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Misclassification analysis of discriminant model

HUANG Li-wen1,2

Abstract. This paper extends the criterion of the misclassification ratio of discriminant model

and presents a new selection method of discriminant model. For selecting the discriminant

model, this method establishes the rule of misclassification degree ratio through misclassification

ratio of the discriminant model and misclassification degree of the samples. To test the effect

of this method, this work uses seven UCI data sets. Numerical experiments on these examples

indicate that this method has certain rationality and has a better effect to select a discriminant

model.

§1 Introduction

Discriminant Analysis is a statistical method that is used to determine the sample type,

and it was introduced by Fisher[1] for two-class problems. Over the past decades, many well-

developed approaches have been proposed in order to improve the performance of discriminant

models. Shinmura[2] summarized the problem of some discriminant methods and presented

the new theory of discriminant analysis after Fisher. Among these methods, Song et al.[3],

Li and Lei[4], and Hidaka et al.[5] have proposed new methods to improve the application of

the method ; Chen and Li[6], Ji et al.[7], Huang and Su[8], Xu et al.[9], and Huang[10] have

modified the corresponding discriminant analysis method in order to enhance the classification

performance; Tang et al.[11], Yang et al.[12], Zhang and Wang[13], and Pacheco et al.[14] have

mainly raised the effect of discriminant analysis from the perspective of variable selection or

dimensionality reduction. However, most of the current approaches were designed to minimize

the misclassification ratio (MR) or maximize the accurate rate. In fact, these methods implicitly

assume that the misclassification cost of every sample is equal, but in many real-world domains,

the misclassification cost is often different. For example, in medical diagnosis, when a healthy

person is misclassified as catching a cold, its misclassification cost is often less than the person

that is misclassified as a cancer patient.
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For this reason, cost-sensitive learning methods of discriminant model have been an increas-

ing interest in statistics, pattern recognition, data mining, machine learning and other fields,

see Mcdonald[15], Pan et al.[16], Bahnsen et al.[17]. These methods usually use the minimum

cost-sensitive risk to measure the performance of the discriminant model, and the misclassi-

fication costs of different samples play a crucial role in the construction of the cost-sensitive

learning model. However, in many contexts of an imbalanced dataset, the misclassification cost

cannot be determined (Cao et al., [18]). To avoid this kind of situation, a selection method

of discriminant model has been proposed (Huang, [19]), and an evaluation of misclassification

sample was established with the help of Analytic Hierarchy Process, but this method needs

background knowledge of related questions to determine the impact of misclassified samples,

and their results may be different due to the different evaluators. However, in multi-class clas-

sification, a sample belonging to one class may be misclassified as the other classes; in this

situation, it is hoped that the impacts of the misclassified samples will be achieved a minimum

degree for all possible misclassification. For this purpose, this paper presents a new approach

and introduces the new concept of misclassification degree (MD), and its basic idea can be

described as follows: if a sample belongs to one class, but it is misclassified as the other class;

it is hoped that the difference between the original class and the predictive class should be

kept as small as possible. This paper focuses on the selection methods of a discriminant model.

The goal is to establish the evaluation rules of discriminant models based on the MR and the

MD, namely the total misclassification degree (TMD) and the misclassification degree ratio

(MDR). Then, according to the proposed rules, a method of selecting the discriminant model

is discussed, the purpose of which is to make the misclassification degree of the selected model

as small as possible.

In the following sections, the paper will discuss the misclassification degree ratio of the

discriminant model in section 2, numerical experiments are presented to demonstrate the effec-

tiveness of the proposed method in section 3, and conclusions are given in the last section.

§2 Misclassification degree ratio of discriminant model

Given k > 0, suppose that there are k classes (G1, G2, . . . , Gk), whereGp : x
(p)
(1), x

(p)
(2), . . . , x

(p)
(np)

.

Let µ(p) be the average of Gp, which is expressed as µ(p) =
(
µ
(p)
1 , µ

(p)
2 , . . . , µ

(p)
m

)′
. Denote np

as the sample size of class Gp, p = 1, 2, . . . , k. In this paper, assuming that x is an arbitrary

given sample, µ is the average of the total training sample data with µ = (µ1, µ2, . . . , µm)
′
, and

X = (x(1), x(2), . . . , x(n))
′, where x(i) is the i-th sample,i = 1, 2, . . . , n, n =

k∑
p=1

np.

