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Notes concerning Codazzi pairs

on almost anti-Hermitian manifolds

Aydin Gezer Hasan Cakicioglu

Abstract. Let ∇ be a linear connection on a 2n-dimensional almost anti-Hermitian manifold

M equipped with an almost complex structure J , a pseudo-Riemannian metric g and the twin

metric G = g ◦J . In this paper, we first introduce three types of conjugate connections of linear

connections relative to g, G and J . We obtain a simple relation among curvature tensors of

these conjugate connections. To clarify the relations of these conjugate connections, we prove a

result stating that conjugations along with an identity operation together act as a Klein group,

which is analogue to the known result for the Hermitian case in [2]. Secondly, we give some

results exhibiting occurrences of Codazzi pairs which generalize parallelism relative to ∇. Under

the assumption that (∇, J) being a Codazzi pair, we derive a necessary and sufficient condition

the almost anti-Hermitian manifold (M,J, g,G) is an anti-Kähler relative to a torsion-free linear

connection ∇. Finally, we investigate statistical structures on M under ∇ (∇ is a J−parallel

torsion-free connection).

§1 Introduction

A pseudo-Riemannian metric g on a smooth 2n−manifold M is called neutral if it has

signature (n, n). The pair (M, g) is called a pseudo-Riemannian manifold. An anti-Kähler

structure on a manifold M consists of an almost complex structure J and a neutral metric g

satisfying the followings:

• algebraic conditions

(a) J is an almost complex structure: J2 = −id.

(b) The neutral metric g is anti-Hermittian relative to J :

g(JX, JY ) = −g(X,Y )

or equivalently

g(JX, Y ) = g(X,JY ),∀X,Y ∈ TM. (1.1)
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• analytic condition

(c) J is parallel relative to the Levi-Civita connection ∇g (∇gJ = 0). This condition

is equivalent to the C-holomorphicity (analyticity) of the anti-Hermitian metric g, that is,

ΦJg = 0, where ΦJ is the Tachibana operator [5].

The C-holomorphicity (analyticity) of the anti-Hermitian metric g on anti-Kähler mani-

folds means that there exists a one-to-one correspondence between anti-Kähler manifolds and

complex Riemannian manifolds with a holomorphic metric. This fact gives us some topolog-

ical obstructions to an anti-Kähler manifold, for instance, all its odd Chern numbers vanish

because its holomorphic metric gives us a complex isomorphism between the complex tangent

bundle and its dual; and a compact simply connected Kähler manifold cannot be anti-Kähler

because it does not admit a holomorphic metric. Hence, an anti-Kähler manifold is slightly

a different family of almost complex manifolds. This kind of manifolds have been also stud-

ied under the names: almost complex manifolds with Norden (or B-) metric, Kähler-Norden

manifolds [3, 8, 14].

Obviously, by algebraic conditions, the triple (M,J, g) is an almost anti-Hermitian manifold.

Given the anti-Hermitian structure (J, g) on a manifold M , we can immediately recover the

other anti-Hermitian metric, called the twin metric, by the formula:

G(X,Y ) = (g ◦ J)(X,Y ) = g(JX, Y ).

Thus, the triple (M,J,G) is another almost anti-Hermitian manifold. Note that the condition

(1.1) also refers to the purity of g relative to J . From now on, by manifold we understand a

smooth 2n−manifold and will use the notations J , g and G for the almost complex structure,

the pseudo-Riemannian metric and the twin metric, respectively. In addition, we shall assign

the quadruple (M,J, g,G) as almost anti-Hermitian manifolds.

Our paper aims to study Codazzi pairs on an almost anti-Hermitian manifold (M,J, g,G).

