The existence of radial k-admissible solutions for n-dimension system of k-Hessian equations

HE Xing-yue WANG Jing-jing GAO Cheng-hua*

Abstract

In this paper, we focus on a general n-dimension system of k-Hessian equations. By introducing some new suitable growth conditions, the existence results of radial k-admissible solutions of the k-Hessian system are obtained. Our approach is largely based on the well-known fixed-point theorem.

§1 Introduction

In this paper, we aim to investigate the existence of radial k-admissible solutions for the n-dimensional system by k-Hessian equations like

$$
\begin{cases}S_{k}\left(\lambda\left(D^{2} u_{1}\right)\right)=f_{1}\left(-u_{1}, \cdots,-u_{n}\right) & \text { in } B \tag{1}\\ S_{k}\left(\lambda\left(D^{2} u_{2}\right)\right)=f_{2}\left(-u_{1}, \cdots,-u_{n}\right) & \text { in } B \\ \ldots & \\ S_{k}\left(\lambda\left(D^{2} u_{n}\right)\right)=f_{n}\left(-u_{1}, \cdots,-u_{n}\right) & \text { in } B \\ u_{i}(x)=0 & \text { on } \partial B\end{cases}
$$

where $k=1,2, \cdots, n, B=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$ is a unit ball, the nonlinearity f_{i} satisfies the condition:
(A) $f_{i} \in C([0,+\infty) \times[0,+\infty) \times \cdots \times[0,+\infty),[0,+\infty))(i=1,2, \cdots, n)$.

As we all known, the k-Hessian operator $S_{k}\left(\lambda\left(D^{2} u\right)\right)$ is a classical completely nonlinear partial differential operator, which is defined as follows

$$
S_{k}\left(\lambda\left(D^{2} u\right)\right)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}, \quad k=1,2, \cdots, n .
$$

It is clear that $S_{k}\left(\lambda\left(D^{2} u\right)\right)$ is the sum of all $k \times k$ principal minors Hessian matrix of $D^{2} u=$ $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$, where $\lambda\left(D^{2} u\right)=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}\right)$ is the vector of eigenvalues of $D^{2} u$, and $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$

Received: 2021-12-31. Revised: 2022-06-21.
MR Subject Classification: 34B15, 34B18, 34L30, 35A01, 35A20.
Keywords: k-Hessian equations, radial k-admissible solutions, existence, fixed-point theorem.
Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-023-4648-1.
Supported by the National Natural Science Foundation of China(11961060) and Graduate Research Support of Northwest Normal University(2021KYZZ01032).
*Corresponding author.
are the eigenvalues of the Hessian matrix $D^{2} u$.
It is interesting to see that the k-Hessian operator contains a family of operators: the classical Laplace operator $S_{k}\left(D^{2} u\right)=\Delta u$ for $k=1$; the Monge-Ampère operator $S_{k}\left(D^{2} u\right)=\operatorname{det}\left(\Delta^{2} u\right)$ for $k=n$ and other well-known operators. On the study of these operators, several authors paid more attention and obtained many excellent results, see, for instance [5,6,9,10] and the references therein.

At the same time, we notice that the discussion of solutions for k-Hessian equation has become a topic in the current study, see [1,3,4,6-15] and the references therein. In particular, Ma et al. [7] showed the existence of three radially symmetric k-admissible solutions for k-Hessian equation with 0-Dirichlet boundary condition under suitable conditions on the nonlinearity. However, to the best of our knowledge, there are few literatures study the existence of systematic solutions for the n-dimensional system by k-Hessian equations. In a recent study, Gao et al. [3] obtained the existence, uniqueness and nonexistence of radial convex solutions for some suitable constants α and β dealed for a coupled system of k-Hessian equations:

$$
\begin{cases}S_{k}\left(\mu\left(D^{2} u_{1}\right)\right)=\left(-u_{2}\right)^{\alpha} & \text { in } B \\ S_{k}\left(\mu\left(D^{2} u_{2}\right)\right)=\left(-u_{1}\right)^{\beta} & \text { in } B \\ u_{1}<0, u_{2}<0 & \text { in } B \\ u_{1}=u_{2}=0 & \text { on } \partial B\end{cases}
$$

where B is a unit ball in $\mathbb{R}^{n}, n \geq 2, \alpha$ and β are positive constants. Thus, it is inspired by the recent works, we are interested in the existence of radial k-admissible solutions for the form (1). The function $u \in C^{2}(B) \cap C(\bar{B})$ is called k-admissible function if $\lambda\left(D^{2} u\right)$ belongs to the set

$$
\Gamma_{k}=\left\{\lambda \in \mathbb{R}^{n} \mid S_{j}(\lambda)>0 \quad j=1,2, \cdots, k\right\}
$$

We know that k-admissible solution is subharmonic by the maximum principle, it is negative in B. Our research is an improvement and extension of [3].

