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On Boolean elements and derivations in 2-dimension

linguistic lattice implication algebras

7ZHU Hual!?3 ZHAQO Jian-bin?**

Abstract. A 2-dimension linguistic lattice implication algebra (2DL-LIA) can build a bridge
between logical algebra and 2-dimension fuzzy linguistic information. In this paper, the notion
of a Boolean element is proposed in a 2DL-LIA and some properties of Boolean elements are
discussed. Then derivations on 2DL-LIAs are introduced and the related properties of deriva-
tions are investigated. Moreover, it proves that the derivations on 2DL-LIAs can be constructed

by Boolean elements.

81 Introduction

In real life, human intelligent activities are often associated with fuzziness and incompa-
rability. As two kinds of uncertainty [37], fuzziness and incomparability exist not only in the
processed object itself, but also in the course of the object being dealt with. Lattice-valued
logic, as an important non-classical logic, has been extensively studied to establish the log-
ical foundation for uncertainty inference[33, 34]. Accordingly, in order to provide algebraic
semantics with lattice-valued logic, Xu et al. [35] proposed the concept of lattice implication
algebras (LIAs). By use of the algebraic structures of LIAs, we can describe the relationships
between uncertain information, especially for incomparable relationships. A lot of literatures
[10, 15, 16, 47] have researched algebraic structures and properties of LIAs. Meanwhile, LIAs
have been extended to lattice implication ordered semigroups [24], residuated lattices [14], lin-
guistic truth-valued intuitionistic fuzzy lattices [49], linguistic truth-valued lattice implication
algebras (L-LIAs) [36] and 2-dimension linguistic lattice implication algebras (2DL-LIAs) [46].

Zadeh [39] put forward the notion of fuzzy linguistic information, which is important for
describing qualitative attributes such as low, medium and high. For precisely representing fuzzy
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linguistic information, Zhu et al. [48] proposed the concept of 2-dimension fuzzy linguistic in-
formation. The 2-dimension fuzzy linguistic information includes two common linguistic labels:
one describes the evaluation result of alternatives, the other describes the self-assessment of
the decision maker on the reliability of the given evaluation result. Further, aiming to pre-
cisely describe the relationships between 2-dimension fuzzy linguistic information, especially
for incomparable relationships, Zhu et al. [46] gave the notion of a 2-dimension linguistic lat-
tice implication algebra (2DL-LIA). Under the structure of 2DL-LIA, some important decision
making methods are proposed to deal with 2-dimension linguistic information [41, 42, 43, 45].
A 2DL-LIA has not only the features of logical algebra but also the features of evaluation sets
between fuzzy linguistic information. Therefore, it can build a bridge for logical algebras and
2-dimension fuzzy linguistic information.

The notion of derivation, which comes from the analytic theory, is also helpful to investigate
algebraic structures and properties of various kinds of algebras. The derivation in a prime
ring (R;+,-) has been proposed by Posner [25], which is a mapping d : R — R such that two
conditions (1) d(z +y) = d(x) +d(y) and (2) d(z-y) =d(z)-y+x-d(y) for all z,y € R. After
that, derivations on rings and near rings have been investigated by many researchers [2, 23].
In 2004, derivations on BC1I-algebras have been introduced by Jun et al. [11] and further
studied in [5, 9, 18, 19, 20, 21, 22|. Besides, derivations on regular algebras [3], derivations
on CSL-algebras [40], derivations on f-algebras [12], derivations on basic algebras [13], and
derivations on L-LIAs [44] have been studied by different researchers. Moreover, derivations on
lattices have been discussed in [6, 30, 31, 32]. Furthermore, derivations on MV-algebras and
G MYV -algebras have been investigated in [1, 7, 26, 38]. Especially, a derivation on a residuated
lattice (L, A, V,®,—,0,1) is proposed by He et al. [8], which is a mapping d : L — L satisfying
the conditions d(x © y) = (d(z) ® y) V (x ©® d(y)) for all z,y € L.

Inspired by the above-mentioned work, especially by derivations on rings [25] and derivations
on residuated lattices [8], derivations on 2DL-LIAs are proposed in this paper. This paper is
organized as follows: Section 2 reviews some basic concepts about LIAs and 2DL-LIAs. In
Section 3, a Boolean element is proposed in a 2DL-LIA, and some properties of Boolean elements
are investigated. Section 4 introduces derivations on 2DL-LIAs and discusses some properties
of derivations. The conclusions are drawn in Section 5.

§2 Preliminaries

This section gives some results about lattice implication algebras and 2-dimension linguistic
lattice implication algebras.

2.1 Lattice implication algebras

For a LIA [35], we mean a bounded lattice (L,V,A,0,1) with order-reversing involution ’,
in which 0 and 1 are the smallest and the greatest element of L respectively, and a binary
operation — satisfying the following axioms:

(L) 2= (y—2)=y— (z—2);
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(I) z—x=1;

(I3) z—>y=y —a

(Iy) f e—y=y—ax=1,thenz=y;
(I5) (x—=y)2y=(y—a) >

(L) (2Vy)—=z=(x—=2)A(y— 2);
(L2) (@Ay)—z=(z—=2)V(y—2)

for all z,y,z € L.
A LIA L is called a lattice H implication algebra (LHIA), if for all z,y,z € L,

zVyV((zAy) = 2z)=1.
A lattice implication homomorphism is a mapping f : L1 — Lo from LIAs Ly to Lo, such
that for any z,y € Ly,

fle—=y) = fl@)—= fy),

flevy) = fl@)Vfy),

flxny) = flx)Afly),
@) = (f).

Let L be a LIA, the binary operators ® and @ are defined as follows: for all z,y € L,
ry=(x—y),zdy=2 —uy.
Theorem 2.1. [35] Let L be a LIA. Then L is a LHIA if and only if forall z € L, s &z = z,

rR®r==x.

Ezxzample 2.1. (Lukasiewicz implication algebra on a finite chain L, ) [35] Let L be a finite
chain, L = {a;]i = 1,2,--- ,n} and 0 = a1 < as < --- < a, = 1, where n € N. For any
a;,a; € L, where 0 < 4,j <n and i,j € N, define operations V, A, — and ’ as follows:

a;Va; = Qmaz{ij}
a; N\ aj = Qmin{i,j}s
a; = a5 = Gmin{n—it+jn}s
(@) = an—it1-

Then (L,V,A,,—,a1,a,) is a LIA, denoted by L,,.