The analogous case with almost Hermitian case has been worked out earlier by Fei and Zhang

[2]. The structure of the paper is as follows. In Sect. 2, we start by the g−conjugation,

G−conjugation and J−conjugation of arbitrary linear connections. Then we state the relations

among the (0, 4)-curvature tensors of these conjugate connections and also show that the set

which has g−conjugation, G−conjugation, J−conjugation and an identity operation is a Klein

group on the space of linear connections. In Sect. 3, we obtain some remarkable results under

the assumption that (∇, G) or (∇, J) being a Codazzi pair, where ∇ is a linear connection. One

of them is a necessary and sufficient condition under which the almost anti-Hermitian manifold

(M,J, g,G) is an anti-Kähler relative to a torsion-free linear connection ∇. Sect. 4 closes our

paper with statistical structures under the assumption that ∇ being J−parallel relative to a

torsion-free linear connection ∇.

§2 Conjugate connections

In the following let (M,J, g,G) be an almost anti-Hermitian manifold and ∇ be a linear

connection. We define respectively the conjugate connections of ∇ relative to g and G as the
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linear connections determined by the equations:

Zg (X,Y ) = g (∇ZX,Y ) + g (X,∇∗
ZY )

and

ZG (X,Y ) = G (∇ZX,Y ) +G
(
X,∇†

ZY
)

for all vector fields X,Y, Z on M . We are calling these connections g−conjugate connection

and G−conjugate connection, respectively. Conjugate connections with respect to the metric

were studied in [1,9,10]. Note that both g−conjugate connection and G−conjugate connection

of a linear connection are involutive: (∇∗)
∗
= ∇ and

(
∇†)† = ∇. Conjugate connections are a

natural generalization of Levi-Civita connections from Riemannian manifolds theory. Especially,

∇∗ (or ∇†) coincides with ∇ if and only if ∇ is the Levi-Civita connection of g (or G).

Given a linear connection ∇ of (M,J, g,G), the J−conjugate connection of ∇, denoted ∇J ,

is a new linear connection given by

∇J(X,Y ) = J−1(∇XJY )

for any vector fields X and Y on M [12]. Conjugate connections with respect to J were studied

in [2, 4, 12,13].

Through relationships among the g−conjugate connection ∇∗, G−conjugate connection ∇†

and J−conjugate connection ∇J of ∇, we give the following theorem which is analogue to the

known result given by Fei and Zhang [2] for Hermitian setting. Also, in our setting, we present

detailed proof by using different arguments.

Theorem 1. Let (M,J, g,G) be an almost anti-Hermitian manifold. ∇∗, ∇† and ∇J denote

respectively g−conjugation, G−conjugation and J−conjugation of a linear connection ∇. Then

(id, ∗, †, J) acts as the 4-element Klein group on the space of linear connections:

i)(∇∗)
∗

=
(
∇†)† = (

∇J
)J

= ∇,

ii)
(
∇†)J =

(
∇J

)†
= ∇∗,

iii)(∇∗)
J

=
(
∇J

)∗
= ∇†,

iv)(∇∗)
†

=
(
∇†)∗ = ∇J .

Proof. i) The statement is a direct consequence of definitions of conjugate connections.

ii) We compute

G
((

∇†)J
Z
X,Y

)
= G

(
J−1∇†

Z (JX) , Y
)

= G
(
∇†

Z (JX) , J−1Y
)

= ZG
(
JX, J−1Y

)
−G(JX,∇Z

(
J−1Y

)
)

= Zg
(
J2X, J−1Y

)
− g(J2X,∇Z

(
J−1Y

)
)

= −Zg
(
X,J−1Y

)
+ g(X,∇Z

(
J−1Y

)
)

= −g
(
∇∗

ZX, J−1Y
)
= G(∇∗

ZX,Y )
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which gives
(
∇†)J = ∇∗. Similarly