Let

$$
\begin{aligned}
\underline{F_{i *}^{0}}=\liminf _{c \rightarrow 0^{+}} \frac{F_{i *}(c)}{c^{\alpha_{i}}}, & \underline{F_{i *}^{\infty}}=\liminf _{c \rightarrow+\infty} \frac{F_{i *}(c)}{c^{\alpha_{i}}} \\
\overline{F_{i}^{*}}{ }^{0}=\limsup _{c \rightarrow 0^{+}} \frac{F_{i}^{*}(c)}{c^{\beta_{i}}}, & \overline{F_{i}^{*}}=\limsup _{c \rightarrow+\infty} \frac{F_{i}^{*}(c)}{c^{\beta_{i}}} .
\end{aligned}
$$

Then under some different suitable conditions imposed on $\underline{F_{i *}^{0}}, \underline{F_{i *}^{\infty}},{\overline{F_{i}^{*}}}^{0}$ and ${\overline{F_{i}^{*}}}^{\infty}$ (here, we may call them α_{i} or β_{i}-asymptotic growth condition, super- α_{i} or β_{i}-asymptotic growth condition, and sub- α_{i} or β_{i}-asymptotic growth condition), and some inequalities properties imposed on α_{i} and β_{i}, we obtain the existence of radial k-admissible solutions to the system (1). It is noted that the k-asymptotic growth is the case that the constants $\alpha_{i}=k$ and $\beta_{i}=k$ of α_{i} or β_{i} asymptotic growth. Therefore, our conditions here are more flexible than those existing results and the results here are completely new. Meanwhile, we also make the following assumption:
(B) there exist two pairs of nonnegative continuous functions $F_{i *}, F_{i}^{*}(i=1,2, \cdots, n)$ such that for any $-u_{i 0} \in\left\{-u_{j}\right\}, u_{i 0} \neq u_{k 0}(i \neq k)$,

$$
F_{i *}\left(-u_{i 0}\right) \leq f_{i}\left(-u_{1},-u_{2}, \cdots,-u_{n}\right) \leq F_{i}^{*}\left(-u_{i 0}\right)
$$

The rest of the present paper is organized as follows. In section 2, we give some preliminary
work for radial k-admissible solutions. In section 3, we attempt to obtain the existence results of the radial k-admissible solutions to the n-dimensional system (1).

§2 Preliminary results on radial solutions

For the radial solution $v(\tau)$ with $\tau=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$, the k-Hessian operator becomes

$$
S_{k}\left(\lambda\left(D^{2} v\right)\right)=\left\{\begin{array}{lc}
C_{N-1}^{k-1}(-v)^{\prime \prime}(\tau)\left(\frac{(-v)^{\prime}(\tau)}{\tau}\right)^{k-1}+C_{N-1}^{k}\left(\frac{(-v)^{\prime}(\tau)}{\tau}\right)^{k}, & 0<\tau<1 \\
C_{N}^{k}\left((-v(0))^{\prime \prime}\right)^{k}=0, & \tau=0
\end{array}\right.
$$

Based on this, we pay attention to the following boundary value problem:

