Notes concerning Codazzi pairs on almost anti-Hermitian manifolds

Aydin Gezer Hasan Cakicioglu

Abstract

Let ∇ be a linear connection on a $2 n$-dimensional almost anti-Hermitian manifold M equipped with an almost complex structure J, a pseudo-Riemannian metric g and the twin metric $G=g \circ J$. In this paper, we first introduce three types of conjugate connections of linear connections relative to g, G and J. We obtain a simple relation among curvature tensors of these conjugate connections. To clarify the relations of these conjugate connections, we prove a result stating that conjugations along with an identity operation together act as a Klein group, which is analogue to the known result for the Hermitian case in [2]. Secondly, we give some results exhibiting occurrences of Codazzi pairs which generalize parallelism relative to ∇. Under the assumption that (∇, J) being a Codazzi pair, we derive a necessary and sufficient condition the almost anti-Hermitian manifold (M, J, g, G) is an anti-Kähler relative to a torsion-free linear connection ∇. Finally, we investigate statistical structures on M under ∇ (∇ is a J-parallel torsion-free connection).

§1 Introduction

A pseudo-Riemannian metric g on a smooth $2 n$-manifold M is called neutral if it has signature (n, n). The pair (M, g) is called a pseudo-Riemannian manifold. An anti-Kähler structure on a manifold M consists of an almost complex structure J and a neutral metric g satisfying the followings:

- algebraic conditions
(a) J is an almost complex structure: $J^{2}=-i d$.
(b) The neutral metric g is anti-Hermittian relative to J :

$$
g(J X, J Y)=-g(X, Y)
$$

or equivalently

$$
\begin{equation*}
g(J X, Y)=g(X, J Y), \forall X, Y \in T M \tag{1.1}
\end{equation*}
$$

[^0]- analytic condition
(c) J is parallel relative to the Levi-Civita connection $\nabla^{g}\left(\nabla^{g} J=0\right)$. This condition is equivalent to the C-holomorphicity (analyticity) of the anti-Hermitian metric g, that is, $\Phi_{J} g=0$, where Φ_{J} is the Tachibana operator [5].

The C-holomorphicity (analyticity) of the anti-Hermitian metric g on anti-Kähler manifolds means that there exists a one-to-one correspondence between anti-Kähler manifolds and complex Riemannian manifolds with a holomorphic metric. This fact gives us some topological obstructions to an anti-Kähler manifold, for instance, all its odd Chern numbers vanish because its holomorphic metric gives us a complex isomorphism between the complex tangent bundle and its dual; and a compact simply connected Kähler manifold cannot be anti-Kähler because it does not admit a holomorphic metric. Hence, an anti-Kähler manifold is slightly a different family of almost complex manifolds. This kind of manifolds have been also studied under the names: almost complex manifolds with Norden (or B-) metric, Kähler-Norden manifolds $[3,8,14]$.

Obviously, by algebraic conditions, the triple (M, J, g) is an almost anti-Hermitian manifold. Given the anti-Hermitian structure (J, g) on a manifold M, we can immediately recover the other anti-Hermitian metric, called the twin metric, by the formula:

$$
G(X, Y)=(g \circ J)(X, Y)=g(J X, Y)
$$

Thus, the triple (M, J, G) is another almost anti-Hermitian manifold. Note that the condition (1.1) also refers to the purity of g relative to J. From now on, by manifold we understand a smooth $2 n$-manifold and will use the notations J, g and G for the almost complex structure, the pseudo-Riemannian metric and the twin metric, respectively. In addition, we shall assign the quadruple (M, J, g, G) as almost anti-Hermitian manifolds.

Our paper aims to study Codazzi pairs on an almost anti-Hermitian manifold (M, J, g, G). The analogous case with almost Hermitian case has been worked out earlier by Fei and Zhang [2]. The structure of the paper is as follows. In Sect. 2, we start by the g-conjugation, G-conjugation and J-conjugation of arbitrary linear connections. Then we state the relations among the $(0,4)$-curvature tensors of these conjugate connections and also show that the set which has g-conjugation, G-conjugation, J-conjugation and an identity operation is a Klein group on the space of linear connections. In Sect. 3, we obtain some remarkable results under the assumption that (∇, G) or (∇, J) being a Codazzi pair, where ∇ is a linear connection. One of them is a necessary and sufficient condition under which the almost anti-Hermitian manifold (M, J, g, G) is an anti-Kähler relative to a torsion-free linear connection ∇. Sect. 4 closes our paper with statistical structures under the assumption that ∇ being J-parallel relative to a torsion-free linear connection ∇.

§2 Conjugate connections

In the following let (M, J, g, G) be an almost anti-Hermitian manifold and ∇ be a linear connection. We define respectively the conjugate connections of ∇ relative to g and G as the
linear connections determined by the equations:

$$
Z g(X, Y)=g\left(\nabla_{Z} X, Y\right)+g\left(X, \nabla_{Z}^{*} Y\right)
$$

and

$$
Z G(X, Y)=G\left(\nabla_{Z} X, Y\right)+G\left(X, \nabla_{Z}^{\dagger} Y\right)
$$

for all vector fields X, Y, Z on M. We are calling these connections g-conjugate connection and G-conjugate connection, respectively. Conjugate connections with respect to the metric were studied in $[1,9,10]$. Note that both g-conjugate connection and G-conjugate connection of a linear connection are involutive: $\left(\nabla^{*}\right)^{*}=\nabla$ and $\left(\nabla^{\dagger}\right)^{\dagger}=\nabla$. Conjugate connections are a natural generalization of Levi-Civita connections from Riemannian manifolds theory. Especially, ∇^{*} (or ∇^{\dagger}) coincides with ∇ if and only if ∇ is the Levi-Civita connection of g (or G).