2.1 Misclassification matrix

Suppose that the discriminant model has been established by the training samples. Let nij

(i ̸= j) be the number of the samples belonging to Gi that are misclassified as Gj , set nii = 0

when i = j, then the results of misclassification are given in Table 1.
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Table 1. Misclassification matrix.

Original class
Predictive class

Sample size

G1 G2 . . . Gk

G1 0 n12 . . . n1k n1

G2 n21 0 . . . n2k n2

. . . . . . . . . . . . . . . . . .
Gk nk1 nk2 . . . 0 nk

From Table 1, if p (Gi|xj) is the probability of the sample xj (xj ∈ Gj) that is misclassified

as Gi, then p (Gi|xj) can be expressed by the following form.

p (Gi|xj) =
nji

n .

Similarly, if the total number of misclassification samples is denoted by TNM, then

TNM =
k∑

i=1

k∑
j=1
i ̸=j

nij .

Thus, MR of the discriminant model can be computed by the following formula:

MR = TNM
n × 100%.

2.2 The measure of misclassification degree

The measure of MD is the key to the evaluation of discriminant model. If the expert

evaluation method is adopted, the evaluation results of different evaluators may have some

differences, which indicates that this method has certain subjectivity. So this paper tries to

measure MD by using the difference between the sample and its corresponding predictive class,

and then proposes a new method in order to select a better discriminant model.

In general, it is hoped that the MD can avoid the influence of dimension and the correlation

between variables, and reflect the degree of misclassified samples as much as possible. Euclidean

distance is a common method to measure the closeness of two research objects, but the method is

affected by the dimension. To overcome this drawback, it should usually be dimensionless first.

For a single variable, there are many methods for dimensionless processing. Common methods

include standardization, equalization, Min-max normalization, Efficacy coefficient method, and

so on. For multi-variables, although these methods can be used for dimensionless processing,

they cannot eliminate the correlation between variables. The Mahalanobis distance overcomes

these two problems, that is, it can eliminate not only the dimension, but also the correlation

between variables. Therefore, with the advantage of the Mahalanobis distance, the concept of

the MD between the sample and the class is introduced below.

Definition 2.1. Let x ∈ Gp, µ
(p) =

(
µ
(p)
1 , µ

(p)
2 , . . . , µ

(p)
m

)′
and V is the variance-covariance

matrix of X, then the distance between the samples x and Gp is defined as follows:
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d (x,Gp) =
√(

x− µ(p)
)′
V −1

(
x− µ(p)

)
.

Given a sample x ∈ Gp, if x is misclassified as Gq, and the difference between Gp and Gq is

smaller, then its MD is smaller. So the MD of the sample can be defined by the following form.

Definition 2.2. Given x ∈ Gp, if x is misclassified as Gq, then the MD of x is defined as

follows:

C (Gq|x) = |d(x,Gq)−d(x,Gp)|
d(x,Gp)

.

In Definition 2.2, for any given sample x ∈ Gp, if q ̸= p, then C(Gq|x) ≥ 0. This shows its

MD is greater than or equal to zero when the sample of Gp is misclassified as Gq. In general,

the MD of a sample is related to the difference between Gp and Gq according to the Definition

2.2, and when the difference between Gp and Gq becomes larger, the value of C (Gq|x) also

becomes larger.

Due to the above discussions, the misclassification degree has the following conclusions.

Theorem 2.1. Let Gp and Gq be two different classes, and the relationship of two classes are

not inclusion and disjoint each other. If x ∈ Gp, then C (Gq|x) is dimensionless.

Proof. Suppose Gp and Gq are two different classes, and the corresponding new classes are

denoted by G∗
p and G∗

q after the units of the original variables are changed. Let w(p), w, y be the

sample average of G∗
p, the average of new training sample data, the new arbitrary given sample,

respectively. Then there exists a diagonal matrix α such that w(p) = αµ(p), w = αµ, y = αx,

where α = diag (α1, α2, . . . , αm) and αi > 0,i = 1, . . . ,m.