Definition 2.1. [4, 35] Let L, 41, Lnt1 be two Lukasiewicz implication algebras, m,n € N and

L1 = {ag, a1, yam}t :ap < a1 < -+ < am, Lpt1 = {bo,b1, -+ ,bn} 1 0o < by < -+ < by,

Define the direct product of L, 1 and L, as follows: Ly,11 X Lyy1 = {(a,b)|a € Ly41,b €

L, +1}. The operations on Ly,+1 X Ly41 are defined respectively as follows: for any (a;,by),
(aj,br) € Lim+1 X Ly,

(@i, br) V (aj,b) =

(ai, br) A(aj,br) =

(a;,bk) = (aj,b)) =

(ai,br)" =

\/aj7bk\/bl) (amax{i, j}abmax{k, l})7
a; /\ajabk /\bl) (amin{i, j}abmin{k7 l})7
a; — aj, by — bl) (amin{mfiJrj, m}s bmin{nferrl, n})a

a;, ) (am—iabn—k)-

(@i
(
(
(a;
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Then (Limq1 X Lng1,V, A, =, (a0, b0), (am, bn)) is a LIA, denoted by Lpm41)x (nt1)-

Let L be a LIA, for all x,y, z € L, define the partial relation <in Lasz < y<—=x >y =1,
then the following hold [35]:
(1) z—=0=2a;
) zVy=(z—=y)—=y;
3) If (z®y) <z theny < (x — z);
) @y<zAy<zVy<zdy;
) 2@ (yVz)=(z@y)V(t®2), 2@ (yAz)=(z@y)A(z©2);
6) e@(yVve)=(tdy)V(E@d2), 20 (YAz)= (DY) A(rD2)
For more details of LIAs, we refer to the monograph [35].

2.2 2-dimension linguistic lattice implication algebras

Firstly, linguistic label sets and 2-dimension fuzzy linguistic information are reviewed as
follows:

Let S = {so,s1, -, 54} be a linguistic label set with the cardinality g + 1, where g € N.
For any s;,s; € S, where 4,5 € {0,1,--- , g}, the following properties should hold [17]:

(1) if ¢ < j, then s; < sj;

(2) () = 8y

(3) if s; < s;, then max(s;, s;) = s;;

(4) if s; < s;, then min(s;, s;) = s;.

In some real decision making environments, a decision maker provides the evaluation result
of alternatives by use of linguistic labels as well as his (or her) self-appraisal. For example,
when an expert is invited to express his (or her) opinions on a submitted journal paper, there
are always two linguistic label sets provided, where one linguistic label set is given to evaluate
the submitted paper, the other is supplied to evaluate the familiar degree of the expert with
the contents of the submitted paper. Aiming to describe such phenomena, Zhu et al. [48]

introduced the notion of 2-dimension fuzzy linguistic information, which is reviewed as follows.

Definition 2.2. [48] Let S = {sg,51, -+, 54} and H = {hg, h1,--- , hs} be two linguistic label
sets, where g + 1 is the cardinality of S and ¢ + 1 is the cardinality of H, g,t € N. t=(s;, h;)
is called a 2-dimension linguistic label (2DLL), in which h; € H represents the assessment
information about the alternative given by the decision maker, and s; € S represents the self-
assessment of the decision maker.

In order to precisely describe the relationships between 2-dimension fuzzy linguistic infor-
mation, a 2DL-LIA is constructed by combining two linguistic label sets with a LIA structure,
which is reviewed as follows.

Definition 2.3. [46] Let S = {so,s1, - ,8¢}: so < s1 < -+ < sg, H = {ho,h1,--- , bt}
ho < hy < .-+ < hy be two linguistic label sets, g,t € N and L(gy1)x+1) be a LIA as
defined in Definition 2.1. Let a mapping f : S X H — L(g41)x4+1) be defined such that
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f((si,hy)) = (a;,b5), where i € {0,1,--- , g}, 7 € {0,1,--- ,¢}. Then f is a bijection, denoted
its inverse mapping as f~'. For any (s;, h), (sj7 h;) € S x H, define
(s, hi) V (55, 1) T (so ) V(555 00))),
(sishi) A (s5.h) = FH(F((si b)) A F((s55h)),s
) (
(

A
(sishw) = (sj,ha) = FH(F (50, ) — f((s5, M),
(si;he) = FH((f(si b))
Then it is obvious to verify that (S x H,V,A, =", (S0, ho), (s4, ht)) is a LIA, which is called a
2-dimension linguistic lattice implication algebra (2DL-LIA), whose Hasse Diagram is shown in
Figure 1.

(s>7)
(sg5h0) (Sé )

(Sg,th) 4 (Sl+l’ r)
(s4.h,) g (Sla h,)
(s57) d Ny (s,,h,)
(sg,h0)<><j j<>; :><>(so,h,)

) . (s0-h,1)

(sg—l’hO N RN
(8115 75) N (SO’hj+1)
(8,,1,) s 7 (8,h;)
(s,.1) (59.1,)
(89>7)

Figure 1. Hasse Diagram of 2DL-LIA.

In the following, S x H is always denoted as a 2DL-LIA, where S = {s¢,s1,--- ,54}, H =
{ho,h1,- -+, h¢} be two linguistic label sets, g,t € N.
By use of the indexes of linguistic labels in S x H, some operations including V, A, —," can

make direct computations in the following theorem.

Theorem 2.2. [45] Let (S x H,V,A,—,") be a 2DL-LIA, (s4, ht) and (so, ho) are the maximal
element and minimal element of S x H, (si,,hj, ), (Siy, hj,) € S x H . Then

(Sirshj ) V (Siz hjs) = (Smaxisia} Pamax{jija})s
(81, M) A (Sip, hyy) = (Sminfir,io}s Pmin{j,ja})s
(8i15hgy) = (Sizsjy) = (Smin{g—istia, g}» Pmin{t—jr 42, 1})s
(si,hi) = (sg—ivs he—jy)-

Now, mainly for aggregation of 2-dimension fuzzy linguistic information, two logical opera-
tors @ and ® can be defined in a 2DL-LIA S x H as follows: for all (s, hj,), (8iy, hj,) € SX H,

(Siu hjl) D (8i27 hjz) = <5i1 ) hj1)/ - (Siw hj2)’
(Silv hjl) ® (Siz’ hj2) = ((511 ) hj1) - (5i27hj2)/)/'
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Similarly, the computational methods of & and ® are provided by using of the indexes of
linguistic labels in a 2DL-LIA.