ZG (X,Y ) = G
(
∇J

ZX,Y
)
+G

(
X,

(
∇J

)†
Z
Y
)
,

Zg (JX, Y ) = g
(
JJ−1∇Z (JX) , Y

)
+ g

(
JX,

(
∇J

)†
Z
Y
)
,

Zg (JX, Y ) = g (∇Z (JX) , Y ) + g
(
JX,

(
∇J

)†
Z
Y
)
,

g(JX,∇∗
ZY ) = g

(
JX,

(
∇J

)†
Z
Y
)

which establishes
(
∇J

)†
= ∇∗. Hence, we get

(
∇†)J =

(
∇J

)†
= ∇.

iii) On applying the J−conjugation to both sides of ii), ∇† = (∇∗
)J and also,

g
(
JX,

(
∇J

)∗
Z
Y
)

= Zg (JX, Y )− g
(
∇J

Z (JX) , Y
)

= ZG (X,Y )−G
(
J−1∇J

Z (JX) , Y
)

= ZG (X,Y )−G
(
J−1J−1∇Z

(
J2X

)
, Y

)
= ZG (X,Y )−G (∇ZX,Y )

= G
(
X,∇†

ZY
)
= g

(
JX,∇†

ZY
)
.

These show that ∇† = (∇∗
)J =

(
∇J

)∗
.

iv) On applying the G−conjugation to both sides of ii), ∇J = (∇∗)
†
and on applying the

g−conjugation to both sides of iii), ∇J =
(
∇†)∗. Thus, the proof completes.

Recall that the curvature tensor field R of a linear connection ∇ is the tensor field, for all

vector fields X,Y, Z,

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

If (M, g) is a (pseudo-)Riemannian manifold, it is sometimes convenient to view the curvature

tensor field as a (0, 4)−tensor field by:

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

called the (0, 4)−curvature tensor field. If we consider the relationship among the (0, 4)−curvature

tensor fields of ∇, ∇∗ and ∇J , we obtain the following.

Theorem 2. Let (M,J, g,G) be an almost anti-Hermitian manifold. ∇∗ and ∇J denote re-

spectively g−conjugation and J−conjugation of a linear connection ∇ on M . The relationship

among the (0, 4)−curvature tensor fields R,R∗ and RJ of ∇, ∇∗ and ∇J is as follow:

R (X,Y, JZ,W ) = −R∗ (X,Y,W, JZ) = RJ (X,Y, Z, JW )

for all vector fields X,Y, Z,W on M .

Proof. Since the relation is linear in the arguments X, Y,W and Z, it suffices to prove it only on

a basis. Therefore we assume X,Y,W,Z ∈ { ∂
∂x1 , ...,

∂
∂x2n } and take computational advantage

of the following vanishing Lie brackets

[X,Y ] = [Y,W ] = [W,Z] = 0.
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Then we get

XYG (Z,W ) = X (Y g (JZ,W ))

= X(g (∇Y JZ,W )) +X (g (JZ,∇∗
Y W ))

= g (∇X∇Y JZ,W ) + g (∇Y JZ,∇∗
XW )

+g (∇XJZ,∇∗
Y W ) + g

(
JZ,∇∗

X∇∗
Y W

)
and by alternation

Y XG (Z,W ) = g (∇Y ∇XJZ,W ) + g (∇XJZ,∇∗
Y W )

+g (∇Y JZ,∇∗
XW ) + g

(
JZ,∇∗

Y ∇
∗
XW

)
.

Because of the above relations, we find

0 = [X,Y ]G (Z,W ) = XYG (Z,W )− Y XG (Z,W )

0 = g (∇X∇Y JZ −∇Y ∇XJZ,W ) + g
(
JZ,∇∗

X∇∗
Y W −∇∗

Y ∇
∗
XW

)
0 = R (X,Y, JZ,W ) +R∗ (X,Y,W, JZ)

and similarly

0 = [X,Y ]G (Z,W ) = XYG (Z,W )− Y XG (Z,W )

0 = G
(
J−1∇XJ(J−1∇Y JZ)− J−1∇Y J(J

−1∇XJZ),W
)

+G
(
Z,∇∗

X∇∗
Y W −∇∗

Y ∇
∗
XW

)
0 = G

(
∇J

X∇J

Y Z −∇J
Y ∇

J

XZ,W
)

+G
(
Z,∇∗

X∇∗
Y W −∇∗

Y ∇
∗
XW

)
0 = g

(
∇J

X∇J

Y Z −∇J
Y ∇

J

XZ, JW
)

+g
(
∇∗

X∇∗
Y W −∇∗

Y ∇
∗
XW,JZ

)
0 = RJ (X,Y, Z, JW ) +R∗ (X,Y,W, JZ) .