$$
\begin{cases}C_{N-1}^{k-1}\left(-v_{1}\right)^{\prime \prime}(\tau)\left(\frac{\left(-v_{1}\right)^{\prime}(\tau)}{\tau}\right)^{k-1}+C_{N-1}^{k}\left(\frac{\left(-v_{1}\right)^{\prime}(\tau)}{\tau}\right)^{k}=f_{1}\left(v_{1}, v_{2}, \cdots, v_{n}\right), & 0<\tau<1 \tag{2}\\ C_{N-1}^{k-1}\left(-v_{2}\right)^{\prime \prime}(\tau)\left(\frac{\left(-v_{2}\right)^{\prime}(\tau)}{\tau}\right)^{k-1}+C_{N-1}^{k}\left(\frac{\left(-v_{2}\right)^{\prime}(\tau)}{\tau}\right)^{k}=f_{2}\left(v_{1}, v_{2}, \cdots, v_{n}\right), & 0<\tau<1 \\ \cdots & \\ C_{N-1}^{k-1}\left(-v_{n}\right)^{\prime \prime}(\tau)\left(\frac{\left(-v_{n}\right)_{n}^{\prime}(\tau)}{\tau}\right)^{k-1}+C_{N-1}^{k}\left(\frac{\left(-v_{n}\right)^{\prime}(\tau)}{\tau}\right)^{k}=f_{n}\left(v_{1}, v_{2}, \cdots, v_{n}\right), & 0<\tau<1 \\ v_{i}^{\prime}(0)=v_{i}(1)=0\end{cases}
$$

Let E be the Banach space $\underbrace{C[0,1] \times \cdots \times C[0,1]}_{n}$ with the norm $\|\vec{v}\|=\max _{1 \leq i \leq n}\left\{\left|v_{i}\right|_{1}\right\}$, where $\left|v_{i}\right|_{1}=\max _{0 \leq \tau \leq 1}\left|v_{i}(\tau)\right|$. Define an operator $\stackrel{n}{A}: E \rightarrow E$ as

$$
A(\vec{v})(\tau)=\left(A_{1}(\vec{v})(\tau), \cdots, A_{n}(\vec{v})(\tau)\right)
$$

where

$$
A_{i}(\vec{v})(\tau)=\int_{\tau}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} f_{i}\left(v_{1}(s), \cdots, v_{n}(s)\right) d s\right)^{\frac{1}{k}} d t, \quad \tau \in[0,1], i=1, \cdots, n
$$

Set a sub-cone $K=K_{1} \times \cdots \times K_{n}$, then $K \subset E$, and $K_{i}:=\left\{v_{i}(\tau): \min _{\frac{1}{4} \leq \tau \leq \frac{3}{4}} v_{i}(\tau) \geq \frac{1}{4}\left|v_{i}\right|_{1}\right\}$. It is easy to see that $A: K \rightarrow K$ is completely continuous. Then, v is the fixed-point of A if and only if v is a negative solution to problem (2). Furthermore, v is a radially symmetric k-admissible solution of system (1).

Our main tools depend on the following lemma as well as some suitable estimations.
Lemma 2.1.([2]) Let E be a real Banach space and $K \subset E$ be a cone. Assume Ω_{1}, Ω_{2} are bounded, open subsets of E with $\theta \in \Omega_{1}, \bar{\Omega}_{1} \subset \Omega_{2}$, and let $A: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ be a completely continuous operator such that either
(i) $\|A v\| \leq\|v\|, v \in K \cap \partial \Omega_{1}$, and $\|A v\| \geq\|v\|, v \in K \cap \partial \Omega_{2}$; or
(ii) $\|A v\| \geq\|v\|, v \in K \cap \partial \Omega_{1}$, and $\|A v\| \leq\|v\|, v \in K \cap \partial \Omega_{2}$.

Then A has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

§3 Main results for system (1)

Let

$$
\Gamma=\int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{\frac{1}{4}}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} d s\right)^{\frac{1}{k}} d t
$$

We have the following results:
Theorem 3.1. Assume that (A), (B) hold and $0<\alpha_{i}, \beta_{i}<k, i=1,2, \cdots, n$. If $\underline{F_{i *}^{0}}=+\infty$, ${\overline{F_{i}^{*}}}^{\infty}=0$, then (1) has at least one radial k-admissible solution.
Proof. Since $\underline{F_{i *}^{0}}=+\infty$, there exist $M>0$ and $0<r_{1}<1$ such that

$$
F_{i *}\left(v_{i 0}\right) \geq M v_{i 0}^{\alpha_{i}}, \quad 0 \leq v_{i 0} \leq r_{1},
$$

where M satisfies

$$
\min _{1 \leq i \leq n}\left\{\Gamma M^{\frac{1}{k}}\left(\frac{1}{4}\right)^{\frac{\alpha_{i}}{k}}\right\} \geq 1
$$

