H

∂λ2
, Dαx3 =

∂H

∂λ3
, (14)

λj(Tf ) = 0, (15)

where λj , j = 1, 2, 3 are the multipliers Lagrange. Eqs.(13) and (14) appear the conditions

necessary in terms of a Hamiltonian for the FOPC.

We arrive at the following theorem:

Theorem 1.

If u and v are optimal controls with the uniform state x∗
1, x

∗
2, and x∗

3 then the next there

exist adjoint variables λ∗
i i = 1, 2, 3 satisfies:

(i) Adjoint (co-state) equations

Laying the conditions in the content hypothesis and putting conditions (12) see, ([33]- [36]),

we obtain the accompanying three conditions, which can be composed as follows:-

Dαλ
∗

1 = A+ λ
∗

1(−uα − kα +
2kα

N
x1 − µα

d ) + λ
∗

2(u
α + kα − 2kα

N
x1), (16)

Dαλ
∗

2 = λ
∗

2(−aα − vα − µα
d ) + λ

∗

3(a
α + vα), (17)

Dαλ
∗

3 = λ
∗

2(δ
α) + λ

∗

3(−δα − µα
d ), (18)
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(ii) With transversality conditions:

λ
∗

i (Tf ) = 0, i = 1, 2, 3. (19)

(iii) Optimality conditions

H(x
∗

1, x
∗

2, x
∗

3, u
∗
, v

∗
, λ

∗
) = min

0≤u∗ ,v∗≤1
H(x

∗

1, x
∗

2, x
∗

3, u
∗
, v

∗
, λ

∗
). (20)

As well, the control functions u
∗
, v

∗
are offered by

∂H

∂u
= 0 ⇒ uα−2

=
2B

αx
∗
1(λ

∗
1 − λ

∗
2)

⇒ uα =
2Bu2

αx
∗
1(λ

∗
1 − λ

∗
2)
, (21)

∂H

∂v
= 0 ⇒ vα

−2

=
2C

αx
∗
2(λ

∗
2 − λ

∗
3)

⇒ vα =
2Cv2

αx
∗
2(λ

∗
2 − λ

∗
3)
, (22)

u
∗
= min

{
1,max

{
0,

αx
∗

1(λ
∗

1 − λ
∗

2)

2B

}}
, (23)

v
∗
= min

{
1,max

{
0,

αx
∗

2(λ
∗

2 − λ
∗

3)

2C

}}
, (24)

Argument. The system co-state Eqs. (16)-(18) have set from Eq.(14) where the Hamiltonian

H
∗
is presented

H
∗
= A1x

∗

1 +Bu
∗2 + Cv

∗2 + λ
∗

1D
αx

∗

1 + λ
∗

2D
αx

∗

2 + λ
∗

3D
αx

∗

3. (25)

Further, the condition in Eq.(15) also satisfied, and the optimal control written in Eqs.(23)–

(24) can be derived from Eq.(13).

Putting u
∗
, v

∗
in (1), the following state system can be found as:

Dαx
∗

1 = −uαx
∗

1 −
kα

N
x

∗

1(N − x
∗

1) + µα
b N − µα

dx
∗

1,

Dαx
∗

2 = uαx
∗

1 +
kα

N
x

∗

1(N − x
∗

1)− (aα + vα)x
∗

2 + δαx
∗

3 − µα
dx

∗

2,

Dαx
∗

3 = (aα + vα)x
∗

2 − δαx
∗

3 − µα
dx

∗

3.

To detail extra about optimal fractional control ([33]-[36]).

§4 Applications

In this section, two analytical methods are inserted to resolve FFMA (1) using we STM

([7]-[14], [19], [20]) and RDTM ([23]-[25]) with initial condition:

x1(0) = 300, x2(0) = 600, x3(0) = 100, (26)

with N = 1000, a = 0.02, δ = 0.2, u = 0.01, v = 0.05, k = 0.01.
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4.1 By using SDM

By taking the ST on both sides of Eq.(1) at µb = µd = 0 we get

S [Dαx1(t)] = S

[
−uαx1 −

kα

x1 + x2 + x3
(x1x2 + x1x3)

]
,

S [Dαx2(t)] = S

[
uαx1 +

kα

x1 + x2 + x3
(x1x2 + x1x3)− (aα + vα)x2 + δαx3

]
,

S [Dαx3(t)] = S [(aα + vα)x2 − δαx3] , (27)

using the property of the ST and the I.C. in Eq.(27),

S [x1(t)] = x1(0) + wαS

[
−uαx1 −

kα

x1 + x2 + x3
(x1x2 + x1x3)

