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Local pointwise convergence of the 3D finite element

LIU Jing-hong1 ZHU Qi-ding2

Abstract. For an elliptic problem with variable coefficients in three dimensions, this article

discusses local pointwise convergence of the three-dimensional (3D) finite element. First, the

Green’s function and the derivative Green’s function are introduced. Secondly, some relationship

of norms such as L2-norms, W 1,∞-norms, and negative-norms in locally smooth subsets of

the domain Ω is derived. Finally, local pointwise convergence properties of the finite element

approximation are obtained.

§1 Introduction

There have been many studies concerned with the superconvergence of finite element meth-

ods in three dimensions (see [1–10, 13–16, 18–26, 28]). Most of them focus on the global

superconvergent properties. However, to obtain the global superconvergent properties, it is

necessary to satisfy two fundamental conditions: C-uniform partition (or piecewise C-uniform

partition) and highly smooth solution such as u ∈ Wm+2,p (2 ≤ p ≤ ∞). So-called C-uniform

partition means that for each element e in a quasi-uniform partition T h, and its two adja-

cent vertices M and P , if
−−−→
MM ′ is an edge in T h, there exists another edge

−−→
PP ′ such that

|
−−−→
MM ′ +

−−→
PP ′| ≤ Ch2, which shows that MPP ′M ′ is almost a parallelogram. In fact, it is

difficult to possess these two conditions in the whole domain Ω. Nevertheless, the above two

conditions are easily satisfied in the interior subset of Ω. Thus, we may study the superconver-

gent properties in interior subsets of Ω (so-called local superconvergent properties). Actually,

up to now, there have been some local superconvergence results (see [10, 25, 27]). However, to

derive local superconvergent properties, we should first obtain the local estimates for the finite

element approximation, which is the focus of this article. Most of the results for local estimates

will be used in the study of the local superconvergent properties (see [10, 25, 27]).

In this article, we will introduce the definitions of Green’s function and derivative Green’s

function, and discuss their properties. These properties play important roles in arguments of

main conclusions, which similarly can be seen in [11, 12]. We shall use the letter C to denote

a generic constant which may not be the same in each occurrence and also use the standard

notations for the Sobolev spaces and their norms.
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Consider the following elliptic problem with variable coefficients:

Lu ≡ −
3∑

i,j=1

∂j(aij∂iu) + a0u = f in Ω, u = 0 on ∂Ω,

where Ω ⊂ R3 is a bounded domain with Lipschitz boundary. We assume that aij = aji and

that the matrix (aij) is uniformly positive definite and a0 ≥ 0.

The weak formulation of the above problem reads,{
Find u ∈ H1

0 (Ω) satisfying

a(u , v) = (f , v) for all v ∈ H1
0 (Ω),

(1.1)

where

a(u , v) ≡
∫
Ω

(

3∑
i,j=1

aij∂iu∂jv + a0uv) dxdydz, (f , v) ≡
∫
Ω

fv dxdydz.

We also assume that the given functions aij ∈ W 1,∞(Ω), a0 ∈ L∞(Ω), and f ∈ L2(Ω). In

addition, we write ∂1u = ∂u
∂x , ∂2u = ∂u

∂y , and ∂3u = ∂u
∂z , which are generalized partial derivatives.

For any direction ℓ ∈ R3 and |ℓ| = 1, we denote by ∂ℓv(Z) the onesided directional derivatives

defined by

∂ℓv(Z) = lim
|∆Z|→0

v(Z +∆Z)− v(Z)

|∆Z|
, ∆Z = |∆Z|ℓ. (1.2)

For the above problem, we assume the following a priori estimate holds.

Lemma 1.1. For the true solution u of (1.1), there exists a q0(1 < q0 ≤ ∞) such that for every

1 < q < q0,

∥u∥2, q,Ω ≤ C(q)∥Lu∥0, q,Ω. (1.3)

Specially, if ∂Ω is smooth enough and the integer k ≥ 0, then we have

∥u∥k+2, q,Ω ≤ C(q)∥Lu∥k, q,Ω. (1.4)

Let {T h} be a regular family of partitions of Ω̄. We denote by he the size of an element e ∈ T h,

and write h = maxe∈T h he. In this article, we assume for every element e that 1 ≤ h
he

≤ C0

(C0 is a constant independent of the element e). Denote by Sh(Ω) a continuous m-degree (or

tensor-productm-degree) finite elements space regarding this kind of partitions and let Sh
0 (Ω) =

Sh(Ω) ∩ H1
0 (Ω). For every Z ∈ Ω̄, we define the discrete δ function δhZ ∈ Sh

0 (Ω), the discrete

derivative δ function ∂Z,ℓδ
h
Z ∈ Sh

0 (Ω), the regularized Green’s function G∗
Z ∈ H2(Ω) ∩H1

0 (Ω),

the regularized derivative Green’s function ∂Z,ℓG
∗
Z ∈ H2(Ω) ∩ H1

0 (Ω), and the L2-projection

Phu ∈ Sh
0 (Ω) such that (see [27])

(v, δhZ) = v(Z) ∀ v ∈ Sh
0 (Ω), (1.5)

(v, ∂Z,ℓδ
h
Z) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω), (1.6)

a(G∗
Z , v) = (δhZ , v) ∀ v ∈ H1

0 (Ω), (1.7)

a(∂Z,ℓG
∗
Z , v) = (∂Z,ℓδ

h
Z , v) ∀ v ∈ H1

0 (Ω), (1.8)

(u− Phu, v) = 0 ∀ v ∈ Sh
0 (Ω). (1.9)

As for the operator Ph, we have the following results (see [16] and [19]):

∥Phw∥0, q,Ω ≤ C∥w∥0, q,Ω, 1 ≤ q ≤ ∞, (1.10)

∥Phw∥1, q,Ω ≤ C∥w∥1, q,Ω, 3 < q ≤ ∞. (1.11)

In addition, similar to (1.2), we get for ∂Z,ℓδ
h
Z that

∂Z,ℓδ
h
Z = lim

|∆Z|→0

δhZ+∆Z − δhZ
|∆Z|

, ∆Z = |∆Z|ℓ.
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So do for ∂Z,ℓG
∗
Z in (1.8), ∂Z,ℓGZ in (2.2), and ∂Z,ℓG

h
Z in (2.4).