Let V be the variance-covariance matrix of X, then

V =
1

n− 1

n∑
i=1

(x(i) − µ)(x(i) − µ)′

=
1

n− 1
(X − Iµ′)′(X − Iµ′)

.

where I = (1, 1, . . . , 1)′m1.

If Y is the data set of new variables, and V ∗ be the variance-covariance matrix of Y , then

Y = Xα,

V ∗ =
1

n− 1
(Y − Iw′)′(Y − Iw′)

=
1

n− 1
(Xα− I(αµ)′)′(Xα− I(αµ)′)

=
1

n− 1
(Xα− Iµ′α′)′(Xα− Iµ′α′)

=
1

n− 1
α′(X − Iµ′)′(X − Iµ′)α

= α′V α

.

If y is misclassified as G∗
q , then



184 Appl. Math. J. Chinese Univ. Vol. 38, No. 2

d
(
y,G∗

p

)
=

√(
y − w(p)

)′
V ∗−1

(
y − w(p)

)
=

√(
x− µ(p)

)′
α′α−1V −1(α′)−1α

(
x− µ(p)

)
=

√(
x− µ(p)

)′
V −1

(
x− µ(p)

)
= d (x,Gp)

Similarly, d
(
y,G∗

q

)
= d (x,Gq). Thus,

C
(
G∗

q |y
)
=

|d(y,G′
q)−d(y,G′

p)|
d(y,G′

p)
=

|d(x,Gq)−d(x,Gp)|
d(x,Gp)

= C (Gq|x)

That is, C(Gq|x) is dimensionless.

Theorem 2.2. If X is eliminated the dimension by standardization and equalization respec-

tively, C (Gq|x) remains the same.

Proof. After X is eliminated the dimension by standardization, let y and Y be the arbitrary

sample and the new data set of new variables, and let the classes corresponding to Gp and Gq

be G′
p and G′

q respectively. Similarly, after X is eliminated the dimension by equalization, let

z and Z be the arbitrary sample and the new data set of new variables, and let the classes

corresponding to Gp and Gq be G∗
p and G∗

q respectively. So y, z, Y and Z can be expressed as

follows:

y = α(x− µ), z = βx, Y = (X − Iu′)α,Z = Xβ.

where α = diag( 1
σ1
, 1
σ2
, . . . , 1

σm
), β = diag( 1

µ1
, 1
µ2
, . . . , 1

µm
), and I = (1, 1, . . . , 1)′m1.

if V ∗
1 is the variance-covariance matrix of standardization, and V ∗

2 is the variance-covariance

matrix of equalization, then

V ∗
1 =

1

n− 1
Y ′Y

=
1

n− 1
(Xα− I(αµ)′)′(Xα− I(αµ)′)

=
1

n− 1
(Xα− Iµ′α′)′(Xα− Iµ′α′)

=
1

n− 1
α′(X − Iµ′)′(X − Iµ′)α

= α′V α

.

d
(
y,G′

p

)
=

√(
y − α(µ(p) − µ)

)′
V ∗−1
1

(
y − α(µ(p) − µ)

)
=

√(
x− µ(p)

)′
α′α−1V −1(α′)−1α

(
x− µ(p)

)
=

√(
x− µ(p)

)′
V −1

(
x− µ(p)

)
= d (x,Gp)
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Using the similar method, d
(
y,G′

q

)
= d (x,Gq) , V

∗
2 = β′V β, d

(
z,G∗

p

)
= d (x,Gp) and

d
(
z,G∗

q

)
= d (x,Gq).

Hence, C (Gq|x) = C
(
G′

q|y
)
= C

(
G∗

q |z
)
.

That is, C (Gq|x) remains the same.

Theorem 2.3. Let Gp and Gq be two different classes, and the relationship of two classes

are not inclusion and disjoint each other. If d
(
x
(p)
(i) , Gp

)
= d

(
x
(p)
(j) , Gp

)
and d

(
x
(p)
(i) , Gq

)
<

d
(
x
(p)
(j) , Gq

)
, then C

(
Gq|x(p)

(i)

)
< C

(
Gq|x(p)

(j)

)
.

Theorem 2.4. Let Gp, Gq and Gt be three different classes, and these classes are not inclusion

and disjoint each other. Let x ∈ Gt. If d (x,Gp) < d (x,Gq), then C (Gp|x) < C (Gq|x).