Hence, it follows that R (X,Y, JZ,W ) = −R∗ (X,Y,W, JZ ) = RJ(X,Y, Z, JW ).

§3 Codazzi Pairs

Let ∇ be an arbitrary linear connection on a pseudo-Riemannian manifold (M, g). Given

the pair (∇, g), we construct respectively the (0, 3)−tensor fields F and F ∗ by

F (X,Y, Z) := (∇Zg)(X,Y )

and

F ∗(X,Y, Z) := (∇∗
Zg)(X,Y ),

where ∇∗ is g−conjugation of ∇. The tensor field F (or F ∗) is sometimes referred to as the

cubic form associated to the pair (∇, g) (or (∇∗, g)). These tensors are related via

F (X,Y, Z) = g(X, (∇∗ −∇)ZY )

so that

F ∗(X,Y, Z) := (∇∗
Zg)(X,Y ) = −F (X,Y, Z).
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Therefore F (X,Y, Z) = F ∗(X,Y, Z) = 0 if and only if∇∗ = ∇, that is, ∇ is g−self-conjugate [2].

For an almost complex structure J , a pseudo-Riemannian metric g and a symmetric bilinear

form ρ on a manifoldM , we call (∇, J) and (∇, ρ), respectively, a Codazzi pair, if their covariant

derivative (∇J) and (∇ρ), respectively, is (totally) symmetric in X,Y, Z [12]:

(∇ZJ)X = (∇XJ)Z, (∇Zρ) (X,Y ) = (∇Xρ) (Z, Y ) .

3.1 The Codazzi pair (∇, G)

Let ∇ be a linear connection ∇ on (M,J, g,G). Next we shall consider the Codazzi pair

(∇, G). In here, the (0, 3)−tensor field F is defined by

F (X,Y, Z) := (∇ZG) (X, Y ) .

Now we shall state the following proposition without proof, because its proof is easily ob-

tained from some relations well-known concerning with the cubic form C and Codazzi condition.

We omit standard calculations.

Proposition 1. (See also [12]) Let ∇ be a linear connection on (M,J, g,G). Then the following

statements are equivalent:

i) (∇, G) is a Codazzi pair

ii) (∇†, G) is a Codazzi pair,

iii) F † (X,Y, Z) =
(
∇†

ZG
)
(X,Y ) is totally symmetric,

iv) T∇ = T∇†
.

Proposition 2. Let ∇ be a linear connection on (M,J, g,G). If (∇, G) is a Codazzi pair, then

the following statements hold:

i) F (X,Y, Z) = (∇ZG) (X,Y ) is totally symmetric,

ii) (∇∗
JZG) (X,Y ) = (∇∗

JXG) (Z, Y ) ,

iii) T∇ = T∇∗
if and only if (∇∗, J) is a Codazzi pair,

iv) T∇ = T (∇∗)J ,

where ∇∗ is the g−conjugation of ∇ and (∇∗)
J
is the J−conjugation of ∇∗.

Proof. i) Due to symmetry of G, F (X,Y, Z) = (∇ZG) (X,Y ) = (∇ZG) (Y,X) = F (Y,X,Z).