Given a linear connection ∇ of (M, J, g, G), the J-conjugate connection of ∇, denoted ∇^{J}, is a new linear connection given by

$$
\nabla^{J}(X, Y)=J^{-1}\left(\nabla_{X} J Y\right)
$$

for any vector fields X and Y on M [12]. Conjugate connections with respect to J were studied in $[2,4,12,13]$.

Through relationships among the g-conjugate connection ∇^{*}, G-conjugate connection ∇^{\dagger} and J-conjugate connection ∇^{J} of ∇, we give the following theorem which is analogue to the known result given by Fei and Zhang [2] for Hermitian setting. Also, in our setting, we present detailed proof by using different arguments.

Theorem 1. Let (M, J, g, G) be an almost anti-Hermitian manifold. $\nabla^{*}, \nabla^{\dagger}$ and ∇^{J} denote respectively g-conjugation, G-conjugation and J-conjugation of a linear connection ∇. Then $(i d, *, \dagger, J)$ acts as the 4 -element Klein group on the space of linear connections:

$$
\begin{aligned}
i)\left(\nabla^{*}\right)^{*} & =\left(\nabla^{\dagger}\right)^{\dagger}=\left(\nabla^{J}\right)^{J}=\nabla \\
i i)\left(\nabla^{\dagger}\right)^{J} & =\left(\nabla^{J}\right)^{\dagger}=\nabla^{*}, \\
i i i)\left(\nabla^{*}\right)^{J} & =\left(\nabla^{J}\right)^{*}=\nabla^{\dagger}, \\
i v)\left(\nabla^{*}\right)^{\dagger} & =\left(\nabla^{\dagger}\right)^{*}=\nabla^{J}
\end{aligned}
$$

Proof. i) The statement is a direct consequence of definitions of conjugate connections.
ii) We compute

$$
\begin{aligned}
G\left(\left(\nabla^{\dagger}\right)_{Z}^{J} X, Y\right) & =G\left(J^{-1} \nabla_{Z}^{\dagger}(J X), Y\right) \\
& =G\left(\nabla_{Z}^{\dagger}(J X), J^{-1} Y\right) \\
& =Z G\left(J X, J^{-1} Y\right)-G\left(J X, \nabla_{Z}\left(J^{-1} Y\right)\right) \\
& =Z g\left(J^{2} X, J^{-1} Y\right)-g\left(J^{2} X, \nabla_{Z}\left(J^{-1} Y\right)\right) \\
& =-Z g\left(X, J^{-1} Y\right)+g\left(X, \nabla_{Z}\left(J^{-1} Y\right)\right) \\
& =-g\left(\nabla_{Z}^{*} X, J^{-1} Y\right)=G\left(\nabla_{Z}^{*} X, Y\right)
\end{aligned}
$$

which gives $\left(\nabla^{\dagger}\right)^{J}=\nabla^{*}$. Similarly

$$
\begin{aligned}
Z G(X, Y) & =G\left(\nabla_{Z}^{J} X, Y\right)+G\left(X,\left(\nabla^{J}\right)_{Z}^{\dagger} Y\right) \\
Z g(J X, Y) & =g\left(J J^{-1} \nabla_{Z}(J X), Y\right)+g\left(J X,\left(\nabla^{J}\right)_{Z}^{\dagger} Y\right) \\
Z g(J X, Y) & =g\left(\nabla_{Z}(J X), Y\right)+g\left(J X,\left(\nabla^{J}\right)_{Z}^{\dagger} Y\right) \\
g\left(J X, \nabla_{Z}^{*} Y\right) & =g\left(J X,\left(\nabla^{J}\right)_{Z}^{\dagger} Y\right)
\end{aligned}
$$

which establishes $\left(\nabla^{J}\right)^{\dagger}=\nabla^{*}$. Hence, we get $\left(\nabla^{\dagger}\right)^{J}=\left(\nabla^{J}\right)^{\dagger}=\nabla$.
iii) On applying the J-conjugation to both sides of $i i), \nabla^{\dagger}=\left(\nabla^{*}\right)^{J}$ and also,

$$
\begin{aligned}
g\left(J X,\left(\nabla^{J}\right)_{Z}^{*} Y\right) & =Z g(J X, Y)-g\left(\nabla_{Z}^{J}(J X), Y\right) \\
& =Z G(X, Y)-G\left(J^{-1} \nabla_{Z}^{J}(J X), Y\right) \\
& =Z G(X, Y)-G\left(J^{-1} J^{-1} \nabla_{Z}\left(J^{2} X\right), Y\right) \\
& =Z G(X, Y)-G\left(\nabla_{Z} X, Y\right) \\
& =G\left(X, \nabla_{Z}^{\dagger} Y\right)=g\left(J X, \nabla_{Z}^{\dagger} Y\right)
\end{aligned}
$$

These show that $\nabla^{\dagger}=\left(\nabla^{*}\right)^{J}=\left(\nabla^{J}\right)^{*}$.
iv) On applying the G-conjugation to both sides of $i i), \nabla^{J}=\left(\nabla^{*}\right)^{\dagger}$ and on applying the g-conjugation to both sides of $i i i), \nabla^{J}=\left(\nabla^{\dagger}\right)^{*}$. Thus, the proof completes.

Recall that the curvature tensor field R of a linear connection ∇ is the tensor field, for all vector fields X, Y, Z,

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

If (M, g) is a (pseudo-)Riemannian manifold, it is sometimes convenient to view the curvature tensor field as a $(0,4)$-tensor field by:

$$
R(X, Y, Z, W)=g(R(X, Y) Z, W)
$$

called the $(0,4)$-curvature tensor field. If we consider the relationship among the $(0,4)$-curvature tensor fields of ∇, ∇^{*} and ∇^{J}, we obtain the following.