Theorem 2.3. Let S x H be a 2DL-LIA. Then for all (si,,hj,), (siy,hj,) € S x H, where
i1,i2 € {0,1,--- ,g},71,72 € {0,1,--- ,t}, we have:

(1) (8iy,hjy) © (Sin, hjy) = (Sminfiy4iz,g) > Pmin{ji+a,t} )5

(2) (8115 h4,) ® (8iy5 hjy) = (Smax{ir+iz—g,0}» Pmax{ji+ja—t,0})-

Proof. (1) Since (si,, hj,) = (8iy, hjy) = (Sg—iy, hi—jy) = (Sizs hjy) = (Smin{is+is,g}s
(Mmin{j,+y2,¢3) by Theorem 2.2, we obtain that (s, , hj, )B(Siy, hjy) = (Smin{iy+i2,9} > Pmin{ji+ja,t})3
(2) Because (si,,hj,) = (Siy, Njy) = (861, hjy) = (Sg—ins Pt—jy) = (Smin{2g—i1—is.g}>
hmin{2t—j1—j2,t}) and (Smin{Qg—il—iQ,g}vhmin{2t—j1—j2,t})/ = (Smax{i1+i2—g,0}u hmax{j1+j2—t,0}) by
Theorem 2.2, we have (s;,, hj,) @ (8iy, hj,) = (snlax{i1+i2_g,0}, hrllax{j1+j2_t,0}).

Next, the relationships among V, @, ® and A are discussed in a 2DL-LIA.

Theorem 2.4. Let S x H be a 2DL-LIA. Then for all (si,,h;,), (i, hj,) € S x H, we have:
(1) (siuhjl) v (8i27 h]z) ((511 ) hjl) ® <5i27hj2)/) D (Siza hjz);
(2) (Silvhjl) N (Siw h]z) = ((Suvhjl) D (sizﬂhjé),) ® (siza hj2)'

Proof. (1) Since (si,,hj,) V (Siy, hjy) = ((Siy, hj,) = (Siz, hjy)) = (8iy, Ry, ), then we have
(Silvhjl) v (sizvh]é) = ((Si17hj1) ® (si27 ) ) @ (sin, 1 2)
(2) Since ((siy, hj,) ® (Siy, hj,)) ® (siQ,hﬁ,) = (((siys hjy) = (8iy,h5,)") = (Siys hyjy)')', then we
have ((si,; hj,) @ (Siy:h,)") @ (Siy0hye) = ((8i, Byt )"V (8ia, h5y)') = (8015 By ) A (Sig5 g, )-

Finally, we give the notion of a 2-dimension linguistic lattice H implication algebra (2DL-
LHIA), which will be mentioned in next section.

Definition 2.4. Let S x H be a 2DL-LIA. If for all (s;,, hj, ), (Siy, Rjs ), (Sig, Rjs) € S x H,
(Si17hj1) \% (Sim hj2) v (((si17hjl) A (8i27 hjz)) - (sisv hjs)) - (Sg, ht)v

where i1,19,i3 € {0,1,--- g}, j41,72,43 € {0,1,--- | t}, then S x H is called 2-dimension linguistic
lattice H implication algebra (2DL-LHIA).
Example 2.2. Let S x H be a 2DL-LIA, whose Hasse Diagram is shown in Figure 2, where
S = {80781}7 H= {hOahl}-

The operations ' and — can be computed by Theorem 2.2 as follows: (so,ho) = (s1,h1),
(50, h1)" = (51,h0), (51, h0)" = (50, h1), (51,h1)" = (50, ho) and

— (so,ho)  (s0,h1)  (s1,ho)  (s1,h1)
(s0,ho) | (s1,h1) (s1,h1)  (s1,h1)  (s1,h1)
(807h1) (817]10) (Shhl) (Sl,ho) (51, h1)
(s1,ho) | (s0,h1)  (so.h1)  (s1,h1)  (s1,h1)
(317h1) (807h0) (80,h1) (Sl,ho) (51, h1)

According to Definition 2.4, it can check that S x H is a 2DL-LHIA.
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(s,7)

(Sl’ho) (So,hl)

(CNY)

Figure 2. Hasse Diagram of S x H.

83 Boolean elements of 2DL-LIAs

In this section, a Boolean element is defined in a 2DL-LIA, then some properties of Boolean
elements are investigated. Finally, logical operator @ is discussed in a 2DL-LIA, which can

build a bridge between 2-dimension fuzzy linguistic information and logical algebras.

Definition 3.1. Let S x H be a 2DL-LIA, (sg,h:) and (so, ho) are the mazimal element and
minimal element of S x H respectively, (s;,h;) € S x H. If (si,hj) V (si,h;) = (sq4,h), (or
equivalently (s;, h;) A (si, hj) = (S0, ho)), then (s;, h;) is called a boolean element of S x H.

In our further discussion, denote B(S x H) be the set of boolean elements in S x H.

Ezxzample 3.1. As in Example 2.2, it can check that (sg, ho), (S0, 1), (51, h0), (81, h1) are all
boolean elements according to Definition 3.1, that is (so, ho), (S0, h1), (81, ho), (s1,h1) € B(S %

Remark 1. In order to show that some elements in a 2DL-LIA may be not boolean elements,
Appendix gives some examples.

Now, some properties of boolean elements are investigated in a 2DL-LIA.

Proposition 3.1. Let S x H be a 2DL-LIA. Then (s;,h;) € B(S x H) if and only if (s;, hj) €
B(S x H).

Proof. It is obvious by Definition 3.1.

Proposition 3.2. Let S x H be a 2DL-LIA, (s;,hj) € S x H. Then we have:
(1) (si,hj) € B(S x H) if and only if (i, h;) ® (s, hj) = (si, hyj);
(2) (si,hj) € B(S x H) if and only if (si, hj) @ (s, h;) = (84, hyj).