The rest of this article is organized as follows. In Section 2, we introduce the Green’s function

and the derivative Green’s function as well as their properties. Local pointwise estimates for

the finite element approximation are derived in Section 3.

§2 Green’s Function and Derivative Green’s Function

We introduce the Green’s function GZ such that a(GZ , v) = v(Z) for all v ∈ C∞
0 (Ω).

Moreover, we can prove the following Lemma 2.1.

Lemma 2.1. There exists a unique GZ ∈ W 1,p
0 (Ω) (1 ≤ p < 3

2 ) such that

a(GZ , v) = v(Z) ∀ v ∈ W 1,p′

0 (Ω),
1

p
+

1

p′
= 1. (2.1)

In addition, we give a weight function τ = |X − Z|−3, and write Wβ(Ω) = {v : v|∂Ω =

0, ∥v∥1,τβ < ∞}. We call ∂Z,ℓGZ the derivative Green’s function, which satisfies the following

Lemma 2.2.

Lemma 2.2. There exists a unique ∂Z,ℓGZ ∈ W−α(Ω) such that

a(∂Z,ℓGZ , v) = ∂ℓv(Z) ∀ v ∈ Wα(Ω) ∩ C∞
0 (Ω), (2.2)

where 1 < α < 5
3 − 2

q0
when 3 < q0 < 6, and 1 < α < 4

3 when q0 ≥ 6.

Remark 1. The above two lemmas have been proved in [17].

For every Z ∈ Ω̄, we define the discrete Green’s function Gh
Z ∈ Sh

0 (Ω) and the discrete

derivative Green’s function ∂Z,ℓG
h
Z ∈ Sh

0 (Ω) such that (see [27])

a(Gh
Z , v) = v(Z) ∀ v ∈ Sh

0 (Ω), (2.3)

a(∂Z,ℓG
h
Z , v) = ∂ℓv(Z) ∀ v ∈ Sh

0 (Ω). (2.4)

As for GZ and Gh
Z , we have for q0 > 3

2 and 1
3 < ϵ < ∞

∥GZ∥1,τ−ϵ +
∥∥Gh

Z

∥∥
1,τ−ϵ ≤ C(ϵ). (2.5)

As for ∂Z,ℓGZ and ∂Z,ℓG
h
Z , we get

∥∂Z,ℓGZ∥1,τ−α +
∥∥∂Z,ℓG

h
Z

∥∥
1,τ−α ≤ C(α), (2.6)

where 1 < α < 5
3 − 2

q0
when 3 < q0 < 6, and 1 < α < 4

3 when q0 ≥ 6.

Similar to the two-dimensional setting (see [27]), we can obtain Lemma 2.3.

Lemma 2.3. Suppose q0 > 2, D ⊂ Ω, and Z is not in D̄. Then we have

∥GZ∥2,D + ∥∂Z,ℓGZ∥2,D ≤ C(ρ), (2.7)

where ρ = dist(Z, D̄).

Proof. Set ρ = dist(Z, D̄). We choose D1 ⊂ Ω such that D ⊂⊂ D1, Z being not in D̄1,

and d ≡ dist(∂D1, ∂D) > 1
2ρ. From (2.1) and (2.2),

a(GZ , v) = 0 and a(∂Z,ℓGZ , v) = 0 ∀v ∈ C∞
0 (D1).

Thus

LGZ ≡ 0 and L∂Z,ℓGZ ≡ 0, in Ω \ {Z}. (2.8)

Choosing µ ∈ C∞(Ω) such that supp(µ) ⊂⊂ D1 and µ|D = 1, we have µGZ ∈ H2(D1)∩H1
0 (D1).

Thus, from (2.8),

L(µGZ) = −
3∑

i,j=1

∂j(aij∂i(µGZ)) + a0µGZ = −
3∑

i,j=1

(∂j(aijGZ∂iµ)− ∂j(aijµ)∂iGZ) .
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We have

∥L(µGZ)∥0,D1
≤ C(ρ) ∥GZ∥1,D1

. (2.9)

Since Z is not in D̄1, dist(Z, D̄1) > 0. Thus from (2.5) and (2.9), we get for a fixed ε0 ∈ ( 13 , ∞)

∥L(µGZ)∥0,D1
≤ C(ρ) ∥GZ∥1,D1

≤ C(ρ) ∥GZ∥1,τ−ε0 ≤ C(ρ). (2.10)

Combining (1.3) and (2.10) yields

∥GZ∥2,D = ∥µGZ∥2,D ≤ ∥µGZ∥2,D1
≤ C ∥L(µGZ)∥0,D1

≤ C(ρ).

Similar to the above arguments, we can obtain ∥∂Z,ℓGZ∥2,D ≤ C(ρ). Thus, the proof of Lemma

2.3 is completed.

§3 Local Pointwise Convergence for the Finite Element

Approximation

In this section, we first give some lemmas, and then derive local estimates for the finite

element approximation.

