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Notes concerning Codazzi pairs

on almost anti-Hermitian manifolds

Aydin Gezer Hasan Cakicioglu

Abstract. Let V be a linear connection on a 2n-dimensional almost anti-Hermitian manifold
M equipped with an almost complex structure J, a pseudo-Riemannian metric g and the twin
metric G = goJ. In this paper, we first introduce three types of conjugate connections of linear
connections relative to g, G and J. We obtain a simple relation among curvature tensors of
these conjugate connections. To clarify the relations of these conjugate connections, we prove a
result stating that conjugations along with an identity operation together act as a Klein group,
which is analogue to the known result for the Hermitian case in [2]. Secondly, we give some
results exhibiting occurrences of Codazzi pairs which generalize parallelism relative to V. Under
the assumption that (V, J) being a Codazzi pair, we derive a necessary and sufficient condition
the almost anti-Hermitian manifold (M, J, g, G) is an anti-K&hler relative to a torsion-free linear
connection V. Finally, we investigate statistical structures on M under V (V is a J—parallel

torsion-free connection).

81 Introduction

A pseudo-Riemannian metric g on a smooth 2n—manifold M is called neutral if it has
signature (n,n). The pair (M,g) is called a pseudo-Riemannian manifold. An anti-K&hler
structure on a manifold M consists of an almost complex structure J and a neutral metric g
satisfying the followings:

e algebraic conditions

(a) J is an almost complex structure: J? = —id.

(b) The neutral metric g is anti-Hermittian relative to J:
9(JX,JY) = —g(X,Y)

or equivalently
9(JX,)Y)=g(X,JY),VX,Y € TM. (1.1)
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e analytic condition

(¢) J is parallel relative to the Levi-Civita connection V9 (V9J = 0). This condition
is equivalent to the C-holomorphicity (analyticity) of the anti-Hermitian metric g, that is,
® ;9 =0, where @ is the Tachibana operator [5].

The C-holomorphicity (analyticity) of the anti-Hermitian metric g on anti-Kéhler mani-
folds means that there exists a one-to-one correspondence between anti-Kéhler manifolds and
complex Riemannian manifolds with a holomorphic metric. This fact gives us some topolog-
ical obstructions to an anti-Kéhler manifold, for instance, all its odd Chern numbers vanish
because its holomorphic metric gives us a complex isomorphism between the complex tangent
bundle and its dual; and a compact simply connected Kéahler manifold cannot be anti-Kahler
because it does not admit a holomorphic metric. Hence, an anti-Kéhler manifold is slightly
a different family of almost complex manifolds. This kind of manifolds have been also stud-
ied under the names: almost complex manifolds with Norden (or B-) metric, K&hler-Norden
manifolds [3,8,14].

Obviously, by algebraic conditions, the triple (M, J, g) is an almost anti-Hermitian manifold.
Given the anti-Hermitian structure (J,g) on a manifold M, we can immediately recover the
other anti-Hermitian metric, called the twin metric, by the formula:

GX,Y)=(go J)(X,Y)=9g(JX,Y).
Thus, the triple (M, J,G) is another almost anti-Hermitian manifold. Note that the condition
(1.1) also refers to the purity of g relative to J. From now on, by manifold we understand a
smooth 2n—manifold and will use the notations J, g and G for the almost complex structure,
the pseudo-Riemannian metric and the twin metric, respectively. In addition, we shall assign
the quadruple (M, J, g, G) as almost anti-Hermitian manifolds.

Our paper aims to study Codazzi pairs on an almost anti-Hermitian manifold (M, J, g, G).
The analogous case with almost Hermitian case has been worked out earlier by Fei and Zhang
[2]. The structure of the paper is as follows. In Sect. 2, we start by the g—conjugation,
G'—conjugation and J—conjugation of arbitrary linear connections. Then we state the relations
among the (0,4)-curvature tensors of these conjugate connections and also show that the set
which has g—conjugation, G—conjugation, J—conjugation and an identity operation is a Klein
group on the space of linear connections. In Sect. 3, we obtain some remarkable results under
the assumption that (V, G) or (V, J) being a Codazzi pair, where V is a linear connection. One
of them is a necessary and sufficient condition under which the almost anti-Hermitian manifold
(M, J,g,G) is an anti-Kéhler relative to a torsion-free linear connection V. Sect. 4 closes our
paper with statistical structures under the assumption that V being J—parallel relative to a

torsion-free linear connection V.