Proof. (1) Suppose (s;,h;) € B(S x H). Then (s;,h;) V (si,hj) = (sg,h). Because
((si,hy) ® (sis ) = (si,hy) = ((si,hy)" = (s6,h)) = (86, hy) = (s6,h5)"V (50, h5) = (84, ),
we have (s;,h;) @ (si, h;) < (s;,h;). It is obvious that (s;,hj) < (s;, h;) @ (s;, hj). Therefore

(Sivhj) S3) (Siahj) = (sivh’J)
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On the other hand, assume (s;, h;) @ (si, hj) = (s;, hj). Then we have (s;, h;)" V (s;, ;)
= ((si,hj)" = (si,hy)) = (sishy) = ((si, hy) ® (83, h5)) = (805 hy)
= (Sivhj) — (Sivhj) = (sgvht)'

(2) The conclusion can be obtained analogously.

Proposition 3.3. Let S x H be a 2DL-LIA, (sq,ht) and (so, ho) be the mazimal element and
minimal element of S x H respectively. If (s;, h;) € B(S x H), then for all (s;,,hj,) € S x H,
we have:

(1) (sir,hji) @ (si,hg) = (sir, hy) A (sis hy);

(2) (Siuhjl) ® (i hj) = (sinhjl) ACH hj)'

Proof. (1) We only need to prove (s;,, ks, ) A (s, hj) < (8iy, Ry ) @ (85, hy).

Suppose (s;, hj) € B(S x H). Then we have (s;, h;) V (s;, h;)’ = (84, ht) by Definition 3.1.

Since (siy, hjy )A(si, hy) = (si By )@ (sis hy) = ((8iy5 hgy) = (80,5 0y, )@ (siy b))V (s, hy) —
(81, Ry ) @ (83 h5)) = (((Sirs Ry ) = (80, h5)") = (80, 1))V (((8i05 hgy) = (80, 5)") = (s, h)")
= (s“hj) V (Siy, hjy )V (Siy, hgy ) Vo (si,hy) > (8i,hy) V (83, hy) = (Sg,he), that is (s, hj, ) A
(si, hj) = (8iy, hjy) ® (84, hj) = (sg, he), then we have (s;,, hj, ) A (8, h5) < (8iy, hyy ) @ (85, hy).

(2) We only need to prove that (s;,, hj,) ® (85, hy) < (8iy,hj,) V (84, hy).

Suppose (s;,hj) € B(S x H). Then we have (s;, h;) V (s;, hj) = (sq, hs) by Definition 3.1.

Since (s, , hj, )B(si, hj) = (siy, 7 )V (sis hy) = ((siy, hg )B(sis hy) = (8005 0 )V (i1, hyy )@
(sishy) = (si,h5)) = (((sis hy)" = (sivs 1)) = (8is 1) VA (((Sigs by )" = (sis hy)) = (i, hy)
= (Suhj)' V (8iy byt )V (8iys hyy )"V (sishy) = (siyhy)' V(i hy) = (Sg, he), that s (siy, hyy) @
(si;

hj) = (8iy, hj,) V (si, hj) = (84, ht), then we have (si,, hj,) @ (si, hj) < (8iy, hyjy) V (53, hy).

Proposition 3.4. Let S x H be a 2DL-LIA. If (s;,h;) € B(S x H), then for all (si,,h;,),

(Siyshjy) € S x H, we have:

(1) ((8117 1) & (5127 h]z)) N (5“ hJ) = ((Silﬂ th) A (3“ hj)) & ((3i27 hjz) N (8i7 hj))r'
(2) ((Suvhﬁ) ©® (5127 hj2)) v (Sia hJ) = ((Sila th) v (s“ hj)) ©® ((Siw hj2) v (Siv hj));
(3) (5115 hgr) ® (sip5 gy )) A (835 hy) = ((8ir, gy ) A (86, 75)) @ ((8ig by ) A (835 7))
(4) ((811’hJ1) ® (Siz’ hj2)) v (317 h]) = ((Sil’ hjl) v (Su hj)) ® ((Siz’ hjz) v (Si’ hj));
(5) ((sznhﬁ) ® (Si27 hjz)) ® (siv hj) = ((Silvhjl) ® (siv hj)) ® ((Siw hjz) ® (Siv hj))f'
(6) ((sir,hj1) @ (80, ) @ (505 h5) = (8015 i) © (835 15)) © (85, D) @ (86, h5))-

Proof. We only prove (1) and (2).

(1) Suppose (s;,hj) € B(S x H). Then we have (s;,h;) ® (s;, hj) = (si, hj) by Proposition
3.2(1).

Since ((3117 Jl) (s“ hj))@((sizvh]é)/\(siv h])) = ((siwhjl)/\(siv hj))/ - ((Sin hjz)/\(siv h]))

= (5i17 ) (517 ) — (5i27hj2)/\(5i7hj) = ((Silﬂhjl)/ - (5i27hj2))/\((silﬂhj1)/ — (5i7hj>)/\
(Sz"hj)' — (812)]7‘]2)) A ((sishg)" = (sishy)) = ((8i1, hjy) @ (8in, hjs)) A (8005 hyy) © (86, 5)) A
(si,hj)@(s

) =

Sins Iy ) )N (83, By )@ (805 hy)) and ((8iy, hgy )D(8i, By ) )A((8i5 g ) D (a5 s ))A((84, by ) ©
) then we have ((sil’h’jl) A (Siahj)) D ((Si2vhj2) A (sl’hj)) = ((silvhjl) D
i)-

J

w

(sish
(Sza
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(2) Suppose (s;,h;) € B(S x H). Then we have (s;,h;) & (s;, h;) = (si, h;) by Proposition
3.2(1).

Since (51, h5,)V (56 1)) @ (562> i)V (500 13)) = (550, B3 )V (5 3)) = (510 )V (52, 1)
— (560> ) = (52 gDV (550, s, )' = (523 RV (58,5 = (5135 By DV (51, b5 — (56, hy)
= ((Siuhjl) & (Slzvhjz)) v ((3117hJ1) @ (si, hJ)) v ((Si’ hj) ©® (Stzahjz)) v ((S“ hj) & (517 hj)) and
((siys hyy) @ (siy b)) V (86, ) @ (Sigs hyy)) V (835 h5) @ (86, h5)) = (8iy5 Ry ) V (Sig, By ) V (845 hy)
by Proposition 3.3(2), then we have ((s;,,hj,) V (si, 1)) B ((Sin, hjy) V (85, 1)) = (84, hjy) &
(Sizsjy)) V (83, hy).-

Proposition 3.5. Let S x H be a 2DL-LIA, (s4,ht) and (so,ho) are the mazimal element
and minimal element of S x H respectively. If (siy, hj, ), (Siy, hj,) € B(S x H), then we have
(8i17 hjl) N (8i27 hj2)7 (Si17 hjl) v (si27 hjz)ﬂ (Silﬂ h‘jl) ® (Si27 hjz)? (sil ) hjl) & (Si27 hjz) € B(S X H)

Proof. Firstly, we prove (s;,hj,) A (8iy,hj,) € B(S x H) and (s;,,hj,) @ (8iy,hj,) €
B(S x H).