Lemma 3.1. Suppose µ ∈ C∞(Ω), D0 ⊂ supp(µ) ⊂⊂ D ⊂ Ω, µ|D0 = 1, and d ≡ dist(∂D0, ∂D).

Let Π be the standard Lagrange interpolation operator. Then we have for every v ∈ Sh
0 (Ω)

∥v̂ −Πv̂∥s,D ≤ C(d)h1−s ∥v∥0,D\D0
, (3.1)

∥v̂ −Πv̂∥s,D ≤ C(d)hm+1−s ∥v∥hm,D\D0
, (3.2)

where v̂ = µv, 0 ≤ s ≤ m, and ∥v∥hm,D\D0
=

(∑
e∩(D\D0 )̸=ϕ ∥v∥

2
m,e

) 1
2

.

Proof. Set N = {e : e ∩ (D \D0) ̸= ϕ, e ∈ T h}. For all e ∈ N , when Q ∈ e,

v̂(Q)−Πv̂(Q) =
∑r

k=m+1
1
k!D

kv̂(Q) ·
∑n

i=1(−1)k+1(Q−Qi)
kϕi(Q) +Rr(v̂)

= R0(v̂) +Rr(v̂),
(3.3)

where {Qi}ni=1 is the set of interpolation nodes on e, {ϕi}ni=1 is the set of shape functions of

the interpolation, and Dkv̂(Q) is the k-order Fréchet derivative. Moreover, Rr(v̂) satisfies

|Rr(v̂)|s,e ≤ Chr+1−s|∇r+1v̂|0,e ≤ C(d)hr+1−s∥v∥r,e ≤ C(d)hm+1−s∥v∥m,e, (3.4)

where s = 0, 1, · · · ,m. Obviously, when v ∈ Sh
0 (Ω), R0(v) = 0. Thus we have

∇sR0(v̂) = ∇s(R0(v̂)− µR0(v))

=
r∑

k=m+1

1

k!
∇s[(Dkv̂ − µDkv)(Q) ·

n∑
i=1

(−1)k+1(Q−Qi)
kϕi(Q)].

Further,

|∇sR0(v̂)| ≤ C

r∑
k=m+1

s∑
t=0

hk−s+t
∣∣∇t(Dkv̂ − µDkv)

∣∣
≤ C(d)

r∑
k=m+1

s∑
t=0

hk−s+t
k−1+t∑
i=0

∣∣∇iv
∣∣ .

Choosing the L2-norm with respect to the above inequality and applying the inverse estimate,

we get
|∇sR0(v̂)|0,e ≤ C(d)

∑r
k=m+1

∑s
t=0 h

k−s+t ∥v∥k−1+t,e

≤ C(d)hm+1−s ∥v∥m,e .
(3.5)
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From (3.3)–(3.5),

∥v̂ −Πv̂∥s,e ≤ C(d)hm+1−s ∥v∥m,e . (3.6)

Note that ∥v̂ −Πv̂∥s,D0
= 0. Thus we have ∥v̂ −Πv̂∥s,D = ∥v̂ −Πv̂∥s,D\D0

. Summing over all

elements of N in (3.6) yields the result (3.2). Applying the inverse estimate in (3.6), we have

∥v̂ −Πv̂∥s,e ≤ C(d)h1−s ∥v∥0,e . (3.7)

Summing over all elements of N in (3.7) yields the result (3.1). Thus the proof of Lemma 3.1

is completed.

Lemma 3.2. Suppose D ⊂⊂ D′ ⊂ Ω, d ≡ dist(∂D, ∂D′), 0 < ε ≪ 1, and χ ∈ Sh
0 (Ω) satisfies

a(χ, v) = 0 for all v ∈ Sh
0 (D

′). Then we have when q0 > 3
2 ,

∥χ∥0,∞,D ≤ C(d) ∥χ∥0,D′ , (3.8)

and

∥χ∥1,∞,D ≤ C(d)h |lnh|r ∥χ∥0,D′ + C(d)∥χ∥−1,D′ , (3.9)

where r = ([ 2q0
q0−3 ] + 1) 6+(3ε−1)q0

6q0
when 3 < q0 < 6, and r = ε when q0 ≥ 6.

Proof. Choosing D1 such that D ⊂⊂ D1 ⊂⊂ D′, dist(∂D1, ∂D
′) = dist(∂D1, ∂D) = 1

2d,

µ ∈ C∞(Ω) satisfying supp(µ) ⊂⊂ D′ and µ|D1 = 1, and setting χ̂ = µχ, we have for Z ∈ D1

χ(Z) = χ̂(Z) = Πχ̂(Z) = Πχ(Z). (3.10)

For every Z ∈ D, from (2.3), (2.4), and (3.10),

χ(Z) = Πχ̂(Z) = a(Gh
Z ,Πχ̂) and ∂ℓχ(Z) = ∂ℓΠχ̂(Z) = a(∂Z,ℓG

h
Z ,Πχ̂). (3.11)

Thus, from (3.2), (3.11), and the triangle inequality,

|χ(Z)| = |a(Gh
Z ,Πχ̂)| = |a(Gh

Z ,Πχ̂− χ̂)|+ |a(Gh
Z , χ̂)|

≤ C∥Πχ̂− χ̂∥1,D′\D1
∥Gh

Z∥1,D′\D1
+ |a(Gh

Z , χ̂)|
≤ C(d)h∥χ∥1,D′\D1

∥Gh
Z∥1,D′\D1

+ |a(Gh
Z , χ̂)|.