§2 Conjugate connections

In the following let (M, J, g, G) be an almost anti-Hermitian manifold and V be a linear
connection. We define respectively the conjugate connections of V relative to g and G as the
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linear connections determined by the equations:
Z9(X,Y) =g(VzX,Y)+g(X,V3Y)

and

ZG(X,Y) =G (V4X,Y)+ G (X, v}y)
for all vector fields X,Y,Z on M. We are calling these connections g—conjugate connection
and G—conjugate connection, respectively. Conjugate connections with respect to the metric
were studied in [1,9,10]. Note that both g—conjugate connection and G—conjugate connection
of a linear connection are involutive: (V*)* = V and (VT)T = V. Conjugate connections are a
natural generalization of Levi-Civita connections from Riemannian manifolds theory. Especially,
V* (or V1) coincides with V if and only if V is the Levi-Civita connection of g (or G).

Given a linear connection V of (M, J, g, G), the J—conjugate connection of V, denoted V7,

is a new linear connection given by
V/I(X,Y)=J Y VxJY)
for any vector fields X and Y on M [12]. Conjugate connections with respect to J were studied
in [2,4,12,13].
Through relationships among the g—conjugate connection V*, G—conjugate connection V1
and .J—conjugate connection V7 of V, we give the following theorem which is analogue to the

known result given by Fei and Zhang [2] for Hermitian setting. Also, in our setting, we present

detailed proof by using different arguments.

Theorem 1. Let (M, J,g,G) be an almost anti-Hermitian manifold. V*, VvVt and V7 denote
respectively g— conjugation, G—conjugation and J—conjugation of a linear connection V. Then

(id, %, 1, J) acts as the 4-element Klein group on the space of linear connections:

vy = (v =) =V,
ay(vh? = (v)'=v,
i) (V) = (V7)) =V,
)V = (V) =V’

Proof. i) The statement is a direct consequence of definitions of conjugate connections.
it) We compute

G((vxY) = G(IvLIX),Y)
= G(VLx), )
= ZG(JX,J'Y) - G(JX,Vz (J'Y))
= Zg(J’X, J7'Y) —g(J?X,Vz (J7'Y))
= —Zg(X,J7Y) +g(X,Vz(J7'Y))
= —g(VyX,J7Y) =G(VyX.,Y)



226 Appl. Math. J. Chinese Univ. Vol. 38, No. 2

which gives (VT)J = V*. Similarly
ZG(X,)Y) = G(VIX,Y)+G (X, (VJ)TZY) ,

Zg(JX,Y) = g(JJ'V, (JX),Y)+9(JX7 (VJ)LY)7

ZgUUXY) = g(Vz(JX).Y)+g(JX,(V)),Y),

gIX.V5Y) = g(JX,(V)),Y)
which establishes (VJ)T = V*. Hence, we get (VT)J = (V‘])T =V.
i) On applying the J—conjugation to both sides of ii), V1 = (V*)7 and also,
g (JX, (VJ)*ZY) = Zg(JX,Y)—g(V}(JX),Y)
= ZG(X,Y)-G(J'VL(JX),Y)
= ZG(X,)Y)-G((J I 'Vz (J?X),Y)
= ZG(X,Y)-G(VzX,Y)
- G (X,VTZY) — g (JX, V*ZY) .
These show that Vi = (V") = (VJ)*.
iv) On applying the G—conjugation to both sides of ii), V/ = (V*)T and on applying the
g—conjugation to both sides of iii), V/ = (VT) Thus, the proof completes. O

Recall that the curvature tensor field R of a linear connection V is the tensor field, for all
vector fields X,Y, Z,

R(X,Y)Z =VxVyZ —VyVxZ —VxyZ.
If (M, g) is a (pseudo-)Riemannian manifold, it is sometimes convenient to view the curvature
tensor field as a (0, 4)—tensor field by:
R(X,Y,ZW)=g(R(X,Y)Z,W)
called the (0,4)—curvature tensor field. If we consider the relationship among the (0, 4)—curvature
tensor fields of V, V* and V”, we obtain the following.

Theorem 2. Let (M,J,g,G) be an almost anti-Hermitian manifold. V* and V7 denote re-
spectively g—conjugation and J—conjugation of a linear connection V on M. The relationship
among the (0,4)— curvature tensor fields R, R* and R’ of V, V* and V"’ is as follow:

R(X,Y,JZ,W)=—-R*(X,Y,W,JZ) = R/ (X,Y, Z,JW)
for all vector fields X, Y, Z, W on M.