Suppose (si,, hj, ), (Siy, hj,) € B(S x H). Then we have (s;,, hj,) A (siy, hj, ) = (S0, ho) and
(Sizs hjs) A (8iy,hy,)" = (0, ho).

Because ((511 ) hjl)/\ (Siz ) hjz)) A ((521 ) hjl)/\ (Siza hjz))/ = ((3i1 ) hjl ) A (Si27 hjz)) N ((Sil’ hjl )IV
(Siw hjz)/) = ((Sil’ hjl)/\(siz ’ hj2)/\(si1 ’ hjl)/)\/((sil ’ hjl)/\(si2 ’ hj2)/\(5i2 ’ hj2)l) = (507 hO)v then
we have (si,, hj, ) A(si,, hj,) € B(S x H) by Definition 3.1, which implies (s;,, hj, ) @ (si,, hj,) €
B(S x H) by Proposition 3.3(1).

Next, we prove (s;,,h;j,) V (Siy, hj,) € B(S x H) and (s;,, hj, ) ® (si,, hj,) € B(S x H).

Suppose (s, hj, ), (Siy, hjy) € B(S x H). Then we have (s;,,hj,) V (si,, hj,) = (sg, ht) and
(8iz hj2) v (Siwhjz)/ = (597 hy).

Because ((si, hj,) V (Sigs hja )V (815 2y )V (Sig, By )" = ((8irs By )V (Sig, gy )V (861, gy ) A
(835, hjz)/) = ((Sil ) hjl)v(siw hjz)v(sh ) hjl)/)/\((sil ) hj1>v(5i2= hjz)v(3i27 h]’z)/) = (597 ht), then
we have (si,, hj, )V (si,, hj,) € B(S x H) by Definition 3.1, which implies (s;,, hj, ) & (si,, hj,) €
B(S x H) by Proposition 3.3(2).

Theorem 3.1. Let S x H be a 2DL-LIA. If for all (s;,h;) € S x H, (s;,h;) € B(S x H), then
S x H is a 2DL-LHIA.

Proof. Suppose V(s;,h;) € S x H, (s;,h;) € B(S x H). Then we have (s;, h;) ® (s;, h;) =
(si, hy) and (s, hj) @ (si, hj) = (si, h;) by Proposition 3.2. Therefore S x H is a 2DL-LHIA by
Theorem 2.1.

Finally, we focus on logical operator & and its application in a 2DL-LIA, which can build a
bridge between 2-dimension fuzzy linguistic information and logical algebras.

As we know, in real decision making environment, the weights of 2-dimension fuzzy lin-
guistic information are critical for decision makers to aggregate 2-dimension fuzzy linguistic
information. Therefore we define operations between constants and 2DLLs in a 2DL-LIA as
follows.

Definition 3.2. Let S x H be a 2DL-LIA, S = {so,s1, -+ ,8¢}, H = {ho,h1,--- ,t}. Then for
all (Sia hj) €5 x H, A€ R+7 )‘(Sia h]) = (Smin{/\i,g}v hmin{/\j,t})'
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Example 3.2. Suppose there are two reviewers who are invited to evaluate the same submitted
manuscript by using of 2DLLs in a S x H. One reviewer’s opinion is (s2, hs), and the other is
(s2,ha).

If the weight vector of two reviewers is (0.6,0.4), then we can obtain the final opinion of this

manuscript s

0.6(82, hg) D 0.4(82, hg) = (827 h2_6).

Remark 2. By use of the operation & and the operations between constants and 2DLLs,
we can aggregate 2DLLs provided by decision makers to obtain the collective one. Therefore
the operation @ builds a bridge between logical operators and aggregation operators in a certain

sense.

84 Derivations on 2DL-LIAs

In this section, derivations on 2DL-LIAs are introduced to investigate algebraic structures of
2DL-LIAs, then the related properties of derivations are discussed. Finally, by use of Boolean
elements in a 2DL-LIAs, some derivations on 2DL-LIAs can be constructed.

Definition 4.1. Let Sx H be a 2DL-LIA, d : Sx H — S x H be a mapping. For any (si,, hj, ),
(SiQahjz) €8x H: where il,i2 € {Oa ]-7' o ag}vjlva € {Oa ]-7' o at}; Zf

(1) d((silvhjl) D (5i27 hjz)) = d((sil ) hjl)) D d((sim hj2))

(2) d((silvhh) ® (si27 hjz)) = (d((sll ) hjl)) ® (sizvhjé)) N ((Si17hj1) ® d((siwhb)))?

then d is called a derivation on S x H.
Now, some examples are given to indicate that there exist some derivations on 2DL-LIAs.

Example 4.1. Let S x H be a 2DL-LIA, where (sg, hg) is the minimal element of S x H.
For all (s;,h;) € S x H, define a mapping d on S x H as d((s;,h;)) = (so,ho). Then d is a
derivation on 2DL-LIA, which is called a zero derivation.

Example 4.2. Let S x H be a 2DL-LIA. For all (s;,h;) € S x H, define a mapping d on
S x H as d((si,hj)) = (8i,h;). Then d is a derivation on 2DL-LIA, which is called an identity
derivation.