Also for (∇, G) being a Codazzi pair, F (X,Y, Z) = (∇ZG) (X,Y ) = F (X,Y, Z) = (∇XG) (Z, Y )

= F (Z, Y,X), that is, F is totally symmetric in all of its indices.

ii) By virtue of the purity of g relative to J , we yield

(∇ZG) (X,Y ) = (∇XG) (Z, Y )

Zg (JX, Y )− g (J∇ZX,Y )− g (JX,∇ZY )

= Xg (JZ, Y )− g (J∇XZ, Y )− g (JZ,∇XY )

g (∇∗
Z (JX) , Y )− g (J∇ZX,Y ) = g (∇∗

X (JZ) , Y )− g (J∇XZ, Y )

g (∇∗
Z (JX) , Y )− Zg (X, JY ) + g (X,∇∗

Z (JY ))

= g (∇∗
X (JZ) , Y )−Xg (Z, JY ) + g (Z,∇∗

X (JY ))
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Zg (X, JY )− g (∇∗
Z (JX) , Y )− g (X,∇∗

Z (JY ))

= Xg (Z, JY )− g (∇∗
X (JZ) , Y )− g (Z,∇∗

X (JY )) .

Putting X = JX, Y = JY and Z = JZ in the last relation, we find

JZg (JX, J(JY ))− g (∇∗
JZ (J(JX)) , JY )− g (JX,∇∗

JZ (J(JY )))

= JXg (JZ, J(JY ))− g (∇∗
JX (J(JZ)) , JY )− g (JZ,∇∗

JX (J(JY )))

JZg (JX, Y )− g (∇∗
JZX, JY )− g (JX,∇∗

JZY )

= JXg (JZ, Y )− g (∇∗
JXZ, JY )− g (JZ,∇∗

JXY )

JZG (X,Y )−G (∇∗
JZX,Y )−G (X,∇∗

JZY )

= JXG (Z, Y )−G (∇∗
JXZ, Y )−G (Z,∇∗

JXY )

(∇∗
JZG) (X,Y ) = (∇∗

JXG) (Z, Y ) .

iii) Let T∇ and T∇∗
be respectively the torsion tensors of ∇ and its g−conjugation ∇∗. We

calculate

(∇ZG) (X,Y ) = (∇XG) (Z, Y )

Zg (JX, Y )− g (J∇ZX,Y )− g (JX,∇ZY )

= Xg (JZ, Y )− g (J∇XZ, Y )− g (JZ,∇XY )

g (∇∗
Z (JX) , Y )− g (J∇ZX,Y )

= g (∇∗
X (JZ) , Y )− g (J∇XZ, Y )

G
(
J−1∇∗

Z (JX) , Y
)
−G (∇ZX,Y )

= G
(
J−1∇∗

X (JZ) , Y
)
−G (∇XZ, Y )

G
(
J−1 {∇∗

Z (JX)−∇∗
X (JZ)} , Y

)
= G (∇ZX −∇XZ, Y ) (3.1)

from which we get

J−1 {∇∗
Z (JX)−∇∗

X (JZ)} = ∇ZX −∇XZ

J−1 {(∇∗
ZJ)X + J∇∗

ZX − (∇∗
XJ)Z − J∇∗

XZ} = ∇ZX −∇XZ

J−1 {(∇∗
ZJ)X − (∇∗

XJ)Z}+ (∇∗
ZX −∇∗

XZ − [Z,X])

= ∇ZX −∇XZ − [Z,X]

J−1 {(∇∗
ZJ)X − (∇∗

XJ)Z}+ T∇∗
(Z,X) = T∇(Z,X).

This means that T∇∗
(Z,X) = T∇(Z,X) if and only if (∇∗

ZJ)X = (∇∗
XJ)Z.

iv) From (3.1), we can write

G
(
(∇∗)

J
ZX − (∇∗)

J
XZ, Y

)
= G (∇ZX −∇XZ, Y )

G(T (∇∗)J (Z,X), Y ) = G(T∇(Z,X), Y )

T (∇∗)J (Z,X) = T∇(Z,X).
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As a corollary to Proposition 1 and 2, we obtain the following conclusion.