Proof. Since the relation is linear in the arguments X, Y W and Z, it suffices to prove it only on

a basis. Therefore we assume X, Y, W, Z € {%,. } and take computational advantage

* 330271

of the following vanishing Lie brackets

X, Y]=[Y,W]=[W,Z]=0.
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Then we get
XYG(Z,W) = XYg(JZ,W))
= X(g(VyJZW))+ X (g(JZ,VyW))
= g(VxVyJZ,W)+g(VyJZ,VxW)
+9(VxJZ,VyW)+ g (JZ, V5 VW)
and by alternation
YXG(ZW) = g(VyVxJZW)+g(VxJZ, VW)
+9 (VyJZ,NxW) + g (JZ, V3V W).

Because of the above relations, we find

0 = [X,Y]G(ZW)=XYG(Z,W)-YXG(Z,W)
0 = g(VxVyJZ—VyVyxJZ,W)+g(JZ,ViVyW = Vi Vi W)
0 = R(X,Y,JZ,W)+R*(X,Y,W,JZ)

and similarly
0 = [X,Y]G(ZW)=XYG(Z,W)-YXG(Z,W)
0 = G 'VxJ(J'VyJZ)—J 'y J(J'VxJZ), W)
+G (2, Vi VyW — V3 VW)
0 = G(VAVyZ-VIViZW)
+G (2, V5 VyW — V3V W)
0 = g(VEVyZ-VIViZIW)
+g (VX VyW = V3 VW, JZ)
0 = RIX,Y,Z,JW)+ R (X,Y,W,JZ).
Hence, it follows that R(X,Y,JZ, W)= —R*(X,Y,W,JZ )= R/ (X,Y, Z, JW). O

83 Codazzi Pairs

Let V be an arbitrary linear connection on a pseudo-Riemannian manifold (M, g). Given

the pair (V, g), we construct respectively the (0,3)—tensor fields F' and F* by

F(X,Y,Z) = (Vz9)(X,Y)
and

FYX,Y, Z) = (Vz9)(X,Y),
where V* is g—conjugation of V. The tensor field F' (or F*) is sometimes referred to as the
cubic form associated to the pair (V,g) (or (V*,g)). These tensors are related via

F(X,Y,Z) = g(X, (V" = V)zY)
so that
FY(X,Y,Z) = (V39)(X,Y) = —F(X,Y, Z).
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Therefore F(X,Y, Z) = F*(X,Y,Z) = 0if and only if V* = V, that is, V is g—self-conjugate [2].
For an almost complex structure J, a pseudo-Riemannian metric g and a symmetric bilinear
form p on a manifold M, we call (V, J) and (V, p), respectively, a Codazzi pair, if their covariant
derivative (VJ) and (Vp), respectively, is (totally) symmetric in X,Y, Z [12]:
(VzJ) X = (VxJ) Z,(Vzp) (X,Y) = (Vxp) (Z2,Y).

3.1 The Codazzi pair (V,G)

Let V be a linear connection V on (M, J, g,G). Next we shall consider the Codazzi pair
(V,G). In here, the (0,3)—tensor field F' is defined by
F(X,Y,Z):=(VzG) (X, Y).
Now we shall state the following proposition without proof, because its proof is easily ob-
tained from some relations well-known concerning with the cubic form C' and Codazzi condition.

We omit standard calculations.

Proposition 1. (See also [12]) Let V be a linear connection on (M, J, g,G). Then the following
statements are equivalent:

i) (V,G) is a Codazzi pair

ii) (V1,G) is a Codazzi pair,

iii) FT1(X,Y,Z) = (VTZG) (X,Y) is totally symmetric,

) TV =TV".
Proposition 2. Let V be a linear connection on (M, J, g,G). If (V,G) is a Codazzi pair, then
the following statements hold:

i) F(X,Y,Z) = (VzG)(X,Y) is totally symmetric,

i) (V3,G)(X)Y) = (V)xG)(Z,Y),

iii) TV =TV if and only if (V*,J) is a Codazzi pair,

) TV =TV,

where V* is the g—conjugation of V and (V*)J is the J—conjugation of V*.
Proof. i) Due to symmetry of G, F(X,Y,Z) = (VzG)(X,Y) = (VzG) (Y, X) = F(Y, X, Z).
Also for (V, G) being a Codazzi pair, F'(X,Y, Z) = (VzG) (X,Y) =F(X,Y,Z) = (VxG) (Z,Y)
= F(Z,Y,X), that is, F is totally symmetric in all of its indices.