Example 4.3. Asin Example 2.2, define a mapping dy : SxH — SxH such that d1((so, ho)) =
(s0,ho), d1((s0,h1)) = (s0,h0), di((s1,h0)) = (s1,ho), di((s1,h1)) = (s1,ho) and a mapping
dy : Sx H — S x H such that d2((so,ho)) = (s0,ho), d2((s0,h1)) = (S0, h0o), d2((s1,h0)) =
(s0,h1), d2((s1,h1)) = (S0, h1)-

Because d1((s1, ko)) = (s1, ho) and da((s1, ho)) = (S0, h1), we get that di and dy are different
mapping. Then by Definition 4.1, it can check that dy and ds are two derivations on S x H .
We only prove that dy is a derivation on S x H as follows. Similarly, it can prove that do is

a derivation on S x H.
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According to Example 3.1 and Proposition 3.3, we have for all (s;,, hj,), (siy, hj,) € S x H,
(Silvh‘jl) ® (Si27hj2) = (Silah‘jl) A (Siz’hh) and (si17hj1) D (si27hj2) = (Si17hj1) \ (Si27hj2)'
Then the operations ® and & are listed as follows:

® (s0,ho)  (s0,h1)  (s1,ho)  (s1,h1)
(50, h0) | (S0,h0) (s0,h0) (s0,h0)  (S0,h0)
(s0,h1) | (S0,h0) (s0,h1) (s0,h0)  (S0,h1)
(s1,h0) | (S0,h0) (s0,ho) (s1,h0)  (s1,h0)
(s1,h1) | (s0,ho) (s0,h1) (s1,ho) (s1,h1)
5] (8()7]10) (So,hl) (Sl,ho) (Sl,hl)
(50, ho) | (S0,h0) (s0,h1) (s1,ho)  (s1,h1)
(s0,h1) | (S0,h1) (s0,h1) (s1,h1)  (s1,h1)
(s1,h0) | (s1,h0) (s1,h1)  (s1,h0)  (s1,h1)
(Slyhl) (817711) (Sl,hl) (Sl,hl) (51,h1)

Take the elements (so, k1) and (s1, hg) for example. We can compute that the left side of
Definition 4.1(1) is d1((s0, h1) ® (s1, ho)) = d1((s1,h1)) = (81, ho). On the other hand, the right
side of Definition 4.1(1) is d1((s0, 1)) ® d1((s1,ho)) = (S0, ho) & (s1,ho) = (81, hg). Therefore
it concludes that the elements (so, k1) and (s1, ho) satisfy the condition (1) of Definition 4.1.

Next, we can compute that the left side of Definition 4.1(2) is dy((so,h1) ® (s1,h0)) =
d1((s0,ho)) = (S0, ho). On the other hand, the right side of Definition 4.1(2) can be divided
into two parts. One is di((so,h1)) ® (s1,h0) = (S0,h0) ® (s1,h0) = (S0,h0), the other is
(s0,h1)®d1((s1,h0)) = (s0,h1)®(s1, ko) = (S0, ho). Hence we get that (di((so, h1))®(s1, o))V
((s0, h1) ®d1((s1,h0))) = (S0, o) V (S0, ho) = (S0, ho), that is the elements (sg, k1) and (s1, ho)
satisfy the condition (2) of Definition 4.1.

Similarly, according to the definition of the mapping d;, other elements of S x H can be
validated to satisfy Definition 4.1(1) and (2).

Then some properties of derivations are investigated in a 2DL-LIA.

Proposition 4.1. Let d be a derivation on S x H, (sq, ht) and (so, ho) be the mazimal element

and minimal element of S x H respectively. Then for all (si,, hj,), (siy, hj,) € S x H, we have:
(1) d((s0, ho)) = (0, ho);

(2) if (sirshgy) < (Sinshjy)s then d((siy, hj,)) < d((siy, hjy)); (i-e. d is istone)
(3) d((sq,ht)) € B(S x H);
(4) d((siy, hjy)) < (8iys hyy)-

Proof. (1) Suppose d be a derivation on S x H. Then d((so, ho)) = d((s0, ho) @ (s0, ho)) =
(d((s0,ho)) @ (0, ho)) V (50, ho) @ d((s0,ho))) = (s0, ho) by Definition 4.1(2).
(2) Suppose d be a derivation on S x H. If (s;,hj,) < (8iy,hy,), then we have (s;,,hj,) =
(8127 2) (sll ) h]l) = ((812’ h]2)®(811 ) h]l) )@(811 ’ h]l) by Theorem 24(1) Then d((slz ’ hjz)) =
((8127 2) (sil’h'l)) = d(((si27hj2) ® (Silvhjl)/) D (Sila hjl)) = d((sim hj2) @ (sil’hjl)/) ©®
d((si,,hj,)) by Definition 4.1(1), thus d((s;,, ks, )) < d((siy,hj,)). Therefore every derivation
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on 2DL-LIA is istone.

(3) Suppose d be a derivation on Sx H. Because d((sq, ht)) = d((sq, ht)B(sq, b)) = d((sq, ht))®
d((sq, ht)) by Definition 4.1(1), then we have d((sq, ht)) € B(S x H) by Proposition 3.2(1).
(4) Suppose d be a derivation on S x H. Then V(s;,,hj,) € S x H, (so,ho) = d((s0,ho)) =
d((5i1 ) hj1)®(3i1 ) hjl)l) = (d((sil ) hjl))®(5i1 ) hjl )/)V((Sh ) hj1)®d((8i1 ) hjl )/)7 thus d((3i1 ) h ))®
(sir> hjy)" = (50, ho). Because d((si,, hj,)) ® (siy, hy,)" = (d((siy5 7)) = (8315 h5,)) = (s0, ho),
we have d((si,, hj,)) = (Siy, Ry ) = (8g, he). Therefore d((sq,, hj,)) < (s, hjy)-

Proposition 4.2. Let d be a derivation on S x H, (sq4, h,) be the mazimal element of S x H.
Then for all (s;,,hj,), (si,, hj,) €S x H,

(1) d((siy. b)) = (500, g Ad(5g b)) = (51,3 hy,) @ (g5 b))

(2) d((sila hjl )n) = (Sil ) hjl)nil ®d((81’1 ) hjl ))7 where (Sil ) hjl)n = (Sil ) hjl)nil ® (Sil ) hjl )a n e
N;

(3) d(<5217 1)/) < (d<(si17h11)))/:'

(4)

4) if d((sg, ht)) = (g, ht), then d is an identity derivation.