Corollary 1. Let (M,J, g,G) be an almost anti-Hermitian manifold. ∇∗ and ∇† denote re-

spectively g−conjugation and G−conjugation of a linear connection ∇ on M . If (∇, G) and

(∇∗, J) are Codazzi pairs, then T∇ = T∇∗
= T∇†

.

3.2 The Codazzi pair (∇, J)

Proposition 3. Let ∇ be a linear connection on (M,J, g,G). ∇† denote G−conjugation of ∇
on M . Under the assumption that (∇, G) being a Codazzi pair, (∇†, J) is a Codazzi pair if and

only if (∇, g) is so.
Proof. Using the definition of G−conjugation and T∇ = T∇†

, we find

G
(
(∇†

ZJ)X − (∇†
XJ)Z, Y

)
= G(∇†

ZJX − J∇†
ZX,Y )−G(∇†

XJZ − J∇†
XZ, Y )

= ZG (JX, Y )−G (JX,∇ZY )−G
(
J∇†

ZX,Y
)
−XG (JZ, Y )

+G (JZ,∇XY ) +G(J∇†
XZ, Y )

= ZG (JX, Y )−G (JX,∇ZY )−XG (JZ, Y ) +G (JZ,∇XY )

+G
(
J(∇†

XZ −∇†
ZX − [Z,X]) + J [Z,X] , Y

)
= ZG (JX, Y )−G (JX,∇ZY )−XG (JZ, Y ) +G (JZ,∇XY )

+G (J(∇XZ −∇ZX − [Z,X]) + J [Z,X] , Y )

= −Zg (X,Y ) + g (X,∇ZY ) +Xg (Z, Y )

−g (Z,∇XY ) + g (∇ZX,Y )− g(∇XZ, Y )

= (∇Zg)(X,Y )− (∇Xg)(Z, Y ).

Consider the set R(j) =
{
a0 + a1j : j

2 = −1; a0, a1 ∈ R
}
, which is the algebra of complex

numbers over the field of real numbers R. The canonical bases of this algebra has the form {1, j}.
An 2k-dimensional manifold M2k with an integrable complex structure J is a real realization

of the holomorphic manifold Mk(R(j)) over the algebra R(j) with dimension k. Let t∗ be a

complex tensor field on Mk(R(j)). The real model of such a tensor field is a tensor field on

M2k of the same type and also is pure relative to the complex structure J (for pure tensor

fields, see [11]). If J is a complex structure on M2k and ΦJ t = 0, then the complex tensor field

t∗ on Mk(R(j)) is said to be holomorphic [6, 11]. Therefore, we can say that the real model

of a holomorphic tensor field t∗ on Mk(R(j)) is the same type pure tensor field on M2k such

that ΦJ t = 0. Now we consider the Φ−operator (or Tachibana operator [15]) applied to the

anti-Hermitian metric g:

(ΦJg)(X,Y, Z) = (LJXg − LX(g ◦ J))(Y, Z). (3.2)

Because of the fact that the twin metric G on an almost anti-Hermitian manifold (M,J, g) is

an anti-Hermitian metric, we can apply the Φ−operator to the twin metric G [11]:

(ΦJG)(X,Y, Z) = (LJXG− LX(G ◦ J))(Y, Z) (3.3)

= (ΦJg)(X, JY, Z) + g(NJ (X,Y ), Z),
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where NJ is the Nijenhuis tensor field defined by

NJ(X,Y ) = [JX, JY ]− J [JX, Y ]− J [X,JY ]− [X,Y ] (3.4)

for any vector fields X,Y on M .
Proposition 4. Let ∇ be a torsion-free linear connection on (M,J, g,G). If (∇, J) is a Codazzi

pair, then

(ΦJG)(X,Y, Z) = (ΦJg)(X,JY, Z) = (∇JXG) (Y, Z)− (∇Xg) (JY, JZ) .