Then for any $\vec{v} \in K \cap \partial \Omega_{r_{1}}$, we have

$$
\begin{aligned}
A_{i}(\vec{v})\left(\frac{1}{4}\right) & =\int_{\frac{1}{4}}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} f_{i}\left(v_{1}(s), \cdots, v_{n}(s)\right) d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} F_{i *}\left(v_{i 0}\right) d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} M v_{i 0}^{\alpha_{i}} d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} M\left(\frac{1}{4}\left|v_{i 0}\right|_{1}\right)^{\alpha_{i}} d s\right)^{\frac{1}{k}} d t \\
& \geq \Gamma M^{\frac{1}{k}}\left(\frac{1}{4}\right)^{\frac{\alpha_{i}}{k}}\left|v_{i 0}\right|^{\frac{\alpha_{i}}{k}} \\
& \geq\left|v_{i 0}\right|^{\frac{\alpha_{i}}{k}} .
\end{aligned}
$$

Furthermore, there exists an index $v_{i_{0}}$ such that

$$
\|A(\vec{v})\|>\max _{1 \leq i \leq n}\left\{\left|v_{i 0}\right|_{1}^{\frac{\alpha_{i}}{k}}\right\}=r_{1}^{\frac{\alpha_{i}}{k}} \geq r_{1}
$$

that is for any $\vec{v} \in K \cap \partial \Omega_{r_{1}},\|A(\vec{v})\|>\|\vec{v}\|$.
In addition, it follows from ${\overline{F_{i}^{*}}}^{\infty}=0$ that there exist a sufficient small $\gamma>0$ and $r_{2}>0$ such that for any $v_{i 0}>r_{2}$, we get $F_{i}^{*}\left(v_{i 0}\right) \leq \gamma v_{i 0}^{\beta_{i}}$.

Let

$$
M_{i}=\max _{0 \leq v_{i 0} \leq \bar{\varrho}} F_{i}^{*}\left(v_{i 0}\right) .
$$

Then we have

$$
f_{i}(\vec{v}) \leq F_{i}^{*}\left(v_{i 0}\right) \leq \gamma v_{i 0}^{\beta_{i}}+M_{i}
$$

Moreover, we can get

$$
\begin{aligned}
A_{i}(\vec{v})(\tau) & =\int_{\tau}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} f_{i}\left(v_{1}(s), \cdots, v_{n}(s)\right) d s\right)^{\frac{1}{k}} d t \\
& \leq \int_{0}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}}\left(\gamma v_{i 0}^{\beta_{i}}+M_{i}\right) d s\right)^{\frac{1}{k}} d t \\
& \leq \frac{1}{2}\left(\gamma v_{i 0}^{\beta_{i}}+M_{i}\right)^{\frac{1}{k}}\left(\frac{k}{N C_{N-1}^{k-1}}\right)^{\frac{1}{k}}
\end{aligned}
$$

Combining this with $\beta_{i} \leq k$, then there exists a sufficient large constant

$$
R: \geq \max _{1 \leq i \leq n}\left\{\frac{1}{2}\left(\gamma \bar{R}^{\beta_{i}}+M_{i}\right)^{\frac{1}{k}}\left(\frac{k}{N C_{N-1}^{k-1}}\right)^{\frac{1}{k}}\right\}
$$

such that for any $\vec{v} \in K \cap \partial \Omega_{R}$, we have

$$
\begin{aligned}
\|A(\vec{v})\| & \leq \max _{1 \leq i \leq n}\left\{\frac{1}{2}\left(\gamma\left|v_{i 0}\right|^{\beta_{i}}+M_{i}\right)^{\frac{1}{k}}\left(\frac{k}{N C_{N-1}^{k-1}}\right)^{\frac{1}{k}}\right\} \\
& \leq \max _{1 \leq i \leq n}\left\{\frac{1}{2}\left(\gamma \bar{R}^{\beta_{i}}+M_{i}\right)^{\frac{1}{k}}\left(\frac{k}{N C_{N-1}^{k-1}}\right)^{\frac{1}{k}}\right\} \\
& \leq R=\|\vec{v}\| .
\end{aligned}
$$

By the Lemma 2.1, one can infer that A has at least one fixed point in $K \cap\left(\bar{\Omega}_{R} \backslash \Omega_{r_{1}}\right)$.
Theorem 3.2. Assume that (A), (B) hold and $\alpha_{i}, \beta_{i} \geq k$. If ${\overline{F_{i}^{*}}}^{0}=0$ and $\underline{F_{i *}^{\infty}}=+\infty$, then (1) has at least one radial k-admissible solution.