Proof. (1) Let d be a derivation on S x H. Then d((si,, hj,)) = d((si,, hjy) @ (8¢, 1)) =
({500, 132)) © (59, he)) V (523 3 ) © (5 10))) = (5005 h3)) V (5005 B5,) @ (9, ), s
(8i1,hjy) @ d((sg,he)) < d((siy, Ry, )

On the other hand, we have d((s;,, hj,)) < (8s,, hj, ) by Proposition 4.1(4), and d((s;,, hj,)) <
d((sq, ht)) by Proposition 4.1(2), thus d((s;,, ~j,)) < (8iy, hj, ) Ad((sg, he)). Because (si,, hj,) A
d((sg, M) = (8iy, hjy ) @ d((sg, ht)) by Proposition 4.1(3) and Proposition 3.3(1), then we have
(i 3)) = (510 B5,) A (592 o)) = (52,1 ,) © (59 h).

(2) Let d be a derivation on S x H. Then we have d((s;,,h;j,)?) = d((si,, hj,) @ (i, hj,)) =
(d((511’h11)) & (Silv hjl)) N ((Siu ) ® d((S“, .71)) = (5i17hj1) ® d((sil’hjl))' Thus we can
obtain d((s;,, hj,)™) = (Siy, hjy )" ; ® d((siy, hj,)) by induction for all n > 2.

(3) Let d be a derivation on S x H. Then d((si,,h;,)") < (8i,,hj,)" by Proposition 4.1(4).
Thus (50, h3,)) < (5i00hin) < (510 h5) V (590 1)) = ((800:h5,) A d{(59h0)))- Be-
cause d((si;,hj,)) = (siy,hjy) Ad((sg,he)) by (1), then we have ((siy, hj,) A d((sg,he))) <
(d((sir, j0)))" Hence d((si,, hy,)) < (d((sir, 7))

(4) If d((sq, ht)) = (sg,ht), then we have (sll, L) =
(1), which implies d is an identity derivation.

(5117 J1) ® d((smht)) = d((si17hj1)) by

Proposition 4.3. Let d be a derivation on S x H. Then for all (s;,,h;,), (i, hj,) € S x H:
(1) d((siys hjy) A (810, R ) = d((siys 1, ) A d((8i5 P55 )5
(2) d((siwhjl) v (Si27 hj2)) = d((silﬂ hjl)) k4 d((slzvhm))r'
(3) d((siwhjl) ® (’91'27hj2)) = d((siwhjl)) ® d((si2>hj2))'

Proof. (1) Suppose d be a derivation on S x H. Then we have d((s;,,hj,) A (siy,hj,)) =
((8iy, hj )N (Sigs Bjy ) ) @d((s4, he)) by Proposition 4.2(1). Since d((sg4, ht)) € B(SXH) by Propo-
sition 4. 1( ) we get ((Sil ) hjl) A (si2>hj2)) ® d((89> ht)) = ((Siu 1) d((sgv ht))) ((Si27 h]z) ®

d((sqg,ht))) = d((8sy, hjy )) ANd((Siy, hj,)) by Proposition 4.2(1), that is d((si,, hj, ) A (845, hjy)) =
d((siy: 1)) A d((siy, 12))'
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(2) and (3) can be proved analogously.

Proposition 4.4. Let d be a derivation on S x H. Then for all (si,, hj, ), (Siy, hj,) € S x H:
(1) d((siwhjl) — (s, hjz)) < d((silvhjl)) — d((si, hjz))f'

(2) d((siuhjl) — (i, hj2)) < (Siwhjl) - d((siz7hj2));

B) (sinshjr) = (sin5 ) < dl(8ir5h50)) = d((siz5 15))-

Proof. (1) Let d be a derivation on S x H. Then we have d((s;,,hj,) — (8iy, hj,)) =
d((Siy, hjy) @ (siy, hjy)) = d((8i,, hj,)) ®d((S4y, hj,)) by Definition 4.1(1). Since d((s;,,hj,)") ®
d((Siys hjy)) < (d((Siy5hjy))) ®d((Sin, hjy)) = d((S4y, hjy)) — d((si,, hj,)) by Proposition 4.2(3),
then we have d((si,, hj,) = (i3, hj,)) < d((Siy, hjy)) = d((iy, hjy))-

(2) Let d be a derivation on S x H. Since (si,,hj,) ® ((siy,hj,) = (Siz, hjn)) < (Sig, Rj,),
we have d((si,,hj) @ ((8i1,hj) = (Sin, R4y))) < d((Siy, hj,)) by Proposition 4.1(2). Then
d((si, hjy) @ ((siys hyy) = (8ig, b)) = (d((5iy5 7,)) @ (801, i) = (Sig0 7)) V (8005 15,) @
d((si;, hjy) = (Siy, hj,))) by Definition 4.1(2), that is (s;,, hj,) ® d((siy, hjy) = (8iy,Rj,)) <
(500 30)) a0 (50 30) © (51, P3) — (550, Pi) < (503, ). Hemee di{(se0hy0)
(Siz0hjs)) < (i, by ) = d((8i5, hyy))- And (siy, hyy) = (805, hyy) < d((siy, hyy)) = d((iy by, ),
which implies (3) holds.

The following theorem shows the relationships between derivations and lattice implication
homomorphisms in 2DLIAs.

Theorem 4.1. Let d be a derivation on S x H. If for all (s;,h;) € S x H, (d((si,hj))) <
d((si, hj)'), then d is a lattice implication homomorphism.

Proof. Let d be a derivation on S x H. Suppose Y(s;,h;) € S x H, (d((s;, hj))) <
d((si, hj)"), then we have (d((s;, hj))) = d((si, hj)") by Proposition 4.2(3). Next by Definition
4.1(1), we have d((si,, hj,) = (8iy, hj,)) = d((8iy, hjy) D (Sins hjy)) = d((Siy, hyy)") DA((Siy, hyjy))
= (d((silvhjl)))/®d((5i2’ hjz)) = d((siuhjl)) - d((si2v hjz))v that is d((silvhjl) - (sizﬂhh)) =
d((siy, hjy)) = d((Siy, hj,)). Combining with Proposition 4.3(1) and (2), we get that d is a
lattice implication homomorphism.

Now, some special mappings are defined by Boolean elements and such mappings are verified
to be derivations on 2DL-LIAs.

Let S x H be a 2DL-LIA, (s;,h;) € B(Sx H). Define f1 : SxH — SxH and fo: SxH —
S x H be the mappings such that fi : x — x A (s, hj), fo:x = 2 ® (85, hj).

Proposition 4.5. Let f1, fo be defined as above. Then f1 = fo.

Proof. The conclusions are obvious by Proposition 3.3(1).