i1) By virtue of the purity of g relative to J, we yield

(VzG) (X,Y) = (VxG)(Z, Y)
29(JX,Y)—g(JVzX,Y)—g(JX,VzY)
9g(Vz (JX),Y)—g(JVzXY)=9g(Vx (JZ), Y) —g(JVxZ)Y)
9(Vz (JX),Y) = Zg(X,JY) +g(X,Vy (JY))
= 9(Vx(J2),Y) - Xg(Z,JY)+g(Z, Vx (JY))
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Z9(X,JY) =g (Vz (JX),Y) =g (X, V3 (JY))
= Xg(2,JY)=g(Vx (JZ2), Y)=g(Z, VX (JY)).
Putting X = JX, Y =JY and Z = JZ in the last relation, we find

J2g9(JX, J(JY)) =g (V7 (J(JX)),JY) = g(JX, V7 (J(JY)))
= JXg(JZ,J(JY)) =g (Vix (J(J2)),JY) =g (JZ,Vx (J(JY)))
JZg(JX,Y)—g(Vi;X,JY)—g(JX,V5,Y)
= JXg(JZ,Y)—g(V5xZ,JY)—g(JZ, V’}XY)
JZG(X,)Y)-G(V5,;X,Y)—-G(X,V5,Y)
= JXG(Z,)Y)-G(VixZ,Y)-G(Z, VJXY)

(Vi2G) (X, Y) = (VixG) (ZY).
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iii) Let TV and TV be respectively the torsion tensors of V and its g—conjugation V*. We

calculate

(VzG) (X,Y) = (VxG)(Z,Y)
Zg(JX,Y)—g(JVzX,Y)—g(JX,VzY)
= Xg(JZ,Y)—g(JVXZY)—g(JZ,VxY)
9(Vz(JX),Y)—-g(JVzX)Y)
= 9(Vx (J2),Y)-g(JVxZ)Y)
G(J'V5(JX),Y) -G (VzX,Y)
- G (J—lv; (J2) 7Y) —G(VxZ,Y)
G(J VL (JX)=Vx (J2)},Y)=G(VzX —VxZ)Y)

from which we get
J NV, (JX) - V% (JZ)} =VzX - VxZ

J (V) X +IVyX — (ViJ)Z — IV Z} =V X —VxZ
JTHVE) X = (Vi) 2} + (VX = Vi Z ~ (2, X])
= VX -VxZ-[ZX]
TV X — (Vi) ZY+ TV (Z,X) =TV (Z, X).
This means that TV (Z, X) = TV (Z, X) if and only if (V3J) X = (Vi J) Z
iv) From (3.1), we can write
G ((V*)gx — (V%2 Y) = G(VzX —VxZY)
GIY(2,X),Y) = G(TV(Z,X),Y)
TV (2,X) =TV (Z,X).

(3.1)
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As a corollary to Proposition 1 and 2, we obtain the following conclusion.

Corollary 1. Let (M, J,g,G) be an almost anti-Hermitian manifold. V* and V' denote re-
spectively g— conjugation and G—conjugation of a linear connection V on M. If (V,G) and
(V*,J) are Codazzi pairs, then TV =TV = V',

3.2 The Codazzi pair (V,J)

Proposition 3. Let V be a linear connection on (M, J,g,G). V1 denote G—conjugation of V
on M. Under the assumption that (V,G) being a Codazzi pair, (V1,J) is a Codazzi pair if and

only if (V,g) is so.
Proof. Using the definition of G—conjugation and TV = va, we find

G ((VTZJ)X —(via)z, Y) = G(VLIX — JVLX,Y) - GV JZ — Jvi Z,Y)
= ZG(JX,Y)-G(JX,VzY) -G (JVTZX, Y) ~XG(JZ,Y)
+G(JZ,VxY) + GV Z,Y)
= ZGUJX,Y)-GJX.V,Y)— XG(JZY)+G(JZ,VxY)
+G (J(VTXZ ~VLX —[2,X]) + J[Z,X] ,Y)
- Za
+G

JX.Y)-G(JX,VzY)-XG(JZ,Y)+G(JZ,VxY)

J(VyZ -VzX-[Z,X))+J[Z,X],Y)

= —Zg(X,)Y)+g9(X,VzY)+ Xg(Z,Y)
—9(Z,VxY)+g9(VzX,Y)—-g(VxZY)

= (Vz9)(X,)Y) = (Vxg)(Z,Y).