Proof. Using ∇XZ −∇ZX = [Z,X], from (3.2) we get

(ΦJg) (X, JY, Z) = (LJXg − (LXgoJ) (JY, Z)

= (LJXg) (JY, Z)− (LXgoJ) (JY, Z)

= JXg (JY, Z)− g (LJXJY, Z)− g (JY, LJXZ)−XgoJ (JY, Z)

+goJ (LXJY, Z) + goJ (JY, LXZ)

= JXg (JY, Z)− g ([JX, JY ] , Z)− g (JY, [JX,Z])−XgoJ (JY, Z)

+goJ ([X, JY ] , Z) + goJ (JY, [X,Z])

= JXg (JY, Z)− g (∇JXJY −∇JY JX,Z)− g (JY,∇JXZ −∇ZJX)

−XgoJ (JY, Z) + goJ (∇XJY −∇JY X,Z) + goJ (JY,∇XZ −∇ZX)

= JXg (JY, Z)− g ((∇JXJ)Y + J∇JXY − (∇JY J)X − J∇JY X,Z)

−g (JY,∇JXZ − (∇ZJ)X − J∇ZX)−Xg (JY, JZ)

+g ((∇XJ)Y + J∇XY −∇JY X, JZ) + g (JY, J∇XZ − J∇ZX)

= JXg (JY, Z)− g ((∇JXJ)Y,Z)− g (J∇JXY, Z)

+g ((∇JY J)X,Z) + g (J∇JY X,Z)− g (JY,∇JXZ) + g (JY, (∇ZJ)X)

+g (JY, J∇ZX)−Xg (JY, JZ) + g ((∇XJ)Y, JZ) + g (J∇XY, JZ)

−g (∇JY X,JZ) + g (JY, J∇XZ)− g (JY, J∇ZX) .

By virtue of the purity of g relative to J , (∇ZJ)X = (∇XJ)Z, the last relation reduces to

= JXg (JY, Z)− g ((∇JXJ)Y,Z)− g (J∇JXY, Z) + g ((∇JY J)X,Z)

+g (J∇JY X,Z)− g (JY,∇JXZ) + g (JY, (∇ZJ)X)

+g (JY, J∇ZX)−Xg (JY, JZ) + g ((∇XJ)Y, JZ)

+g (J∇XY, JZ)− g (J∇JY X,Z) + g (JY, J∇XZ)− g (JY, J∇ZX)

= JXg (JY, Z)− g (J∇JXY,Z)− g (JY,∇JXZ) + g (JY, (∇ZJ)X)

−Xg (JY, JZ) + g ((∇XJ)Y, JZ) + g (J∇XY, JZ) + g (JY, J∇XZ)

= JXG (Y, Z)−G (∇JXY, Z)−G (Y,∇JXZ)−Xg (JY, JZ)

+g (∇XJY, JZ) + g (JY,∇ZJX)

= (∇JXG) (Y, Z)− (∇Xg) (JY, JZ) . (3.5)

Relative to the torsion-free connection ∇, the Nijenhuis tensor has the following form:

NJ (X,Y ) = −J{(∇JY J)JX − (∇JXJ)JY }+ J{(∇Y J)X − (∇XJ)Y }.
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From here, it is easy to show NJ (X,Y ) = 0 because (∇, J) is a Codazzi pair. Hence, taking

account of (3.3) and (3.5) we have

(ΦJG) (X,Y, Z) = (ΦJg) (X, JY, Z) = (∇JXG) (Y, Z)− (∇Xg) (JY, JZ) .

As is well known, the anti-Kähler condition (∇gJ = 0) is equivalent to C-holomorphicity

(analyticity) of the anti-Hermitian metric g, that is, ΦJg = 0. If the anti-Hermitian metric g is

C-holomorphic, then the triple (M,J, g) is an anti-Kähler manifold [5].