Next we investigate some properties of the mapping f; on 2DL-LIAs.

Proposition 4.6. Let f1 be defined as above. Then for all (siy,hj,), (Siy, hj,) € S X H, we
have:

( ) fl((shv 1) \ (Siw th)) = fl((silvhjl)) 4 fl((siz»hjz));

( ) fl((sllv 1) A (Sizv hj2)) = fl((siuhjl)) A fl((siwhjz));
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(3) fl((siu )@(5127 2)) f1(<5i17hj1))@fl((sizvhjz))f
(4) f1<(si17 )®( 127 )) fl((slw 1))®f1((si27hj2));
(5) fil(si, hy))') = ((fl((slu 1))

Proof. (1) Let f1 : & — = A (s;,h;). Then we have fi((si;,hj,) V (Siy, hjy)) = ((8iy, hjy) V
(5t b)) A (52 5) = (5605 i) A 5 g DDV (5535 i) A 553 g)) = F1((85s i )V 1 (555 ).
Analogously for (2).

(3) Let f1 : @ = xA(s;, h;). Then we have f1((si,, hj, )®(Siy, hj,)) = (
(sis hj) = (801, hji ) A (83 75)) @ ((8ia, hyp ) A (86, h5)) = fi((siys 0y ) & f
sition 3.4(1). Analogously for (4).

(5) Let f1 : @ = 2 A(8s, hj). Then we have fi((f1((si, 1)) = fi(((siy, hjy ) A (sishy))') =
((siy, hjy ) A (siy Ry)) A (8ishy) = ((8iy, Ry )"V (83, h5)) A (84, hy). Since (s;, hy) € B(S x H), we
have (s, hjy )"V (i, hj) )N (si, hj) = (i, By ) N(siy hy) = fi((siy, b)), that is fi((siy, hy)') =
J1((f1((sirs By )))')-

Finally, we prove that the mapping f; is a derivation on S x H.

(8117 1) (Sizﬂh‘jz))/\
1((siz, hyj,)) by Propo-

Theorem 4.2. Let f1 be defined as above. Then fy is a derivation on S x H.

Proof. Let fi; : @ — x A (si,hj). Then we have f1((si,hj,) ® (siy,h5,)) = ((Siy, hjy
(3i27 hjz)) (317 ) fl((stn 1)) ® (Siw hjz) = ((Siwhjl) A (Siv hj)) ® (Siz’ hjz) and
Ji((sizs hya)) = (siys b)) ® ((8i5, ) A (sis hy)). Since (si, hy) € B(S x H), we get (
(817h’1)) ® (5127 2) ((511? 1) (522’ 12)) (Si’hj) = ((Siﬂhjl) ® (Si27hj2)) A (Si’ j) and
(Siys hjy) @ ((Sigs hjy) A (83, ) = ((Siys hjy ) ® (Sigs hjy)) A (83, hj) by Proposition 3.3(1), which
imphes that fl((S'Ll’hJI) ® (8127 2)) = ( ((8117 1)) ® (8i27hj2)) \ ((5i17hj1) ® fl((sizﬂ h]2)))
By Proposition 4.6(3), we have f1((si;,hj,) @ (Siy, hjy)) = f1((sir,hsy)) B f1((siy,hj,))-
Hence f7 is a derivation on S x H by Definition 4.1.

85 Conclusions

This paper firstly introduced the concept of Boolean elements in 2DL-LIAs, then investigated
some properties of Boolean elements. Next, we proposed the notion of derivations on 2DL-
LIAs and studied some properties of derivations. Finally, some special mappings defined by
Boolean elements are proved to be derivations on 2DL-LIAs. The above work not only enriches
algebraic structures and properties of 2DL-LIAs, but also provides theoretical foundations for
lattice-valued logic systems based on 2DL-LIAs.

Since logical operator @ defined in 2DL-LIA can build a bridge between logical algebras
and 2-dimension fuzzy linguistic information aggregations, we hope that the results of this
manuscript can supply theoretical supports for 2-dimension linguistic multiple attribute decision
making. In future, we consider to extend the notion of derivations on various algebraic structures
which may have some applications in various fields of computer sciences, decision making [27,
29, 43], medicine [28], etc.
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Appendix

The following examples are given to show that some elements in a 2DL-LIA may be not
boolean elements.

Example 5.1. Let S x H be a 2DL-LIA, whose Hasse Diagram is shown in Figure 3, where
S = {s0,81}, H = {ho,h1,ha}.
(s1,h2)
(s1,hy)

(so,hy)
(s1,ho)
(so,hy)

(S0, ho)

Figure 3. Hasse Diagram of S x H.

The operations’ and — can be defined as follows: (so, ho)’ = (s1, h2), (S0, 1) = (s1,h1), (s0,h2)’ =
(s1,h0), (s1,h1)" = (50, h1), (s1,h0)" = (s0, h2), (s1,h2)" = (s0,ho) and

— (so,ho)  (S0,h1)  (S0,h2)  (s1,ho)  (s1,h1)  (s1,h2)
(s0,ho) | (s1,h2)  (s1,h2)  (s1,he)  (s1,h2)  (s1,ha)  (s1,he)
(s0,h1) | (s1,h1)  (s1,h2)  (s1,h2)  (s1,h1)  (s1,h2)  (s1,ho)
(So,hQ) (Shho) (817711) (Sl,hz) (Sl,ho) (51, h1) (81,h2)
(Sl,ho) (307h2) (807]12) (80,/12) (Sl,hQ) (51,h2) (31,h2)
(81,h1) (So7h1) (807h2) (80,h2) (Sl,hl) (51, hz) (31,h2)
(81,h2) (307h0) (307h1) (80,h2) (81, ho) (51, hl) (Sl,hz)

According to Definition 2.3, it can check that S x H is a 2DL-LIA.

Exzample 5.2. Asin Example 5.1, it can check that (sq, ho), (s1, ho), (S0, h2), (81, ha) are boolean

elements according to Definition 3.1, that is (sg, ho), (51, ho), (S0, h2), (81, h2) € B(S x H).
However, (s1,h1)V (s1,h1) = (s1,h1) # (s1, h2) and (so, h1) V (s0, 1) = (s1,h1) # (s1, ha),

hence it can get that (s1,h1) and (so, h1) are not boolean elements according to Definition 3.1.
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