]
,

S [x2(t)] = x2(0) + wαS

[
uαx1 +

kα

x1 + x2 + x3
(x1x2 + x1x3)− (aα + vα)x2 + δαx3

]
,

S [x3(t)] = x3(0) + wαS [(aα + vα)x2 − δαx3] ,

S [x1(t)] = 300 + wαS

[
−uαx1 −

kα

x1 + x2 + x3
(x1x2 + x1x3)

]
,

S [x2(t)] = 600 + wαS

[
uαx1 +

kα

x1 + x2 + x3
(x1x2 + x1x3)− (aα + vα)x2 + δαx3

]
,

S [x3(t)] = 100 + wαS [(aα + vα)x2 − δαx3] . (28)

Taking the Sumudu inverse of Eq.(28), we obtain

x1(t) = 300 + S−1

[
wαS

[
−uαx1 −

kα

x1 + x2 + x3
(x1x2 + x1x3)

]]
,

x2(t) = 600 + S−1

[
wαS

[
uαx1 +

kα

x1 + x2 + x3
(x1x2 + x1x3)− (aα + vα)x2 + δαx3

]]
,

x3(t) = 100 + S−1 [wαS [(aα + vα)x2 − δαx3]] . (29)

By assuming that:

x1(t) =

∞∑
n=0

x1n(t), x2(t) =

∞∑
n=0

x2n(t), x3(t) =

∞∑
n=0

x3n(t). (30)

By putting Eq.(30) in Eq.(29) we given
∞∑

n=0

x1n = 300

+S−1

[
wαS

[
−uα

∞∑
n=0

x1n − kα∑∞
n=0 x1n +

∑∞
n=0 x2n +

∑∞
n=0 x3n

(

∞∑
n=0

An +

∞∑
n=0

Bn)

]]
,

∞∑
n=0

x2n = 600

+S−1

[
wαS

[
uα
∑∞

n=0 x1n(t) +
kα∑∞

n=0 x1n+
∑∞

n=0 x2n+
∑∞

n=0 x3n
(
∑∞

n=0 An +
∑∞

n=0 Bn)

−(aα + vα)
∑∞

n=0 x2n + δα
∑∞

n=0 x3n

]]



348 Appl. Math. J. Chinese Univ. Vol. 38, No. 3

∞∑
n=0

x3n = 100

+S−1

[
wαS

[
(aα + vα)

∞∑
n=0

x2n − δα
∞∑

n=0

x3n

]]
, (31)

where An, Bn are Adomian polynomials which explain nonlinear term. So Adomian poly-

nomials are presented as next:

An(t) = x1(t)x2(t), Bn(t) = x1(t)x3(t)

The Adomian polynomial’s small components are presented.

A0(t) = x10(t)x20(t)

A1(t) = x10(t)x21(t) + x11(t)x20(t)

A2(t) = x10(t)x22(t) + x11(t)x21(t) + x12(t)x20(t)

...

B0(t) = x10(t)x30(t)

B1(t) = x10(t)x31(t) + x11(t)x30(t)

B2(t) = x10(t)x32(t) + x11(t)x31(t) + x12(t)x30(t)

...

Then we have

x10 = 300, x20 = 600, x30 = 100, A0 = 180000, B0 = 30000

x1k+1 = S−1

[
wαS

[
−uαx1k − kα

x1k + x2k + x3k
(Ak +Bk)

]]
x2k+1 = S−1

[
wαS

[
uαx1k +

kα

x1k + x2k + x3k
(Ak +Bk)− (aα + vα)x2k + δαx3k

]]
x3k+1 = 100 + S−1 [wαS [((aα + vα)x2k − δαx3k]]

x11 = S−1

[
wαS

[
−uαx10 −

kα

x0 + x20 + x30
(A0 +B0)

]]
x21 = S−1

[
wαS

[
uαx10 +

kα

x10 + x20 + x30
(A0 +B0)− (aα + vα)x20 + δαx30

]]
x31 = 100 + S−1 [wαS [((aα + vα)x20 − δαx30]]

x11 =
−300uα − 210kα

Γ(α+ 1)
tα

x21 =
−300uα − 210kα − 600(aα + vα) + 100δα

Γ(α+ 1)
tα

x31 =
600(aα + vα)− 100δα

Γ(α+ 1)
tα
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If we put

A = −300uα − 210kα

B = −300uα − 210kα − 600(aα + vα) + 100δα

C = 600(aα + vα)− 100δα

Since

x1(t) = x10 + x11 + x12 + · · ·

x1(t) = x20 + x21 + x22 + · · ·

x3(t) = x30 + x31 + x32 + · · · , (32)

x1 = 300 +

[
A

Γ(α+ 1)
− kα × Y4

(A+B + C)× Γ(α+ 1)

]
tα − uαA

Γ(2α+ 1)
t2α + · · ·

x2 = 600 +

[
Btα

Γ(α+ 1)
+

kαtαY4

(A+B + C)× Γ(α+ 1)

]
+

(uαA−B(aα + vαt2α) + Cδα)

Γ(2α+ 1)

x3 = 100 +
C

Γ(α+ 1)
tα +

B(aα + vα)− Cδα

Γ(2α+ 1)
t2α + · · · .