Theorem 2. Let (M, J, g, G) be an almost anti-Hermitian manifold. ∇^{*} and ∇^{J} denote respectively g-conjugation and J-conjugation of a linear connection ∇ on M. The relationship among the (0,4 - -curvature tensor fields R, R^{*} and R^{J} of ∇, ∇^{*} and ∇^{J} is as follow:

$$
R(X, Y, J Z, W)=-R^{*}(X, Y, W, J Z)=R^{J}(X, Y, Z, J W)
$$

for all vector fields X, Y, Z, W on M.

Proof. Since the relation is linear in the arguments X, Y, W and Z, it suffices to prove it only on a basis. Therefore we assume $X, Y, W, Z \in\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{2 n}}\right\}$ and take computational advantage of the following vanishing Lie brackets

$$
[X, Y]=[Y, W]=[W, Z]=0
$$

Then we get

$$
\begin{aligned}
X Y G(Z, W)= & X(Y g(J Z, W)) \\
= & X\left(g\left(\nabla_{Y} J Z, W\right)\right)+X\left(g\left(J Z, \nabla_{Y}^{*} W\right)\right) \\
= & g\left(\nabla_{X} \nabla_{Y} J Z, W\right)+g\left(\nabla_{Y} J Z, \nabla_{X}^{*} W\right) \\
& +g\left(\nabla_{X} J Z, \nabla_{Y}^{*} W\right)+g\left(J Z, \nabla_{X}^{*} \nabla_{Y}^{*} W\right)
\end{aligned}
$$

and by alternation

$$
\begin{aligned}
Y X G(Z, W)= & g\left(\nabla_{Y} \nabla_{X} J Z, W\right)+g\left(\nabla_{X} J Z, \nabla_{Y}^{*} W\right) \\
& +g\left(\nabla_{Y} J Z, \nabla_{X}^{*} W\right)+g\left(J Z, \nabla_{Y}^{*} \nabla_{X}^{*} W\right) .
\end{aligned}
$$

Because of the above relations, we find

$$
\begin{aligned}
0 & =[X, Y] G(Z, W)=X Y G(Z, W)-Y X G(Z, W) \\
0 & =g\left(\nabla_{X} \nabla_{Y} J Z-\nabla_{Y} \nabla_{X} J Z, W\right)+g\left(J Z, \nabla_{X}^{*} \nabla_{Y}^{*} W-\nabla_{Y}^{*} \nabla_{X}^{*} W\right) \\
0 & =R(X, Y, J Z, W)+R^{*}(X, Y, W, J Z)
\end{aligned}
$$

and similarly

$$
\begin{aligned}
0= & {[X, Y] G(Z, W)=X Y G(Z, W)-Y X G(Z, W) } \\
0= & G\left(J^{-1} \nabla_{X} J\left(J^{-1} \nabla_{Y} J Z\right)-J^{-1} \nabla_{Y} J\left(J^{-1} \nabla_{X} J Z\right), W\right) \\
& +G\left(Z, \nabla_{X}^{*} \nabla_{Y}^{*} W-\nabla_{Y}^{*} \nabla_{X}^{*} W\right) \\
0= & G\left(\nabla_{X}^{J} \nabla_{Y}^{J} Z-\nabla_{Y}^{J} \nabla_{X}^{J} Z, W\right) \\
& +G\left(Z, \nabla_{X}^{*} \nabla_{Y}^{*} W-\nabla_{Y}^{*} \nabla_{X}^{*} W\right) \\
0= & g\left(\nabla_{X}^{J} \nabla_{Y}^{J} Z-\nabla_{Y}^{J} \nabla_{X}^{J} Z, J W\right) \\
& +g\left(\nabla_{X}^{*} \nabla_{Y}^{*} W-\nabla_{Y}^{*} \nabla_{X}^{*} W, J Z\right) \\
0= & R^{J}(X, Y, Z, J W)+R^{*}(X, Y, W, J Z)
\end{aligned}
$$

Hence, it follows that $R(X, Y, J Z, W)=-R^{*}(X, Y, W, J Z)=R^{J}(X, Y, Z, J W)$.

§3 Codazzi Pairs

Let ∇ be an arbitrary linear connection on a pseudo-Riemannian manifold (M, g). Given the pair (∇, g), we construct respectively the $(0,3)$-tensor fields F and F^{*} by

$$
F(X, Y, Z):=\left(\nabla_{Z} g\right)(X, Y)
$$

and

$$
F^{*}(X, Y, Z):=\left(\nabla_{Z}^{*} g\right)(X, Y)
$$

where ∇^{*} is g-conjugation of ∇. The tensor field F (or F^{*}) is sometimes referred to as the cubic form associated to the pair $(\nabla, g)\left(\right.$ or $\left.\left(\nabla^{*}, g\right)\right)$. These tensors are related via

$$
F(X, Y, Z)=g\left(X,\left(\nabla^{*}-\nabla\right)_{Z} Y\right)
$$

so that

$$
F^{*}(X, Y, Z):=\left(\nabla_{Z}^{*} g\right)(X, Y)=-F(X, Y, Z)
$$

Therefore $F(X, Y, Z)=F^{*}(X, Y, Z)=0$ if and only if $\nabla^{*}=\nabla$, that is, ∇ is g-self-conjugate [2].
For an almost complex structure J, a pseudo-Riemannian metric g and a symmetric bilinear form ρ on a manifold M, we call (∇, J) and (∇, ρ), respectively, a Codazzi pair, if their covariant derivative (∇J) and $(\nabla \rho)$, respectively, is (totally) symmetric in X, Y, Z [12]:

$$
\left(\nabla_{Z} J\right) X=\left(\nabla_{X} J\right) Z,\left(\nabla_{Z} \rho\right)(X, Y)=\left(\nabla_{X} \rho\right)(Z, Y)
$$

3.1 The Codazzi pair (∇, G)

Let ∇ be a linear connection ∇ on (M, J, g, G). Next we shall consider the Codazzi pair (∇, G). In here, the $(0,3)$-tensor field F is defined by

$$
F(X, Y, Z):=\left(\nabla_{Z} G\right)(X, Y)
$$

Now we shall state the following proposition without proof, because its proof is easily obtained from some relations well-known concerning with the cubic form C and Codazzi condition. We omit standard calculations.