Theorem 3. Let ∇ be a torsion-free linear connection on (M,J, g,G). Under the assumption

that (∇, J) being a Codazzi pair, (M,J, g,G) is an anti-Kähler manifold if and only if the

following condition is fulfilled:

(∇JXG) (Y,Z) = (∇Xg) (JY, JZ) .

Proof. The statement is a direct consequence of Proposition 4.

§4 J−parallel Linear Connections

Given arbitrary linear connection ∇ on an almost complex manifold (M,J), if the following

condition is satisfied:

∇XJY = J∇XY

for any vector fields X,Y on M , then ∇ is called a J−parallel linear connection on M .

Proposition 5. Let ∇ be a linear connection on (M,J, g,G). ∇∗ and ∇† denote respectively

g−conjugation and G−conjugation of ∇ on M . Then

i) ∇ is J−parallel if and only if ∇∗ is so.

ii) ∇ is J−parallel if and only if ∇† is so.

Proof. i) Using the definition of g−conjugation and the purity of g relative to J , we have

G (∇∗
XJY − J∇∗

XY, Z) = g (∇∗
XJY, JZ)− g(J∇∗

XY, JZ)

= −Xg (Y, Z)− g (JY,∇XJZ) +Xg (Y,Z)− g (Y,∇XZ)

= −g (JY,∇X JZ) + g (JY, J∇XZ) = −G (Y,∇XJZ) +G (Y, J∇XZ) .

Hence, ∇∗
XJY = J∇∗

XY if and only if ∇X JZ = J∇X Z.

ii) Similarly, we get

G
(
∇†

XJY − J∇†
XY, Z

)
= G

(
∇†

XJY, Z
)
−G(J∇†

XY,Z)

= XG (JY, Z)−G (JY,∇XZ)−XG (Y, JZ) +G (Y,∇X JZ)

= G (Y,∇XJZ)−G (JY,∇XZ) = G (∇X JZ − J∇XZ, Y )

which gives the result.

Proposition 6. Let ∇ be a J−parallel linear connection on (M,J, g,G). ∇∗ and ∇† denote

respectively g−conjugation and G−conjugation of ∇ on M . The following statements hold:

i) ∇† coincides with ∇∗,

ii) (∇, G) is a Codazzi pair if and only if (∇, g) is so.
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Proof. i) Because ∇ is J-parallel, ∇J = 0, ∇ = ∇∗. It follows from Theorem 1 that ∇† = ∇∗.

ii) Using the purity of g relative to J , we get

(∇ZG) (X,Y ) = (∇XG) (Z, Y )

Zg (JX, Y )− g (J∇ZX,Y )− g (JX,∇ZY ) = Xg (JZ, Y )− g (J∇XZ, Y )− g (JZ,∇XY )

Zg (X, JY )− g (∇ZX, JY )− g (X,J∇ZY ) = Xg (Z, JY )− g (∇XZ, JY )− g (Z, J∇XY )

Zg (X, JY )− g (∇ZX, JY )− g (X,∇ZJY ) = Xg (Z, JY )− g (∇XZ, JY )− g (Z,∇XJY )

(∇Zg) (X, JY ) = (∇Xg) (Z, JY ) .

For the moment, we consider a torsion-free linear connection ∇ on a pseudo-Riemannian

manifold (M, g). In the case, if (∇, g) is a Codazzi pair which characterizes what is known to

information geometers as statistical structures, then the manifold M together with a statistical

structure (∇, g) is called a statistical manifold. The notion of statistical manifold was origi-

nally introduced by Lauritzen [7]. Statistical manifolds are widely studied in affine differential

geometry [7, 9] and plays a central role in information geometry.

Corollary 2. Let ∇ be a J−parallel torsion-free linear connection on (M,J, g,G). ∇∗ denote

the g−conjugation of ∇ on M . (∇, G) is a statistical structure if and only if (∇∗, G) is so.

Proof. The result immediately follows from Proposition 2, using the condition of ∇ being

J−parallel.
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