Proof. By the definition of ${\overline{F_{i}^{*}}}^{0}=0$, there exist $r_{3} \in(0,1)$ and a sufficient small $\delta>0$ with $\frac{1}{2}\left(\frac{k \delta}{N C_{N-1}^{k-1}}\right) \leq 1$ such that

$$
F_{i}^{*}\left(v_{i 0}\right) \leq \delta v_{i 0}^{\beta_{i}}, \quad 0 \leq v_{i 0} \leq r_{3}
$$

For any $\vec{v} \in K \cap\left(\partial \Omega_{r_{3}}\right)$, we have

$$
\begin{aligned}
A_{i}(\vec{v})(\tau) & =\int_{\tau}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} f_{i}\left(v_{1}(s), \cdots, v_{n}(s)\right) d s\right)^{\frac{1}{k}} d t \\
& \leq \int_{\tau}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} \delta v_{i 0}^{\beta_{i}} d s\right)^{\frac{1}{k}} d t \\
& \leq \frac{1}{2}\left(\frac{k \delta}{N C_{N-1}^{k-1}}\right)^{\frac{1}{k}}\left|v_{i 0}\right|_{1}^{\frac{\beta_{i}}{k}} \\
& \leq\left|v_{i 0}\right|_{1}^{\frac{\beta_{i}}{k}} .
\end{aligned}
$$

Combining this with $\beta_{i} \geq k$, we have

$$
\|A(\vec{v})\|<\max _{1 \leq i \leq n}\left\{\left|v_{i 0}\right|_{1}^{\frac{\beta_{i}}{k}}\right\} \leq r_{3}
$$

which implies that for any $\vec{v} \in K \cap\left(\partial \Omega_{r_{3}}\right),\|A(\vec{v})\|<\|\vec{v}\|$.
Besides, by the definition of $\underline{F_{i *}^{\infty}}=+\infty$, there exist $\widehat{M}>0$ and $r_{4}>r_{3}$ such that

$$
\overline{F_{i *}}\left(v_{i 0}\right) \geq \widehat{M} v_{i 0}^{\alpha_{i}}, \quad v_{i 0} \geq r_{4}
$$

where \widehat{M} satisfies

$$
\min _{1 \leq i \leq n}\left\{\Gamma \widehat{M}^{\frac{1}{k}}\left(\frac{1}{4}\right)^{\frac{\alpha_{i}}{k}}\right\} \geq 1
$$

Set $\widetilde{R}=4 r_{4}+1$, and let

$$
D_{i}=\min _{0 \leq v_{i 0} \leq \widetilde{\varrho}} F_{i *}\left(v_{i 0}\right) .
$$

If $\|\vec{v}\|=\left|v_{i 0}\right|_{1}=\widetilde{R}$, then for $\vec{v} \in K \cap \partial \Omega_{\widetilde{R}}$, we can get

$$
\begin{aligned}
A_{i}(\vec{v})\left(\frac{1}{4}\right) & =\int_{\frac{1}{4}}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} f_{i}\left(v_{1}(s), \cdots, v_{n}(s)\right) d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{\frac{1}{4}}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} F_{i *}\left(v_{i 0}\right) d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{\frac{1}{4}}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} \widehat{M} v_{i 0}^{\alpha_{i}} d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{\frac{1}{4}}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} \widehat{M}\left(\frac{1}{4}\left|v_{i 0}\right|_{1}\right)^{\alpha_{i}} d s\right)^{\frac{1}{k}} d t \\
& \geq \Gamma \widehat{M}^{\frac{1}{k}}\left(\frac{1}{4}\right)^{\frac{\alpha_{i}}{k}}\left|v_{i 0}\right|_{1}^{\frac{\alpha_{i}}{k}} \\
& \geq\left|v_{i 0}\right|_{1}^{\frac{\alpha_{i}}{k}}
\end{aligned}
$$

and for $i \neq j$, we also have

$$
\begin{aligned}
A_{j}(\vec{v})\left(\frac{1}{4}\right) & =\int_{\frac{1}{4}}^{1}\left(\frac{k}{t^{N-k}} \int_{0}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} f_{j}\left(v_{1}(s), \cdots, v_{n}(s)\right) d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{\frac{1}{4}}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} F_{j *}\left(v_{j 0}\right) d s\right)^{\frac{1}{k}} d t \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}}\left(\frac{k}{t^{N-k}} \int_{\frac{1}{4}}^{t} \frac{s^{N-1}}{C_{N-1}^{k-1}} D_{j} d s\right)^{\frac{1}{k}} d t \\
& \geq \Gamma{\widehat{D_{j}}}^{\frac{1}{k}} .
\end{aligned}
$$