Proposition 1. (See also [12]) Let ∇ be a linear connection on (M, J, g, G). Then the following statements are equivalent:
i) (∇, G) is a Codazzi pair
ii) $\left(\nabla^{\dagger}, G\right)$ is a Codazzi pair,
iii) $F^{\dagger}(X, Y, Z)=\left(\nabla_{Z}^{\dagger} G\right)(X, Y)$ is totally symmetric,
iv) $T^{\nabla}=T^{\nabla^{\dagger}}$.

Proposition 2. Let ∇ be a linear connection on (M, J, g, G). If (∇, G) is a Codazzi pair, then the following statements hold:
i) $F(X, Y, Z)=\left(\nabla_{Z} G\right)(X, Y)$ is totally symmetric,
ii) $\left(\nabla_{J Z}^{*} G\right)(X, Y)=\left(\nabla_{J X}^{*} G\right)(Z, Y)$,
iii) $T^{\nabla}=T^{\nabla^{*}}$ if and only if $\left(\nabla^{*}, J\right)$ is a Codazzi pair,
iv) $T^{\nabla}=T^{\left(\nabla^{*}\right)^{J}}$,
where ∇^{*} is the $g-$ conjugation of ∇ and $\left(\nabla^{*}\right)^{J}$ is the J-conjugation of ∇^{*}.
Proof. i) Due to symmetry of $G, F(X, Y, Z)=\left(\nabla_{Z} G\right)(X, Y)=\left(\nabla_{Z} G\right)(Y, X)=F(Y, X, Z)$. Also for (∇, G) being a Codazzi pair, $F(X, Y, Z)=\left(\nabla_{Z} G\right)(X, Y)=F(X, Y, Z)=\left(\nabla_{X} G\right)(Z, Y)$ $=F(Z, Y, X)$, that is, F is totally symmetric in all of its indices.
ii) By virtue of the purity of g relative to J, we yield

$$
\begin{gathered}
\left(\nabla_{Z} G\right)(X, Y)=\left(\nabla_{X} G\right)(Z, Y) \\
Z g(J X, Y)-g\left(J \nabla_{Z} X, Y\right)-g\left(J X, \nabla_{Z} Y\right) \\
=\quad X g(J Z, Y)-g\left(J \nabla_{X} Z, Y\right)-g\left(J Z, \nabla_{X} Y\right) \\
g\left(\nabla_{Z}^{*}(J X), Y\right)-g\left(J \nabla_{Z} X, Y\right)=g\left(\nabla_{X}^{*}(J Z), Y\right)-g\left(J \nabla_{X} Z, Y\right) \\
g\left(\nabla_{Z}^{*}(J X), Y\right)-Z g(X, J Y)+g\left(X, \nabla_{Z}^{*}(J Y)\right) \\
=g\left(\nabla_{X}^{*}(J Z), Y\right)-X g(Z, J Y)+g\left(Z, \nabla_{X}^{*}(J Y)\right)
\end{gathered}
$$

$$
\begin{aligned}
& Z g(X, J Y)-g\left(\nabla_{Z}^{*}(J X), Y\right)-g\left(X, \nabla_{Z}^{*}(J Y)\right) \\
= & X g(Z, J Y)-g\left(\nabla_{X}^{*}(J Z), Y\right)-g\left(Z, \nabla_{X}^{*}(J Y)\right) .
\end{aligned}
$$

Putting $X=J X, Y=J Y$ and $Z=J Z$ in the last relation, we find

$$
\begin{gathered}
J Z g(J X, J(J Y))-g\left(\nabla_{J Z}^{*}(J(J X)), J Y\right)-g\left(J X, \nabla_{J Z}^{*}(J(J Y))\right) \\
=\quad J X g(J Z, J(J Y))-g\left(\nabla_{J X}^{*}(J(J Z)), J Y\right)-g\left(J Z, \nabla_{J X}^{*}(J(J Y))\right) \\
J Z g(J X, Y)-g\left(\nabla_{J Z}^{*} X, J Y\right)-g\left(J X, \nabla_{J Z}^{*} Y\right) \\
=\quad J X g(J Z, Y)-g\left(\nabla_{J X}^{*} Z, J Y\right)-g\left(J Z, \nabla_{J X}^{*} Y\right) \\
\\
J Z G(X, Y)-G\left(\nabla_{J Z}^{*} X, Y\right)-G\left(X, \nabla_{J Z}^{*} Y\right) \\
= \\
J X G(Z, Y)-G\left(\nabla_{J X}^{*} Z, Y\right)-G\left(Z, \nabla_{J X}^{*} Y\right) \\
\left(\nabla_{J Z}^{*} G\right)(X, Y)=\left(\nabla_{J X}^{*} G\right)(Z, Y) .
\end{gathered}
$$

iii) Let T^{∇} and $T^{\nabla^{*}}$ be respectively the torsion tensors of ∇ and its g-conjugation ∇^{*}. We calculate