From Theorem 2.1 to Theorem 2.4, the MD is dimensionless, after the original data is

eliminated the dimension by standardization or equalization, its value remains the same, and

its value is related to the distance between the sample and the predictive class. If the predictive

class is the original class, then its MD is equal to zero. Furthermore, as the difference between

the sample and the predictive class increases, the MD of the sample also increases.

2.3 Misclassification degree analysis

From section 2.2, the MD of each sample is usually not the same. For a discriminant model,

on the one hand, it is hoped that the MD will be smaller; on the other hand, it is hoped that

the misclassification probability of the sample will be kept as small as possible. Furthermore, if

all the misclassified samples can achieve the minimum MD and the minimum misclassification

probability, then the corresponding discriminant model works best. Thus, for selecting a better

discriminant model, the concept of total misclassification degree (TMD) is introduced by the

following form.

Let G be a class that includes all the misclassification samples, and let Gx be the class that

the sample x is misclassified, where Gx is one of a class in G1, G2, . . . , Gk, and Gx varies with

the sample x, then the definition of TMD is outlined below.

Definition 2.3. If x ∈ G,C (Gx|x) is the MD of the sample x that is misclassified as Gx, and

p (Gx|x) is the probability of the sample x that is misclassified as Gx, then TMD of discriminant

model is defined as follows:

TMD =
∑
x∈G

C (Gx|x) p (Gx|x)

In general, it is hoped that the value of TMD can be kept as small as possible. When its

value is smaller, it can be considered that the effect of the discriminant model is better. So the

criterion of selecting discriminant model can be described as follows:

Rule 2.1. Suppose there are several discriminant models v1, . . . , vs, s > 0. The TMD of dis-

criminant model vi is denoted by TMD (vi) , i = 1, 2, . . . , s. If TMD (vt) = min
1≤i≤s

{TMD (vi)},
then vt is the best model in these discriminant models.
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As shown in Rule 2.1, this rule can help to select a relatively better model from multiple

discriminant models. However, it can not give a valid evaluation for a single discriminant model.

To overcome this drawback, it is necessary to discuss the misclassification degree ratio (MDR)

of discriminant model.

Suppose C (Gx|x) is the MD of the sample x that is misclassified as Gx, then the MDR of

the sample x can be expressed by the following form:

C(Gx|x)
k∑

i=1
C(Gi|x)

× 100%

For the sake of convenience, let Cx be the average misclassification degree (AMD) of the

sample x, then Cx = 1
k−1

k∑
i=1

C (Gi|x). The value of C(Gx|x)
k∑

i=1

C(Gi|x)
may become small as the class

increases, so the form of C(Gx|x)
k∑

k=1

C(Gi|x)
can be replaced by C(Gx|x)

Cx
in order to avoid this from

happening. Thus, the total average misclassification degree (TAMD) of discriminant model

can be described as follows:

TAMD =


1
n

∑
x∈G

C(Gx|x)
Cx

× 100% TNM ̸= 0

0 TNM = 0

Generally, if the value of TAMD is smaller, then the effect of the discriminant model is better.

Combined with the misclassification ratio of discriminant model, it is hoped that TAMD and

MR can achieve the minimum value for a discriminant model, so the evaluation criterion can

be described as follows:

Rule 2.2. Let TAMD be the total average misclassification degree of discriminant model, MR is

the misclassification ratio of discriminant model, then the misclassification degree ratio (MDR)

of discriminant model can be expressed by the following formula:

MDR = min{
√
TAMD ×MR, 100}

According to the Rule 2.2 above, the MDR of discriminant model has the following propo-

sitions:

Proposition 2.1. 0 ≤ min{TAMD,MR} ≤ MDR ≤ max{TAMD,MR} ≤ 100.

Proposition 2.2. If C (Gx|x) = C, then MDR = MR.

Proposition 2.3. Let G be a group that includes all the misclassification samples, for any

given sample x, if x ∈ Gj (1 ≤ j ≤ k) and C (Gx|x) < Cx, where Cx = 1
k−1

k∑
i=1

C (Gi|x), then

MDR ≤ MR.