Moreover, we get that

$$
\begin{aligned}
\max _{1 \leq i \leq n}\left\{A_{i}(\vec{v})\left(\frac{1}{4}\right)\right\} & >\max \left\{\left|\vec{v}_{i} 0\right|_{1}^{\frac{\alpha_{i}}{k}}, \Gamma \widehat{D}_{j}^{\frac{1}{k}}\right\} \\
& \geq\left|\vec{v}_{i} 0\right|_{1}^{\frac{\alpha_{i}}{k}}=\widetilde{R}^{\frac{\alpha_{i}}{k}} \geq \widetilde{R}=\|v\| .
\end{aligned}
$$

Combining this with Lemma 2.1, A has at least one fixed point in $K \cap\left(\bar{\Omega}_{\widetilde{R}} \backslash \Omega_{r_{4}}\right)$.

Acknowledgement

We would like to thank the Editor and the anonymous referees for their critical comments and thoughtful suggestions, which led to a much improved version of this paper.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

[1] G Awanou. Iterative methods for k-Hessian equations, Methods Appl Anal, 2018, 25(1): 51-71.
[2] K Deimling. Nonlinear Functional Analysis, Springer, Berlin, 1985.
[3] C H Gao, X Y He, M J Ran. On a power-type coupled system of k-Hessian equations, Quaest Math, 2021, 44(11): 1593-1612.
[4] J X He, X G Zhang, L S Liu, Y H Wu. Existence and nonexistence of radial solutions of the Dirichlet problem for a class of general k-Hessian equations, Nonlinear Anal Model Control, 2018, 23(4): 475-492.
[5] S C Hu, H Y Wang. Convex solutions of boundary value problems arising from Monge-Ampère equation, Discrete Contin Dyn Syst, 2006, 16(3): 705-720.
[6] J B Keller. On solutions of $\Delta u=f(u)$, Comm Pure Appl Math, 1957, 10(1): 503-510.
[7] R Y Ma, Z Q He, D L Yan. Three radially symmetric k-admissible solutions for k-Hessian equation, Complex Var Elliptic Equ, 2019, 64(8): 1353-1363.
[8] W Wei. Existence and multiplicity for negative solutions of k-Hessian equations, J Differential Equations, 2017, 63(1): 615-640.
[9] Z J Zhang. Boundary behavior of large solutions to the Monge-Ampère equation in a borderline case, Acta Math Sin, 2019, 35(7): 1109-1204.
[10] X M Zhang, M Q Feng. Boundary blow-up solutions to the Monge-Ampère equation: sharp conditions and asymptotic behavior, Adv Nonlinear Anal, 2020, 9(1): 729-744.
[11] X M Zhang, M Q Feng. The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation, J Differential Equations, 2019, 267(8): 4626-4672.
[12] X G Zhang, J F Xu, J Q Jiang, Y H Wu, Y J Cui. The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general k-Hessian equations, Appl Math Lett, 2020, 102, https://doi.org/10.1016/j.aml.2019.106124.
[13] M Q Feng. Convex solutions of Monge-Ampère equations and systems: existence, uniqueness and asymptotic behavior, Adv Nonlinear Anal, 2021, 10(1): 371-399.
[14] X M Zhang. Existence and uniqueness of nontrivial radial solutions for k-Hessian equations, J Math Anal Appl, 2020, 492(1), https://doi.org/10.1016/j.jmaa.2020.124439.
[15] M Q Feng, X M Zhang. On a k-Hessian equation with a weakly superlinear nonlinearity and singular weights, Nonlinear Anal, 2020, 190, https://doi.org/10.1016/j.na.2019.111601.

Department Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China.
Email: hett199527@163.com