$$
\begin{gather*}
\left(\nabla_{Z} G\right)(X, Y)=\left(\nabla_{X} G\right)(Z, Y) \\
Z g(J X, Y)-g\left(J \nabla_{Z} X, Y\right)-g\left(J X, \nabla_{Z} Y\right) \\
=X g(J Z, Y)-g\left(J \nabla_{X} Z, Y\right)-g\left(J Z, \nabla_{X} Y\right) \\
g\left(\nabla_{Z}^{*}(J X), Y\right)-g\left(J \nabla_{Z} X, Y\right) \\
=g\left(\nabla_{X}^{*}(J Z), Y\right)-g\left(J \nabla_{X} Z, Y\right) \\
G\left(J^{-1} \nabla_{Z}^{*}(J X), Y\right)-G\left(\nabla_{Z} X, Y\right) \\
=G\left(J^{-1} \nabla_{X}^{*}(J Z), Y\right)-G\left(\nabla_{X} Z, Y\right) \\
G\left(J^{-1}\left\{\nabla_{Z}^{*}(J X)-\nabla_{X}^{*}(J Z)\right\}, Y\right)=G\left(\nabla_{Z} X-\nabla_{X} Z, Y\right) \tag{3.1}
\end{gather*}
$$

from which we get

$$
\begin{gathered}
J^{-1}\left\{\nabla_{Z}^{*}(J X)-\nabla_{X}^{*}(J Z)\right\}=\nabla_{Z} X-\nabla_{X} Z \\
J^{-1}\left\{\left(\nabla_{Z}^{*} J\right) X+J \nabla_{Z}^{*} X-\left(\nabla_{X}^{*} J\right) Z-J \nabla_{X}^{*} Z\right\}=\nabla_{Z} X-\nabla_{X} Z \\
J^{-1}\left\{\left(\nabla_{Z}^{*} J\right) X-\left(\nabla_{X}^{*} J\right) Z\right\}+\left(\nabla_{Z}^{*} X-\nabla_{X}^{*} Z-[Z, X]\right) \\
=\nabla_{Z} X-\nabla_{X} Z-[Z, X] \\
J^{-1}\left\{\left(\nabla_{Z}^{*} J\right) X-\left(\nabla_{X}^{*} J\right) Z\right\}+T^{\nabla^{*}}(Z, X)=T^{\nabla}(Z, X) .
\end{gathered}
$$

This means that $T^{\nabla^{*}}(Z, X)=T^{\nabla}(Z, X)$ if and only if $\left(\nabla_{Z}^{*} J\right) X=\left(\nabla_{X}^{*} J\right) Z$.
iv) From (3.1), we can write

$$
\begin{gathered}
G\left(\left(\nabla^{*}\right)_{Z}^{J} X-\left(\nabla^{*}\right)_{X}^{J} Z, Y\right)=G\left(\nabla_{Z} X-\nabla_{X} Z, Y\right) \\
G\left(T^{\left(\nabla^{*}\right)^{J}}(Z, X), Y\right)=G\left(T^{\nabla}(Z, X), Y\right) \\
T^{\left(\nabla^{*}\right)^{J}}(Z, X)=T^{\nabla}(Z, X) .
\end{gathered}
$$

As a corollary to Proposition 1 and 2, we obtain the following conclusion.
Corollary 1. Let (M, J, g, G) be an almost anti-Hermitian manifold. ∇^{*} and ∇^{\dagger} denote respectively g-conjugation and G-conjugation of a linear connection ∇ on M. If (∇, G) and $\left(\nabla^{*}, J\right)$ are Codazzi pairs, then $T^{\nabla}=T^{\nabla^{*}}=T^{\nabla^{\dagger}}$.

3.2 The Codazzi pair (∇, J)

Proposition 3. Let ∇ be a linear connection on $(M, J, g, G) . \nabla^{\dagger}$ denote G-conjugation of ∇ on M. Under the assumption that (∇, G) being a Codazzi pair, $\left(\nabla^{\dagger}, J\right)$ is a Codazzi pair if and only if (∇, g) is so.
Proof. Using the definition of G-conjugation and $T^{\nabla}=T^{\nabla^{\dagger}}$, we find

$$
\begin{aligned}
G\left(\left(\nabla_{Z}^{\dagger} J\right) X-\right. & \left.\left(\nabla_{X}^{\dagger} J\right) Z, Y\right)=G\left(\nabla_{Z}^{\dagger} J X-J \nabla_{Z}^{\dagger} X, Y\right)-G\left(\nabla_{X}^{\dagger} J Z-J \nabla_{X}^{\dagger} Z, Y\right) \\
= & Z G(J X, Y)-G\left(J X, \nabla_{Z} Y\right)-G\left(J \nabla_{Z}^{\dagger} X, Y\right)-X G(J Z, Y) \\
& +G\left(J Z, \nabla_{X} Y\right)+G\left(J \nabla_{X}^{\dagger} Z, Y\right) \\
= & Z G(J X, Y)-G\left(J X, \nabla_{Z} Y\right)-X G(J Z, Y)+G\left(J Z, \nabla_{X} Y\right) \\
& +G\left(J\left(\nabla_{X}^{\dagger} Z-\nabla_{Z}^{\dagger} X-[Z, X]\right)+J[Z, X], Y\right) \\
= & Z G(J X, Y)-G\left(J X, \nabla_{Z} Y\right)-X G(J Z, Y)+G\left(J Z, \nabla_{X} Y\right) \\
& +G\left(J\left(\nabla_{X} Z-\nabla_{Z} X-[Z, X]\right)+J[Z, X], Y\right) \\
& =-Z g(X, Y)+g\left(X, \nabla_{Z} Y\right)+X g(Z, Y) \\
& -g\left(Z, \nabla_{X} Y\right)+g\left(\nabla_{Z} X, Y\right)-g\left(\nabla_{X} Z, Y\right) \\
& =\left(\nabla_{Z} g\right)(X, Y)-\left(\nabla_{X} g\right)(Z, Y)
\end{aligned}
$$