Proof. if TNM = 0, then MDR = 0 = MR.

if TNM ̸= 0 and C (Gx|x) < Cx, then
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C(Gx|x)
Cx

< 1

Hence,

TAMD = 1
n

∑
x∈G

C(Gx|x)
Cx

× 100% < 1
n

∑
x∈G

1× 100% = TNM
n × 100% = MR

Namely, MDR =
√
TAMD ×MR < MR.

To sum up, MDR ≤ MR.

Similar to the proof of the Proposition 2.3, the other proposition can be obtained as follows:

Proposition 2.4. Let G be a group that includes all the misclassification samples, for any

given x, if x ∈ Gj (1 ≤ j ≤ k) and C (Gx|x) > Cx, here Cx = 1
k−1

k∑
i=1

C (Gi|x), then MDR ≥

MR.

From these MDR propositions mentioned above, it is easy to determine whether the MD of

the sample is greater than its AMD through the comparative analysis between MR and MDR.

If MDR<MR, then the MD of the sample is less than its AMD ; if MDR>MR, then the MD of

the sample is greater than its AMD.

Thus, for a discriminant model, an appropriate value of MR can be set as the threshold

according to requirement of the actual problem, and if MR>MDR, then the corresponding

model works well; if MR<MDR, then the corresponding model achieves poor effect, which

shows that the MD of sample is relatively larger.

§3 Numerical experiments

To evaluate the effect of MDR, seven data sets are selected from UCI Machine Learning

Repository (Dua and Karra Taniskidou, [20]). These data sets are Iris Data Set, Balance Scale

Data Set, Banknote Authentication Data Set, Breast Tissue Data Set, Vertebral Column 2c

Data Set, Vertebral Column 3c Data Set, and Ecoli Data Set, respectively. Table 2 lists the basic

information of seven data sets. Subsequently, in order to test the effect ofMDR, the discriminant

models are established by the following discriminant analysis methods, Discriminant Method of

SPSS 18 (SPSS), Bayes Stepwise Discriminant Method (BSDM), Fisher Stepwise Discriminant

Method (FSDM), and Hierarchical Discriminant Method (HDM).

In general, a certain discriminant method can not achieve better results than other methods

in any case, so it is important to select an appropriate method. For the above four methods,

the discriminant method in SPSS is suitable for the discriminant problem of the small sample,

and its algorithm efficiency is general. In particular, when the sample is larger, its memory

consumption is also larger and the efficiency of the algorithm is lower too. BSDM is proposed

based on the conditions that the discriminant data has normality and equal covariance matrix.

When the discriminant data meets these two conditions, good results can be achieved. The

algorithm runs fast and the computational complexity is O(k ∗ n ∗m). FSDM has no special
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Table 2. Information of data set.

Data set Sample number Variable Class number

Iris 150 4 3
Balance Scale 625 4 3

Banknote Authentication 1372 4 2
Breast Tissue 106 9 6

Vertebral Column 2c 310 6 2
Vertebral Column 3c 310 6 3

Ecoli 336 7 8

Table 3. Misclassification matrix.

Original Class
Predictive class

Sample size

G1 G2 G3

G1 0 0 0 50
G2 0 0 2 50
G3 0 1 0 50

requirement for the discriminant data. Its discriminant effect is related to the type of data.

When the discriminant data is the large between-class difference and the small within-class

difference, the effect is better. When the difference of each class is small or there is an inclusion

relationship between the classes , the effect is poor. The efficiency of the algorithm is high, and

the computational complexity is O(k ∗n∗m). HDM is an improved discriminant method based

on FSDM. Theoretically, there is no special requirement for the discriminant data. This method

has advantages of FSDM, and it can deal with the discriminant problem of one class surrounded

by the other class. The algorithm does not run as fast as FSDM, and the computational

complexity is O(k ∗ n ∗m) ∼ O(k ∗ nlogn ∗m).

Taking the Iris data set as an example, and the specific processes of the misclassification

analysis using the SPSS method is as follows.

(1) From Section 2.1, the misclassification cases of the method (SPSS) are given in Table 3.

(2) As the results given in Table 3, there are three misclassification samples. From Section

2.2, the degree of each misclassification sample is given in Table 4.

(3) From Section 2.3, the MDR of the SPSS method can be computed by the Rule 2;

Similarly, the MDR of other methods can be obtained by following the same steps, and all

results are given in Table 5.