In addition

a(Gh
Z , χ̂) =

∫
Ω

(
3∑

i,j=1

aij∂iG
h
Z∂jχ̂+ a0G

h
Z χ̂) dxdydz

=

∫
Ω

(
3∑

i,j=1

aij∂i(µG
h
Z)∂jχ+ a0µG

h
Zχ) dxdydz

+

∫
Ω

3∑
i,j=1

(−Gh
Zaij∂iµ∂jχ+ χaij∂iG

h
Z∂jµ) dxdydz

=

∫
Ω

(

3∑
i,j=1

aij∂i(µG
h
Z)∂jχ+ a0µG

h
Zχ) dxdydz

+

∫
Ω

3∑
i,j=1

(−∂j(χG
h
Zaij∂iµ) + χ∂j(G

h
Zaij∂iµ) + χaij∂iG

h
Z∂jµ) dxdydz

= a(Ĝh
Z , χ) + J,

where Ĝh
Z = µGh

Z . By the conditions of Lemma 3.2 and the result (3.2), we have

|a(Ĝh
Z , χ)| = |a(Ĝh

Z −ΠĜh
Z , χ)| ≤ C(d)h∥χ∥1,D′\D1

∥Gh
Z∥1,D′\D1

.
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By the above arguments, we get

|χ(Z)| ≤ C(d)h∥χ∥1,D′\D1
∥Gh

Z∥1,D′\D1
+ |J |. (3.12)

Since χ ∈ Sh
0 (Ω), thus

|J | =

∣∣∣∣∣∣
∫
Ω

χ

3∑
i,j=1

(∂j(G
h
Zaij∂iµ) + aij∂iG

h
Z∂jµ) dxdydz

∣∣∣∣∣∣ ≤ C(d)∥χ∥0,D′\D1
∥Gh

Z∥1,D′\D1
. (3.13)

Since dist(Z,D′ \D1) > 0, from (2.5), we have

∥Gh
Z∥1,D′\D1

≤ C∥Gh
Z∥1,τ−ϵ ≤ C. (3.14)

By (3.12)–(3.14) and the inverse estimate, we immediately obtain the result (3.8). When q0 > 3,

from (2.6), ∥∂Z,ℓG
h
Z∥1,τ−α ≤ C(α). Thus, similar to the above arguments, we obtain

|∂ℓχ(Z)| = |a(∂Z,ℓG
h
Z ,Πχ̂)| ≤ C(d)∥χ∥0,D′ . (3.15)

In fact, we have a(χ, v) = 0 ∀v ∈ Sh
0 (D1) ⊂ Sh

0 (D
′). Choosing D 1

2
such that D ⊂⊂ D 1

2
⊂⊂ D1,

and dist(∂D 1
2
, ∂D1) = dist(∂D 1

2
, ∂D) = 1

4d, similar to (3.12) and (3.13), we have

|∂ℓχ(Z)| = |a(∂Z,ℓG
h
Z ,Πχ̂)| ≤ C(d)h∥χ∥1,D1\D 1

2

∥∂Z,ℓG
h
Z∥1,D1\D 1

2

+ |J ′|, (3.16)

where χ̂ = µχ, µ ∈ C∞(Ω) satisfying supp(µ) ⊂⊂ D1 and µ|D 1
2

= 1, and

J ′ =

∫
Ω

χ
3∑

i,j=1

(∂j(∂Z,ℓG
h
Zaij∂iµ) + aij∂i∂Z,ℓG

h
Z∂jµ) dxdydz.

Further,

|J ′| ≤ C(d) ∥χ∥0,D1\D 1
2

∥∥∂Z,ℓGZ − ∂Z,ℓG
h
Z

∥∥
1,D1\D 1

2

+ C(d) ∥χ∥−1,D1\D 1
2

∥∂Z,ℓGZ∥2,D1\D 1
2

.

(3.17)

In [18], we have obtained∥∥∂Z,ℓGZ − ∂Z,ℓG
h
Z

∥∥
1,τ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 ,

where 1 < α < 5
3 − 2

q0
when 3 < q0 < 6, and 1 < α < 4

3 when q0 ≥ 6. Moreover, since

dist(Z,D1 \D 1
2
) > 0, we have∥∥∂Z,ℓGZ − ∂Z,ℓG

h
Z

∥∥
1,D1\D 1

2

≤ C
∥∥∂Z,ℓGZ − ∂Z,ℓG

h
Z

∥∥
1,τ−α ≤ Ch

3(α−1)
2 |lnh|

4−3α
6 . (3.18)

We get by (2.6) ∥∥∂Z,ℓG
h
Z

∥∥
1,D1\D 1

2

≤ C
∥∥∂Z,ℓG

h
Z

∥∥
1,τ−α ≤ C(α). (3.19)

From (2.7) and (3.16)–(3.19),

|∂ℓχ(Z)| ≤ C(d)h
3(α−1)

2 |lnh|
4−3α

6 ∥χ∥1,D1\D 1
2

+ C(d)∥χ∥−1,D1\D 1
2

.

Further,

∥χ∥1,∞,D ≤ C(d)hk1 |lnh|k2 ∥χ∥1,D1 + C(d)∥χ∥−1,D1 , (3.20)

where k1 = 3(α−1)
2 and k2 = 4−3α

6 .