Consider the set $R(j)=\left\{a_{0}+a_{1} j: j^{2}=-1 ; a_{0}, a_{1} \in R\right\}$, which is the algebra of comple区 numbers over the field of real numbers R. The canonical bases of this algebra has the form $\{1, j\}$. An $2 k$-dimensional manifold $M_{2 k}$ with an integrable complex structure J is a real realization of the holomorphic manifold $M_{k}(R(j))$ over the algebra $R(j)$ with dimension k. Let t^{*} be a complex tensor field on $M_{k}(R(j))$. The real model of such a tensor field is a tensor field on $M_{2 k}$ of the same type and also is pure relative to the complex structure J (for pure tensor fields, see [11]). If J is a complex structure on $M_{2 k}$ and $\Phi_{J} t=0$, then the complex tensor field t^{*} on $M_{k}(R(j))$ is said to be holomorphic [6,11]. Therefore, we can say that the real model of a holomorphic tensor field t^{*} on $M_{k}(R(j))$ is the same type pure tensor field on $M_{2 k}$ such that $\Phi_{J} t=0$. Now we consider the Φ-operator (or Tachibana operator [15]) applied to the anti-Hermitian metric g :

$$
\begin{equation*}
\left(\Phi_{J} g\right)(X, Y, Z)=\left(L_{J X} g-L_{X}(g \circ J)\right)(Y, Z) \tag{3.2}
\end{equation*}
$$

Because of the fact that the twin metric G on an almost anti-Hermitian manifold (M, J, g) is an anti-Hermitian metric, we can apply the Φ-operator to the twin metric G [11]:

$$
\begin{align*}
\left(\Phi_{J} G\right)(X, Y, Z) & =\left(L_{J X} G-L_{X}(G \circ J)\right)(Y, Z) \tag{3.3}\\
& =\left(\Phi_{J} g\right)(X, J Y, Z)+g\left(N_{J}(X, Y), Z\right)
\end{align*}
$$

where N_{J} is the Nijenhuis tensor field defined by

$$
\begin{equation*}
N_{J}(X, Y)=[J X, J Y]-J[J X, Y]-J[X, J Y]-[X, Y] \tag{3.4}
\end{equation*}
$$

for any vector fields X, Y on M.
Proposition 4. Let ∇ be a torsion-free linear connection on (M, J, g, G). If (∇, J) is a Codazzi pair, then

$$
\left(\Phi_{J} G\right)(X, Y, Z)=\left(\Phi_{J} g\right)(X, J Y, Z)=\left(\nabla_{J X} G\right)(Y, Z)-\left(\nabla_{X} g\right)(J Y, J Z) .
$$

Proof. Using $\nabla_{X} Z-\nabla_{Z} X=[Z, X]$, from (3.2) we get

$$
\begin{aligned}
& \left(\Phi_{J} g\right)(X, J Y, Z)=\left(L_{J X} g-\left(L_{X} g o J\right)(J Y, Z)\right. \\
& =\left(L_{J X} g\right)(J Y, Z)-\left(L_{X} g o J\right)(J Y, Z) \\
& =J X g(J Y, Z)-g\left(L_{J X} J Y, Z\right)-g\left(J Y, L_{J X} Z\right)-X g o J(J Y, Z) \\
& +\operatorname{goJ}\left(L_{X} J Y, Z\right)+\operatorname{goJ}\left(J Y, L_{X} Z\right) \\
& =J X g(J Y, Z)-g([J X, J Y], Z)-g(J Y,[J X, Z])-X g o J(J Y, Z) \\
& +\operatorname{goJ}([X, J Y], Z)+\operatorname{goJ}(J Y,[X, Z]) \\
& =J X g(J Y, Z)-g\left(\nabla_{J X} J Y-\nabla_{J Y} J X, Z\right)-g\left(J Y, \nabla_{J X} Z-\nabla_{Z} J X\right) \\
& -X \operatorname{go} J(J Y, Z)+\operatorname{go} J\left(\nabla_{X} J Y-\nabla_{J Y} X, Z\right)+\operatorname{goJ}\left(J Y, \nabla_{X} Z-\nabla_{Z} X\right) \\
& =J X g(J Y, Z)-g\left(\left(\nabla_{J X} J\right) Y+J \nabla_{J X} Y-\left(\nabla_{J Y} J\right) X-J \nabla_{J Y} X, Z\right) \\
& -g\left(J Y, \nabla_{J X} Z-\left(\nabla_{Z} J\right) X-J \nabla_{Z} X\right)-X g(J Y, J Z) \\
& +g\left(\left(\nabla_{X} J\right) Y+J \nabla_{X} Y-\nabla_{J Y} X, J Z\right)+g\left(J Y, J \nabla_{X} Z-J \nabla_{Z} X\right) \\
& =J X g(J Y, Z)-g\left(\left(\nabla_{J X} J\right) Y, Z\right)-g\left(J \nabla_{J X} Y, Z\right) \\
& +g\left(\left(\nabla_{J Y} J\right) X, Z\right)+g\left(J \nabla_{J Y} X, Z\right)-g\left(J Y, \nabla_{J X} Z\right)+g\left(J Y,\left(\nabla_{Z} J\right) X\right) \\
& +g\left(J Y, J \nabla_{Z} X\right)-X g(J Y, J Z)+g\left(\left(\nabla_{X} J\right) Y, J Z\right)+g\left(J \nabla_{X} Y, J Z\right) \\
& -g\left(\nabla_{J Y} X, J Z\right)+g\left(J Y, J \nabla_{X} Z\right)-g\left(J Y, J \nabla_{Z} X\right) .
\end{aligned}
$$