Consider the set R(j) = {ao +ai1j:j2=—-1;a0,a1 € R}7 which is the algebra of compléx

numbers over the field of real numbers R. The canonical bases of this algebra has the form {1, j}.

(
(

An 2k-dimensional manifold My, with an integrable complex structure J is a real realization
of the holomorphic manifold My(R(j)) over the algebra R(j) with dimension k. Let ¢t* be a
complex tensor field on My (R(j)). The real model of such a tensor field is a tensor field on
Moy, of the same type and also is pure relative to the complex structure J (for pure tensor
fields, see [11]). If J is a complex structure on My, and ® ;¢ = 0, then the complex tensor field
t* on My (R(j)) is said to be holomorphic [6,11]. Therefore, we can say that the real model
of a holomorphic tensor field ¢t* on My (R(j)) is the same type pure tensor field on My such
that ®;t = 0. Now we consider the ®—operator (or Tachibana operator [15]) applied to the

anti-Hermitian metric g:
(@s9)(X,Y,Z) = (Lixg — Lx (g0 J))(Y,Z). (3:2)
Because of the fact that the twin metric G on an almost anti-Hermitian manifold (M, J, g) is

an anti-Hermitian metric, we can apply the ®—operator to the twin metric G [11]:
(2,0 (X,Y,Z) = (L;jxG—Lx(GolJd))(Y,Z) (3.3)
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where N is the Nijenhuis tensor field defined by
N;(X,)Y)=[JX,JY|-J[JX,Y]|-J[X,JY] - [X,Y] (3.4)

for any vector fields X,Y on M.
Proposition 4. Let V be a torsion-free linear connection on (M, J,g,G). If (V,J) is a Codazzi

pair, then
(©,G) (XY, Z) = (49)(X, JY, Z) = (VuxG) (Y, Z) — (Vxg) (JY, ] Z).
Proof. Using VxZ — VzX = [Z, X], from (3.2) we get
(®,9) (X, JY, Z) = (Lyxg — (LxgoJ) (JY, Z)
= (Lyxg) (JY, Z) = (LxgoJ) (JY, Z)
JXg(JY,Z) - g(LyxJY,Z) — g(JY,L,xZ) — XgoJ (JY, Z)
+goJ (LxJY,Z)+ goJ (JY,LxZ)
= JXg(JY,Z2)—g(JX,JY],Z)—g(JY,[JX,Z]) — XgoJ (JY, Z)
+god ([X,JY],Z) + goJ (JY,[X, Z])
= JXg(JY,Z2) - g(VyxJY =V vJX,Z) - g(JY,V;xZ —VzJX)
~XgoJ (JY,Z) + goJ (VxJY — Vv X,Z) + goJ (JY,VxZ — V1 X)
= JXg(JY,Z)—g(VyxJ)Y +JIV;xY = (VyyJ) X = JV,v X, Z)
g (JY,VyxZ — (Va) X — IV X) — Xg(JY, ] Z)
g (Vx )Y + VXY — Vv X, JZ) +g(JY, IVxZ — JV 2 X)
= JXg(JY,Z) = g((VyxJ)Y,Z) — g (JVsxY, 2)
+9(Voy ) X, 2) + g (Vv X, Z) — g (JY,VyxZ) + g (JY,(VzJ) X)
+9(JY,IVzX) = Xg(JY,JZ)+g(VxJ)Y,JZ)+g(JVxY,JZ)
—g(VyyX,JZ)+ g (JY,IJVxZ)—g(JY,IVzX).
By virtue of the purity of g relative to J, (VzJ)X = (VxJ)Z, the last relation reduces to
= JXg(JY,Z2)—g(Vux )Y, 2) =g (JVxY,Z) + g ((VsyJ) X, Z)
+9(IViy X, 2) =g (JY,V xZ) + g (JY,(VzJ) X)
+9(JY,IVzX)—Xg(JY,JZ)+g(VxJ)Y,JZ)
+9(JVxY,JZ)—g(IJVyvX,Z)+g(JY,IJVxZ)—g(JY,JVzX)
= JXg(JY.Z)—g(IVyxY,Z) = g(JY,VyxZ) + g (JY,(VzJ) X)
“Xg(JY,JZ) +g(Vx )Y, JZ) +g(IVxY,JZ) + g (JY, IV Z)
— JXG(Y.2) = G(VyxY,Z) = G(Y,V,xZ) - Xg (JY,JZ)
19 (VxJY,JZ) + g (JY,V2JX)