Choosing {Di}si=2 such thatD ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ · · · ⊂⊂ Ds = D′, and dist(∂Di, ∂Di+1) =
d

2(s−1) , i = 1, · · · , s− 1, we have

∥χ∥1,∞,Di
≤ C(d)hk1 |lnh|k2 ∥χ∥1,Di+1 + C(d)∥χ∥−1,Di+1 , i = 1, 2, · · · , s− 1. (3.21)

Combining (3.20) and (3.21), and noting ∥χ∥1,Di
≤ C ∥χ∥1,∞,Di

, we have

∥χ∥1,∞,D ≤ C(d)hsk1 |lnh|sk2 ∥χ∥1,D′ + C(d)∥χ∥−1,D′ . (3.22)
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When 3 < q0 < 6, we have 1 < α < 5
3 −

2
q0
. Taking α = 5

3 −
2
q0
−ε, 0 < ε ≪ 1, and s = [ 2q0

q0−3 ]+1

such that sk1 > 2, we get by (3.22) and the inverse estimate

∥χ∥1,∞,D ≤ C(d)h |lnh|r ∥χ∥0,D′ + C(d)∥χ∥−1,D′ , (3.23)

where r = ([ 2q0
q0−3 ] + 1) 6+(3ε−1)q0

6q0
.

When q0 ≥ 6, we have 1 < α < 4
3 . Taking α = 4

3 − 2ε
5 , 0 < ε ≪ 1, and s = 5 such that

sk1 > 2, we get by (3.22) and the inverse estimate

∥χ∥1,∞,D ≤ C(d)h |lnh|t ∥χ∥0,D′ + C(d)∥χ∥−1,D′ , (3.24)

where t = ε. Combining (3.23) and (3.24) yields the result (3.9). The proof of Lemma 3.2 is

completed.

Remark 2. In (3.20) and (3.21), for a suitable α, there exits an ϵ > 0 such that k1 − ϵ > 0 and

|lnh|k2 ≤ h−ϵ when h is suitable small. Thus we can choose s such that s(k1 − ϵ) > 2. Further,

we obtain when q0 > 3,

∥χ∥1,∞,D ≤ C(d)h∥χ∥0,D′ + C(d)∥χ∥−1,D′ ,

which is the better result than (3.9).

Lemma 3.3. Suppose D ⊂⊂ D′ ⊂ Ω and the integer k ≥ 0. Then we have

∥v∥0,D ≤ Ch−k ∥v∥−k,D′ ∀ v ∈ Sh
0 (Ω). (3.25)

Proof. Set D∗ = ∪e{e : e ∩ D ̸= ϕ, e ∈ T h}. For an element e ⊂ D∗, we define a

negative-norm as follows:

∥v∥−k,e = sup
φ∈C∞

0 (e)

|(v, φ)e|
∥φ∥k,e

. (3.26)

Further, we define an affine transformation by

F : X̃ ∈ ẽ −→ X = BX̃ + b ∈ e,

where ẽ is the standard reference element and B = (bij) is a 3 × 3 matrix. We write φ̃(X̃) =

φ(F (X̃)) and ṽ(X̃) = v(F (X̃)). In addition, we have (see [27])

|w|k,p,e ≤ C∥B−1∥k|detB|
1
p |w̃|k,p,ẽ ∀ w̃ ∈ W k,p(ẽ).

Thus we get

|φ|k,e ≤ Ch
3
2−k
e |φ̃|k,ẽ. (3.27)

From (3.27),

∥φ∥2k,e =
k∑

i=0

|φ|2i,e ≤ Ch3−2k
e

k∑
i=0

|φ̃|2i,ẽ = Ch3−2k
e ∥φ̃∥2k,ẽ .

Namely,

∥φ∥k,e ≤ Ch
3−2k

2
e ∥φ̃∥k,ẽ . (3.28)

By (3.28), the definition of the negative-norm (3.26), and the equivalence of norms in the

finite-dimensional space, we have

∥v∥0,e ≤ Ch
3
2
e ∥ṽ∥0,ẽ ≤ Ch

3
2
e ∥ṽ∥−k,ẽ ≤ Ch

3
2
e sup

φ̃∈C∞
0 (ẽ)

|(ṽ, φ̃)ẽ|
∥φ̃∥k,ẽ

≤ Ch
3
2−3+ 3−2k

2
e sup

φ∈C∞
0 (e)

|(v, φ)e|
∥φ∥k,e

.

Namely,

∥v∥0,e ≤ Ch−k
e ∥v∥−k,e . (3.29)
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Thus, from (3.29) and 1 ≤ h
he

≤ C0,

∥v∥20,D∗ =
∑
e

∥v∥20,e ≤ Ch−2k
∑
e

∥v∥2−k,e . (3.30)

For every ε > 0, choosing εe > 0 such that
∑

e εe = ε, thus we have

∥v∥2−k,e − εe ≤ |(v, φe)e|2 , φe ∈ C∞
0 (e) and ∥φe∥k,e = 1. (3.31)

We write ω =
∑

e(v, φe)eφe ∈ C∞
0 (D′), and then

(v, ω)D′ =
∑
e

|(v, φe)e|2 . (3.32)

Combining (3.30)–(3.32) yields

∥v∥20,D∗ ≤ Ch−2k((v, ω)D′ + ε) ≤ Ch−2k(∥v∥−k,D′ ∥ω∥k,D′ + ε). (3.33)

In addition,

∥ω∥2k,D′ =

∫
D′

∑
0≤s≤k

|
∑
e

(v, φe)e∇sφe|2 dX

=
∑

0≤s≤k

∫
D′

|
∑
e

(v, φe)e∇sφe|2 dX

=
∑

0≤s≤k

∑
e

|(v, φe)e|2
∫
e

|∇sφe|2 dX

=
∑
e

|(v, φe)e|2 = (v, ω)D′ ≤ ∥v∥−k,D′ ∥ω∥k,D′ .

Thus,

∥ω∥k,D′ ≤ ∥v∥−k,D′ . (3.34)

When ε → 0, we have by (3.33) and (3.34)

∥v∥0,D∗ ≤ Ch−k ∥v∥−k,D′ .