By virtue of the purity of g relative to $J,\left(\nabla_{Z} J\right) X=\left(\nabla_{X} J\right) Z$, the last relation reduces to

$$
\begin{align*}
&= J X g(J Y, Z)-g\left(\left(\nabla_{J X} J\right) Y, Z\right)-g\left(J \nabla_{J X} Y, Z\right)+g\left(\left(\nabla_{J Y} J\right) X, Z\right) \\
&+g\left(J \nabla_{J Y} X, Z\right)-g\left(J Y, \nabla_{J X} Z\right)+g\left(J Y,\left(\nabla_{Z} J\right) X\right) \\
&+g\left(J Y, J \nabla_{Z} X\right)-X g(J Y, J Z)+g\left(\left(\nabla_{X} J\right) Y, J Z\right) \\
&+g\left(J \nabla_{X} Y, J Z\right)-g\left(J \nabla_{J Y} X, Z\right)+g\left(J Y, J \nabla_{X} Z\right)-g\left(J Y, J \nabla_{Z} X\right) \\
&= J X g(J Y, Z)-g\left(J \nabla_{J X} Y, Z\right)-g\left(J Y, \nabla_{J X} Z\right)+g\left(J Y,\left(\nabla_{Z} J\right) X\right) \\
&-X g(J Y, J Z)+g\left(\left(\nabla_{X} J\right) Y, J Z\right)+g\left(J \nabla_{X} Y, J Z\right)+g\left(J Y, J \nabla_{X} Z\right) \\
&= J X G(Y, Z)-G\left(\nabla_{J X} Y, Z\right)-G\left(Y, \nabla_{J X} Z\right)-X g(J Y, J Z) \\
&+g\left(\nabla_{X} J Y, J Z\right)+g\left(J Y, \nabla_{Z} J X\right) \\
& \quad=\left(\nabla_{J X} G\right)(Y, Z)-\left(\nabla_{X} g\right)(J Y, J Z) . \tag{3.5}
\end{align*}
$$

Relative to the torsion-free connection ∇, the Nijenhuis tensor has the following form:

$$
N_{J}(X, Y)=-J\left\{\left(\nabla_{J Y} J\right) J X-\left(\nabla_{J X} J\right) J Y\right\}+J\left\{\left(\nabla_{Y} J\right) X-\left(\nabla_{X} J\right) Y\right\} .
$$

From here, it is easy to show $N_{J}(X, Y)=0$ because (∇, J) is a Codazzi pair. Hence, taking account of (3.3) and (3.5) we have

$$
\left(\Phi_{J} G\right)(X, Y, Z)=\left(\Phi_{J} g\right)(X, J Y, Z)=\left(\nabla_{J X} G\right)(Y, Z)-\left(\nabla_{X} g\right)(J Y, J Z)
$$

As is well known, the anti-Kähler condition $\left(\nabla^{g} J=0\right)$ is equivalent to C-holomorphici岛 (analyticity) of the anti-Hermitian metric g, that is, $\Phi_{J} g=0$. If the anti-Hermitian metric g is C-holomorphic, then the triple (M, J, g) is an anti-Kähler manifold [5].

Theorem 3. Let ∇ be a torsion-free linear connection on (M, J, g, G). Under the assumption that (∇, J) being a Codazzi pair, (M, J, g, G) is an anti-Kähler manifold if and only if the following condition is fulfilled:

$$
\left(\nabla_{J X} G\right)(Y, Z)=\left(\nabla_{X} g\right)(J Y, J Z)
$$

Proof. The statement is a direct consequence of Proposition 4.

§4 J-parallel Linear Connections

Given arbitrary linear connection ∇ on an almost complex manifold (M, J), if the following condition is satisfied:

$$
\nabla_{X} J Y=J \nabla_{X} Y
$$

for any vector fields X, Y on M, then ∇ is called a J-parallel linear connection on M.
Proposition 5. Let ∇ be a linear connection on $(M, J, g, G) . \nabla^{*}$ and ∇^{\dagger} denote respectively $g-$ conjugation and G-conjugation of ∇ on M. Then
i) ∇ is J-parallel if and only if ∇^{*} is so.
ii) ∇ is J-parallel if and only if ∇^{\dagger} is so.

Proof. i) Using the definition of g-conjugation and the purity of g relative to J, we have

$$
\begin{gathered}
G\left(\nabla_{X}^{*} J Y-J \nabla_{X}^{*} Y, Z\right)=g\left(\nabla_{X}^{*} J Y, J Z\right)-g\left(J \nabla_{X}^{*} Y, J Z\right) \\
=-X g(Y, Z)-g\left(J Y, \nabla_{X} J Z\right)+X g(Y, Z)-g\left(Y, \nabla_{X} Z\right) \\
=-g\left(J Y, \nabla_{X} J Z\right)+g\left(J Y, J \nabla_{X} Z\right)=-G\left(Y, \nabla_{X} J Z\right)+G\left(Y, J \nabla_{X} Z\right) .
\end{gathered}
$$

Hence, $\nabla_{X}^{*} J Y=J \nabla_{X}^{*} Y$ if and only if $\nabla_{X} J Z=J \nabla_{X} Z$.
ii) Similarly, we get

$$
\begin{aligned}
& G\left(\nabla_{X}^{\dagger} J Y-J \nabla_{X}^{\dagger} Y, Z\right)=G\left(\nabla_{X}^{\dagger} J Y, Z\right)-G\left(J \nabla_{X}^{\dagger} Y, Z\right) \\
= & X G(J Y, Z)-G\left(J Y, \nabla_{X} Z\right)-X G(Y, J Z)+G\left(Y, \nabla_{X} J Z\right) \\
= & G\left(Y, \nabla_{X} J Z\right)-G\left(J Y, \nabla_{X} Z\right)=G\left(\nabla_{X} J Z-J \nabla_{X} Z, Y\right)
\end{aligned}
$$

which gives the result.
Proposition 6. Let ∇ be a J-parallel linear connection on $(M, J, g, G) . \nabla^{*}$ and ∇^{\dagger} denote respectively g-conjugation and G-conjugation of ∇ on M. The following statements hold:
i) ∇^{\dagger} coincides with ∇^{*},
ii) (∇, G) is a Codazzi pair if and only if (∇, g) is so.