4.2 By using RDTM

Putting RDTM to Eq.(1), we get repetition relations as:

x1k+1 =
Γ(kα+ 1)

Γ [α(k + 1) + 1]
[−uαx1k − Y1]

x2k+1 =
Γ(kα+ 1)

Γ [α(k + 1) + 1]
[uαx1k + Y2]

x3k+1 =
Γ(kα+ 1)

Γ [α(k + 1) + 1]
[((aα + vα)x2k − δαx3k] .

where

Y1 =

[
kα

x1k + x2k + x3k
(

k∑
r=0

x1rx2(k−r) +
k∑

r=0

x1rx3(k−r))

]

Y2 =
kα

x1k + x2k + x3k
(

k∑
r=0

x1rx2(k−r) +
k∑

r=0

x1rx3(k−r))− Y3.

By substituting Eq.(26), we have:

x11 =
1

Γ [α+ 1]

[
−uαx10 −

kα

x10 + x20 + x30
(x10x20 + x10x30)

]
x21 =

1

Γ [α+ 1]

[
uαx10 +

kα

x10 + x20 + x30
(x10x20 + x10x30)− Y3

]
x31 =

1

Γ [α+ 1]
[((aα + vα)x20 − δαx30]

Y3 = (aα + vα)x20 + δαx30.

In saw of the differential inverse transform, the differential transform series solution
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x1(t) =

∞∑
n=0

x1nt
αn, x2(t) =

∞∑
n=0

x2nt
αn, x3(t) =

∞∑
n=0

x3nt
αn

We obtain the solution as

x1(t) = 300 +
A

Γ(α+ 1)
tα −

[
uαA

Γ(2α+ 1)
+

kα × Y4 × Γ(α+ 1)

(A+B + C)× Γ(2α+ 1)

]
t2α

x2(t) = 600 +
B

Γ(α+ 1)
tα +

[
(uαA− Y6 + Cδα)

Γ(2α+ 1)
+

kαY4 × Γ(α+ 1)

Y5 × Γ(2α+ 1)

]
t2α

x3(t) = 100 +
C

Γ(α+ 1)
tα +

B(aα + vα)− Cδα

Γ(2α+ 1)
t2α + · · · .

Y4 = (700A+ 300B + 300C), Y5 = (A+B + C), Y6 = B(aα + vα).

4.3 Clarify the optimal control through drawing before and after con-

trol

Clarifying the fractional optimal control through drawing before and after control. Where

in Figures 11-13, the fractional financial awareness solution is shown before control at α = 0.85

using STM and RDTM. Figures 14-16 show the dynamics of solutions of the convergent solution

of order fractional financial awareness model after control at α = 0.85 using STM and RDTM.

It is no doubt that the activity in this way is greatly increased by the calculation of further

terms x1, x2 and x3 by using STM and RDTM and show illustrate the phase spaces.
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Figure 11. The solutions of x1, x2, x3 before control using STM and RDTM at α = 0.85.
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Figure 12. The solutions of x1 and x2 before control using STM and RDTM at α = 0.85.
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Figure 13. The solutions of x2 and x3 before control using STM and RDTM at α = 0.85.
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Figure 14. The solutions of x1, x2, x3 after control at α = 0.85.
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Figure 15. The solutions of x1 and x2 after control using STM and RDTM at α = 0.85.
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Figure 16. The solutions of x2 and x3 after control using STM and RDTM at α = 0.85.
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§5 Conclusions

In this paper, the graphical of the model is suggested. The (DFE) and the stability of

the equilibrium point has clarified. The stability of the model has been satisfied by drawing

the Lyapunov exponents and Poincare map. The existence of uniformly stable solutions is

represented. The Caputo is described as the fractional derivative. Fractional optimal control

for NFFMA has discussed, through clarifying the fractional optimal control through drawing

before and after control. RDTM and SDM are using to take the resolution of an NFFMA.

We are displaying that SDM and RDTM are highly identical. Finally, novel research has

been carried out on past studies of one of the leading mathematical models that dub the global

economic movement, and that is described as an NFFMA, where the researched at the upper.
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