Obviously, D ⊂ D∗, thus ∥v∥0,D ≤ ∥v∥0,D∗ ≤ Ch−k ∥v∥−k,D′ . The proof of Lemma 3.3 is

completed.

Lemma 3.4. Suppose D ⊂⊂ D′ ⊂ Ω, d ≡ dist(∂D, ∂D′), and ∂D′ is smooth enough. Let the

integer k ≥ 0, q0 > 2, aij ∈ W k+2,∞(Ω), and χ ∈ Sh
0 (Ω) satisfies a(χ, v) = 0 for all v ∈ Sh

0 (D
′).

Then we have

∥χ∥−k,D ≤ C(d)h ∥χ∥1,D′ + C(d) ∥χ∥−k−1,D′ . (3.35)

Proof. Choosing D1 such that D ⊂⊂ D1 ⊂⊂ D′, dist(∂D1, ∂D
′) = dist(∂D1, ∂D) = 1

2d,

and µ ∈ C∞(Ω) satisfying supp(µ) ⊂⊂ D′ and µ|D1 = 1, and setting χ̂ = µχ, we have by (1.4)

∥χ∥−k,D ≤ ∥χ̂∥−k,D′ = sup
φ∈C∞

0 (D′)

|(φ, χ̂)D′ |
∥φ∥k,D′

≤ C sup
w∈H

|a(w, χ̂)D′ |
∥w∥k+2,D′

, (3.36)

where Lw = φ and w ∈ H ≡ Hk+2(D′) ∩H1
0 (D

′). Similar to the arguments of Lemma 3.2, we

get by the conditions of Lemma 3.4

a(w, χ̂)D′ = a(ŵ, χ)D′ + ID′ = a(ŵ −Πŵ, χ)D′ + ID′ , (3.37)

where ŵ = µw and

ID′ =

∫
D′

3∑
i,j=1

(−∂j(χwaij∂iµ) + χ∂j(waij∂iµ) + χaij∂iw∂jµ) dxdydz.
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Since w ∈ H, thus we have

|ID′ | =

∣∣∣∣∣∣
∫
D′

3∑
i,j=1

(χ∂j(waij∂iµ) + χaij∂iw∂jµ) dxdydz

∣∣∣∣∣∣ ≤ C(d) ∥χ∥−k−1,D′ ∥w∥k+2,D′ . (3.38)

From (3.37) and (3.38),

|a(w, χ̂)D′ | ≤ C ∥χ∥1,D′ ∥ŵ −Πŵ∥1,D′ + C(d) ∥χ∥−k−1,D′ ∥w∥k+2,D′

≤ C(d)h ∥χ∥1,D′ ∥w∥k+2,D′ + C(d) ∥χ∥−k−1,D′ ∥w∥k+2,D′ .
(3.39)

Combining (3.36) and (3.39) yields the result (3.35). The proof of Lemma 3.4 is completed.

Lemma 3.5. Suppose D′ ⊂ Ω and ∂D′ is smooth enough. Let the integer k ≥ 0, q0 > 3,

aij ∈ W k+2,∞(Ω), and χ ∈ Sh
0 (Ω) satisfies a(χ, v) = 0 for all v ∈ Sh

0 (D
′). For every D∗ and

D∗∗ satisfying D∗ ⊂⊂ D∗∗ ⊂⊂ D′, we have

∥χ∥1,∞,D∗ + ∥χ∥−k,D∗ ≤ C(d) ∥χ∥−k−1,D∗∗ , (3.40)

where d ≡ dist(∂D∗, ∂D∗∗).

Proof. When k = 0, choosing D̃ such that D∗ ⊂⊂ D̃ ⊂⊂ D∗∗ and dist(∂D̃, ∂D∗∗) =

dist(∂D̃, ∂D∗) = 1
2d, we have by Remark 2 and Lemma 3.3

∥χ∥1,∞,D∗ ≤ C(d)h∥χ∥0,D̃ + C(d)∥χ∥−1,D̃ ≤ C(d)∥χ∥−1,D∗∗ . (3.41)

From (3.41),

∥χ∥0,D∗ ≤ ∥χ∥1,∞,D∗ ≤ C(d)∥χ∥−1,D∗∗ . (3.42)

Thus, from (3.41) and (3.42), when k = 0, the result (3.40) holds. Now when k = t, we suppose

the result (3.40) holds. Namely,

∥χ∥1,∞,D∗ + ∥χ∥−t,D∗ ≤ C(d) ∥χ∥−t−1,D∗∗ . (3.43)

We consider the case of k = t+ 1. Choosing {Di}t+2
i=0 such that D∗ ⊂⊂ D̃ ⊂⊂ D0 ⊂⊂ D1 ⊂⊂

D2 ⊂⊂ · · · ⊂⊂ Dt+2 ⊂⊂ D∗∗, and dist(∂D̃, ∂D0) = dist(∂Di, ∂Di+1) =
d

2(t+4) , i = 0, · · · , t+1,

we have by (3.35) and (3.43)

∥χ∥−t−1,D̃ ≤ C(d)h ∥χ∥1,D0
+ C(d) ∥χ∥−t−2,D0

≤ C(d)h ∥χ∥1,∞,D0
+ C(d) ∥χ∥−t−2,D0

≤ C(d)h ∥χ∥−t−1,D1
+ C(d) ∥χ∥−t−2,D1

.