Proof. i) Because ∇ is J-parallel, $\nabla J=0, \nabla=\nabla^{*}$. It follows from Theorem 1 that $\nabla^{\dagger}=\nabla^{*}$. ii) Using the purity of g relative to J, we get

$$
\begin{aligned}
\left(\nabla_{Z} G\right)(X, Y) & =\left(\nabla_{X} G\right)(Z, Y) \\
Z g(J X, Y)-g\left(J \nabla_{Z} X, Y\right)-g\left(J X, \nabla_{Z} Y\right) & =X g(J Z, Y)-g\left(J \nabla_{X} Z, Y\right)-g\left(J Z, \nabla_{X} Y\right) \\
Z g(X, J Y)-g\left(\nabla_{Z} X, J Y\right)-g\left(X, J \nabla_{Z} Y\right) & =X g(Z, J Y)-g\left(\nabla_{X} Z, J Y\right)-g\left(Z, J \nabla_{X} Y\right) \\
Z g(X, J Y)-g\left(\nabla_{Z} X, J Y\right)-g\left(X, \nabla_{Z} J Y\right) & =X g(Z, J Y)-g\left(\nabla_{X} Z, J Y\right)-g\left(Z, \nabla_{X} J Y\right) \\
\left(\nabla_{Z} g\right)(X, J Y) & =\left(\nabla_{X} g\right)(Z, J Y)
\end{aligned}
$$

For the moment, we consider a torsion-free linear connection ∇ on a pseudo-Riemannian manifold (M, g). In the case, if (∇, g) is a Codazzi pair which characterizes what is known to information geometers as statistical structures, then the manifold M together with a statistical structure (∇, g) is called a statistical manifold. The notion of statistical manifold was originally introduced by Lauritzen [7]. Statistical manifolds are widely studied in affine differential geometry $[7,9]$ and plays a central role in information geometry.

Corollary 2. Let ∇ be a J-parallel torsion-free linear connection on $(M, J, g, G) . \nabla^{*}$ denote the g-conjugation of ∇ on $M .(\nabla, G)$ is a statistical structure if and only if $\left(\nabla^{*}, G\right)$ is so.

Proof. The result immediately follows from Proposition 2, using the condition of ∇ being J-parallel.

Acknowledgement

The authors gratefully thank to the Reviewers for the constructive comments and recommendations which definitely help to improve the readability and quality of the paper.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

[1] S Amari, H Nagaoka. Method of information geometry, Amer Math Soc, Oxford University Press, Providence, RI, 2000.
[2] T Fei, J Zhang. Interaction of Codazzi couplings with (Para-)Kähler geometry, Results Math, 2017, 72(4): 2037-2056.
[3] G Ganchev, K Gribachev, V Mihova. B-connections and their conformal invariants on conformally Kähler manifold with B-metric, Publ Inst Math N S, 1987, 42: 107-121.
[4] S Grigorian, J Zhang. (Para-)holomorphic and conjugate connections on (para-)Hermitian and (para-) Kähler manifolds, Results Math, 2019, 74(4): 150.
[5] M Iscan, A A Salimov. On Kähler-Norden manifolds, Proc Indian Acad Sci (Math Sci), 2009, 119(1): 71-80.
[6] G I Kruchkovich. Hypercomplex structure on a manifold, I, Tr Sem Vect Tens Anal Moscow Univ, 1972, 16: 174-201.
[7] S L Lauritzen. Statistical manifolds, In: Differential Geometry in Statistical Inferences, IMS Lecture Notes Monogr Ser, 10, Inst Math Statist, Hayward California, 1987, 96-163.
[8] D Mekerov, M Manev and K Gribachev. Quasi-Kähler manifolds with a pair of Norden metrics, Result in Math, 2006, 49(1-2): 161-170.
[9] K Nomizu, T Sasaki. Affine Differential Geometry: Geometry of Affine Immersions, Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1994.
[10] K Nomizu, U Simon. Notes on conjugate connections, in Geometry and Topology of Submanifolds IV , World Scientific, 1992, 152-173.
[11] A Salimov. On operators associated with tensor fields, J Geom, 2010, 99(1-2): 107-145.
[12] A Schwenk-Schellschmidt, U Simon. Codazzi-equivalent affine connections, Result Math, 2009, 56(1-4): 211-229.
[13] U Simon. Affine differential geometry, In: F Dillen, L Verstraelen(eds.), Handbook of Differential Geometry, North-Holland, 2000, 1: 905-961.
[14] K Sluka. On the curvature of Kähler-Norden manifolds, J Geom Phys, 2005, 54: 131-145.
[15] S Tachibana. Analytic tensor and its generalization, Tohoku Math J, 1960, 12(2): 208-221.

Department of Mathematics, Ataturk University, 25240, Erzurum-Turkey.
Email: aydingzr@gmail.com

[^0]: Received: 2020-03-24. Revised: 2020-10-28
 MR Subject Classification: 53C05, 53C55, 62B10.
 Keywords: anti-Kähler structure, Codazzi pair, conjugate connection, twin metric, statistical structure
 Digital Object Identifier(DOI): https://doi.org/10.1007/s11766-023-4075-3.