= (VuxG) (Y, 2) = (Vxg) (JY, JZ). (3.5)
Relative to the torsion-free connection V, the Nijenhuis tensor has the following form:

Ny (X,Y) = —J{(Vyy )IX — (VyxJ)JY} + J{(Vy )X — (VxJ)Y}.
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From here, it is easy to show N; (X,Y) = 0 because (V,.J) is a Codazzi pair. Hence, taking
account of (3.3) and (3.5) we have
(©,G) (XY, Z) = (®,9) (X, JY, Z) = (VyxG) (Y, Z) = (Vxg) (JY, ] Z) .
As is well known, the anti-Kéhler condition (V9J = 0) is equivalent to C-holomorphicifyg

(analyticity) of the anti-Hermitian metric g, that is, ® ;g = 0. If the anti-Hermitian metric g is
C-holomorphic, then the triple (M, J, g) is an anti-Kéhler manifold [5].

Theorem 3. Let V be a torsion-free linear connection on (M, J,g,G). Under the assumption
that (V,J) being a Codazzi pair, (M,J,g,G) is an anti-Kahler manifold if and only if the
following condition is fulfilled:

(VuxG) (Y. Z) = (Vxg) (JY,JZ).

Proof. The statement is a direct consequence of Proposition 4. O

84 J—parallel Linear Connections

Given arbitrary linear connection V on an almost complex manifold (M, J), if the following

condition is satisfied:

VxJY =JVxY

for any vector fields X,Y on M, then V is called a J—parallel linear connection on M.

Proposition 5. Let V be a linear connection on (M, J,g,G). V* and V' denote respectively

g—conjugation and G—conjugation of V on M. Then

i) V is J—parallel if and only if V* is so.
i) V is J—parallel if and only if V1 is so.

Proof. i) Using the definition of g—conjugation and the purity of g relative to J, we have
G(VYJY — VLY, Z) =g (VX JY,JZ) — g(JVLY,JZ)
=-Xg(Y,2)—g(JY,VxJZ)+ Xg (Y. Z) — g (Y,VxZ)

=—g(JY,Vx JZ)+g(JY,JVxZ)=-G(Y,VxJZ)+G(Y,IJVxZ).
Hence, Vi JY = JV%Y ifand only if Vx JZ = JVx Z.
i1) Similarly, we get
T _ T _ T _ T
G (Viay —aviy, z) = ¢ (Vv 2) - GUVLY, 2)
=XGJY,Z)-GJY,VxZ) - XG(Y,JZ)+ G(Y,Vx JZ)
=G(Y,VxJZ)-G(JY,VxZ)=G(Vx JZ - JVxZ)Y)
which gives the result. O

Proposition 6. Let V be a J—parallel linear connection on (M,.J,g,G). V* and VT denote
respectively g—conjugation and G—conjugation of V on M. The following statements hold:

i) VT coincides with V*,

it) (V,G) is a Codazzi pair if and only if (V,g) is so.
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Proof. i) Because V is J-parallel, V.J = 0, V = V*. It follows from Theorem 1 that Vi = V*.
11) Using the purity of g relative to J, we get

(VzG) (X,Y) = (VxG) (Z,Y)
Zg(JX.Y)—g(JVzX,Y) =g (JX,VzY)=Xg(JZ2,Y) - g(JVxZY)—g(JZ,VXY)
Zg(X,JY)—g(VzX,JY)—g(X,IVzY)=Xg(Z,JY)—g(VxZ,JY)—g(Z,JVxY)
29(X,JY) =g (VzX,JY) = g(X,V2JY) = Xg(2,JY) —g(VxZ,JY) = g(Z,VxJY)

For the moment, we consider a torsion-free linear connection V on a pseudo-Riemannidd
manifold (M, g). In the case, if (V,g) is a Codazzi pair which characterizes what is known to
information geometers as statistical structures, then the manifold M together with a statistical
structure (V,g) is called a statistical manifold. The notion of statistical manifold was origi-

nally introduced by Lauritzen [7]. Statistical manifolds are widely studied in affine differential

geometry [7,9] and plays a central role in information geometry.

Corollary 2. Let V be a J—parallel torsion-free linear connection on (M, J,g,G). V* denote
the g—conjugation of V on M. (V,G) is a statistical structure if and only if (V*,G) is so.

Proof. The result immediately follows from Proposition 2, using the condition of V being
J—parallel. O
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