(3.44)

Similarly,

∥χ∥−t−1,Di
≤ C(d)h ∥χ∥−t−1,Di+1

+ C(d) ∥χ∥−t−2,Di+1
, i = 1, 2, · · · , t+ 1. (3.45)

From (3.25), (3.44), and (3.45),

∥χ∥−t−1,D̃ ≤ C(d)ht+2 ∥χ∥−t−1,Dt+2
+ C(d) ∥χ∥−t−2,Dt+2

≤ C(d)ht+2 ∥χ∥0,Dt+2
+ C(d) ∥χ∥−t−2,Dt+2

≤ C(d) ∥χ∥−t−2,D∗∗ .

(3.46)

In addition, from (3.43) and (3.46),

∥χ∥1,∞,D∗ ≤ C(d) ∥χ∥−t−1,D̃ ≤ C(d) ∥χ∥−t−2,D∗∗ . (3.47)

Thus, from (3.46) and (3.47),

∥χ∥1,∞,D∗ + ∥χ∥−t−1,D∗ ≤ C(d) ∥χ∥−t−2,D∗∗ ,

which shows when k = t+ 1, the result (3.40) holds. The proof of Lemma 3.5 is completed.

Lemma 3.6. Suppose D ⊂⊂ D′ ⊂ Ω and ∂D′ is smooth enough. Let the integer k ≥ 0, q0 > 3,
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aij ∈ W k+2,∞(Ω), and χ ∈ Sh
0 (Ω) satisfies a(χ, v) = 0 for all v ∈ Sh

0 (D
′). Then we have

∥χ∥0,D ≤ C(d) ∥χ∥−k−1,D′ , (3.48)

and

∥χ∥1,∞,D ≤ C(d) ∥χ∥−k−1,D′ , (3.49)

where d ≡ dist(∂D, ∂D′).

Proof. Choosing {Di}k+1
i=1 such that D ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ · · · ⊂⊂ Dk ⊂⊂ Dk+1 = D′, and

dist(∂D, ∂D1) = dist(∂Di, ∂Di+1) =
d

k+1 , i = 1, · · · , k, we have by (3.40)

∥χ∥1,∞,D ≤ C(d) ∥χ∥−1,D1
≤ C(d) ∥χ∥−2,D2

≤ C(d) ∥χ∥−3,D3
≤ · · · ≤ C(d) ∥χ∥−k−1,D′ ,

which is the result (3.49). Obviously,

∥χ∥0,D ≤ ∥χ∥1,∞,D .

Combined with (3.49), we immediately obtain the result (3.48). The proof of Lemma 3.6 is

completed.

Theorem 3.1. For every Z ∈ Ω̄, let Ur = {X : |X − Z| < r, X ∈ Ω}, and u and uh be the

solution of (1.1) and the m-degree (or tensor-product m-degree) finite element approximation.

When q0 > 3 and u ∈ Wm+1,∞(Ur) ∩H1
0 (Ω), we have

|(u− uh)(Z)| ≤ C(r)hm+1 |lnh|
2
3 ∥u∥m+1,∞,Ur

+ C(r) ∥u− uh∥−1,Ur
, (3.50)

and

|∇(u− uh)(Z)| ≤ C(r)hm ∥u∥m+1,∞,Ur
+ C(r) ∥u− uh∥−1,Ur

. (3.51)

Proof. Let Ur1 = {X : |X − Z| < r
4 , X ∈ Ω}, Ur2 = {X : |X − Z| < 3r

4 , X ∈ Ω}. Thus,

Ur1 ⊂⊂ Ur2 ⊂⊂ Ur. Choosing µ ∈ C∞(Ω) satisfying supp(µ) ⊂⊂ Ur and µ|Ur2
= 1, and setting

û = µu and ũ = u− û, we easily obtain ũ|Ur2
= 0. In (1.10), for every v ∈ Sh

0 (Ω), we replace w

with w − v. Thus,

∥Phw − v∥0,∞,Ω ≤ C ∥w − v∥0,∞,Ω .

Further,

∥w − Phw∥0,∞,Ω ≤ ∥w − v∥0,∞,Ω + ∥Phw − v∥0,∞,Ω ≤ C ∥w − v∥0,∞,Ω .

So we have

∥w − Phw∥0,∞,Ω ≤ C inf
v∈Sh

0 (Ω)
∥w − v∥0,∞,Ω . (3.52)

In addition, from (1.5), (1.7), and (1.9), we get for v ∈ Sh
0 (Ω)

|(Phw − wh)(Z)| = |a(G∗
Z , w − wh)| = |a(G∗

Z −Gh
Z , w − v)|

≤ C
∥∥G∗

Z −Gh
Z

∥∥
1,1,Ω

∥w − v∥1,∞,Ω .

Thus,

|(Phw − wh)(Z)| ≤ C
∥∥G∗

Z −Gh
Z

∥∥
1,1,Ω

inf
v∈Sh

0 (Ω)
∥w − v∥1,∞,Ω . (3.53)

As for G∗
Z and Gh

Z defined by (1.7) and (2.3), respectively, we have (see [16])∣∣G∗
Z −Gh

Z

∣∣
1,1,Ω

≤ Ch| lnh| 23 . (3.54)

By (3,52)–(3.54), the triangle inequality, and the Poincaré inequality, we have

∥w − wh∥0,∞,Ω ≤ ∥w − Phw∥0,∞,Ω + ∥Phw − wh∥0,∞,Ω

≤ C inf
v∈Sh

0 (Ω)
∥w − v∥0,∞,Ω + Ch| lnh| 23 inf

v∈Sh
0 (Ω)

∥w − v∥1,∞,Ω

≤ C ∥w −Πw∥0,∞,Ω + Ch| lnh| 23 ∥w −Πw∥1,∞,Ω ,
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where Π is an interpolation operator. Further, by the interpolation error estimate, we get