From the MR, the effect of four methods is as follows: FSDM > SPSS = HDM > BSDM.

But from the MDR, the effect of four methods is as follows: FSDM > HDM> SPSS > BSDM.

Table 4. Misclassification degree.

NO. Original Class Predictive class
Misclassification degree

G1 G2 G3

71 G2 G3 0.19 0.00 0.28
84 G2 G3 1.10 0.00 0.37
134 G3 G2 0.44 0.31 0.00
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Table 5. Misclassification analysis.

Rule
Discriminant method

SPSS BSDM FSDM HDM

MR 2.00% 4.00% 1.33% 2.00%
MDR 1.84% 3.61% 1.04% 1.53%

Table 6. Misclassification analysis of discriminant model.

Data set
Discriminant method

SPSS BSDM FSDM HDM

Balance Scale 11.84%a/10.10%b 30.72%a/25.08%b 31.36%a/25.52%b 20.16%a/18.13%b

Banknote Authentication 2.33%a/ 2.33%b 2.33%a/ 2.33%b 2.33%a/ 2.33%b 0.80%a/ 0.80%b

Breast Tissue 25.47%a/21.06%b 30.13%a/22.89%b 47.17%a/28.02%b 33.02%a/24.98%b

Verbetra 2c 14.19%a/14.19%b 19.36%a/19.36%b 19.36%a/19.36%b 23.23%a/23.23%b

Verbetra 3c 18.17%a/17.45%b 19.36%a/18.78%b 31.29%a/27.34%b 26.45%a/23.89%b

Ecoli 11.31%a/ 8.17%b 15.18%a/ 9.84%b 41.67%a/28.82%b 17.26%a/ 8.57%b

a Misclassification ratio; b Misclassification degree ratio.

As can be seen from the above two results, the effect of selecting models with MR and MDR

is basically the same. However, SPSS and HDM have the same MR, it is difficult to estimate

the effect of two methods. But from the MDR, it is easy to know that HDM is superior to

SPSS. In addition, results given in Table 4 indicate the MD of each misclassification sample is

different, and it is hoped that they would be kept as small as possible. Results given in Table

5 indicate the values of MDR are less than the corresponding values of MR, which shows the

misclassification degree of each sample is less than the corresponding average misclassification

degree in each method, and if the threshold of MR is set to 15% (this value can be set according

to actual problem), four methods have achieved good effect, and the corresponding discriminant

model has a relatively small misclassification degree.

Therefore, compared with MR, MDR has several potential advantages: (1) Reflect the

difference between the misclassification samples and each class. (2) Embody the relationship

between the MD of the misclassification sample and its AMD, that is, when the ratio of the

MD of the misclassification sample to its AMD is smaller, the value of MDR is smaller. (3)

Since the MR treats the importance metrics of misclassification samples equally and ignores

the differences between them, the MDR can better measure the effectiveness of the models.

Similar to misclassification analysis of the Iris data set, the results of other data sets are

given in Table 6.

Results given in Table 6 indicate the discrimination results of each method are often different,

and the single discriminant method is unlikely superior to other discriminant methods in any

case. Therefore, for a given practical problem, it is important to choose a suitable method to

establish a discriminant model. On the whole, the SPSS method achieves a better effect than

the other three methods regardless of the classification performance measured by MR, or the

classification performance measured by MDR. However, for a certain data set, if the MDR is

greater than the corresponding MR, the MD of the misclassification samples is greater than
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their average MD.

As shown in the numerical experiments above, a good discriminant model should make

its MR and its MDR as small as possible. In practical applications, for a single discriminant

model, if the threshold of MR is set, then its performance can be measured by the comparative

analysis of MR and MDR. For multiple discriminant models, the best model corresponds to the

minimum MDR.

§4 Conclusion

This paper has extended the criterion of the MR of discriminant model and presented the

MDR of discriminant model. In most practical applications, the misclassification cost of each

sample is often not equal. Although the misclassification cost of the sample is difficult to

determine, this paper overcomes this drawback through the MD of the sample. To select a

better discriminant model, the criterion of MDR has been established by the MR and MD of

the samples. Numerical experiments on illustrative examples indicate that the performance of

discriminant model can be measured by the comparative analysis of MR and MDR, and the

proposed method is helpful to select a better discriminant model.
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