∥w − wh∥0,∞,Ω ≤ Chm+1| lnh| 23 ∥w∥m+1,∞,Ω . (3.55)

As for ∂Z,ℓG
∗
Z and ∂Z,ℓG

h
Z defined by (1.8) and (2.4), respectively, we have (see [19])∣∣∂Z,ℓG

∗
Z − ∂Z,ℓG

h
Z

∣∣
1,1,Ω

≤ C. (3.56)

Similarly, by (1.6), (1.8), (1.9), (1.11), and (3.56), we get

∥w − wh∥1,∞,Ω ≤ Chm ∥w∥m+1,∞,Ω . (3.57)

Obviously, û ∈ Wm+1,∞(Ω). From (3.55) and (3.57),

∥û− ûh∥0,∞,Ω ≤ Chm+1| lnh| 23 ∥û∥m+1,∞,Ω ≤ Chm+1| lnh| 23 ∥û∥m+1,∞,Ur

≤ C(r)hm+1| lnh| 23 ∥u∥m+1,∞,Ur
,

(3.58)

∥û− ûh∥1,∞,Ω ≤ Chm ∥û∥m+1,∞,Ω ≤ Chm ∥û∥m+1,∞,Ur
≤ C(r)hm ∥u∥m+1,∞,Ur

. (3.59)

For every v ∈ Sh
0 (Ur2), since ũ|Ur2

= 0, we have a(ũ, v) = 0. Further, a(ũh, v) = a(ũ, v) = 0.

Obviously, ũ|Ur1
= 0. Let Ur∗ = {X : |X − Z| < r

2 , X ∈ Ω}. Obviously, Ur1 ⊂⊂ Ur∗ ⊂⊂ Ur2 .

Thus,

a(ũh, v) = 0 ∀ v ∈ Sh
0 (Ur∗) ⊂ Sh

0 (Ur2).

From Remark 2 and (3.25),

∥ũ− ũh∥1,∞,Ur1
= ∥ũh∥1,∞,Ur1

≤ C(r)h ∥ũh∥0,Ur∗
+ C(r) ∥ũh∥−1,Ur∗

≤ C(r) ∥ũh∥−1,Ur2
= C(r) ∥ũ− ũh∥−1,Ur2

≤ C(r) ∥u− uh∥−1,Ur
+ C(r) ∥û− ûh∥−1,Ur

.

(3.60)

Moreover,
∥û− ûh∥−1,Ur

≤ ∥û− ûh∥−1,Ω ≤ ∥û− ûh∥0,Ω
≤ Chm+1 ∥û∥m+1,Ω ≤ C(r)hm+1 ∥u∥m+1,Ur

.
(3.61)

Combining (3.60) and (3.61) yields

∥ũ− ũh∥1,∞,Ur1
≤ C(r)hm+1 ∥u∥m+1,Ur

+ C(r) ∥u− uh∥−1,Ur
. (3.62)

Since u = û+ ũ, by (3.59) and (3.62), we immediately obtain the result (3.51). In addition,

∥ũ− ũh∥0,∞,Ur1
≤ ∥ũ− ũh∥1,∞,Ur1

. (3.63)

Combining (3.58), (3.62), and (3.63) immediately yields the result (3.50). The proof of Theorem

3.1 is completed.

Similar to the arguments of Theorem 3.1, using (3.49), we easily obtain the following results.

Theorem 3.2. For every Z ∈ Ω̄, let Ur = {X : |X − Z| < r, X ∈ Ω}, and u and uh be the

solution of (1.1) and the m-degree (or tensor-product m-degree) finite element approximation.

When the integer k ≥ 0, q0 > 3, aij ∈ W k+2,∞(Ω), u ∈ Wm+1,∞(Ur) ∩ H1
0 (Ω), and ∂Ur is

smooth enough, we have

|(u− uh)(Z)| ≤ C(r)hm+1 |lnh|
2
3 ∥u∥m+1,∞,Ur

+ C(r) ∥u− uh∥−k−1,Ur
, (3.64)

and

|∇(u− uh)(Z)| ≤ C(r)hm ∥u∥m+1,∞,Ur
+ C(r) ∥u− uh∥−k−1,Ur

. (3.65)

Remark 3. As for the negative-norms in Theorems 3.1 and 3.2, we now give their bounds.

For each φ ∈ Hk+1(Ω), we have

|(u− uh, φ)| = |a(u− uh, φ̃−Πφ̃)| ≤ C ∥u− uh∥1 ∥φ̃−Πφ̃∥1 ,
where φ̃ ∈ Hk+3(Ω) ∩H1

0 (Ω), Lφ̃ = φ in Ω, φ̃ = 0 on ∂Ω, and Π is the m-degree (or tensor-

product m-degree) interpolation operator. When m ≥ 2 and 0 ≤ k ≤ m − 2, we have by the
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interpolation error estimate, the optimal approximation estimate, and the a priori estimate

|(u− uh, φ)| ≤ Chm+k+2 ∥u∥m+1 ∥φ̃∥k+3 ≤ Chm+k+2 ∥u∥m+1 ∥φ∥k+1 .

Thus we obtain

∥u− uh∥−k−1,Ω ≤ Chm+k+2 ∥u∥m+1 .

Hence

∥u− uh∥−k−1,Ur
≤ ∥u− uh∥−k−1,Ω ≤ Chm+k+2 ∥u∥m+1 .

When m = 1, we have

∥u− uh∥−1,Ur
≤ ∥u− uh∥−1,Ω ≤ C ∥u− uh∥0,Ω ≤ Ch2 ∥u∥2 .

The above results show that the negative norms do not spoil the order of superconvergence.
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