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On the partial stability of nonlinear impulsive Caputo

fractional systems

Boulbaba Ghanmi Saifeddine Ghnimi

Abstract. In this work, stability with respect to part of the variables of nonlinear impulsive

Caputo fractional differential equations is investigated. Some effective sufficient conditions of

stability, uniform stability, asymptotic uniform stability and Mittag Leffler stability. The ap-

proach presented is based on the specially introduced piecewise continuous Lyapunov functions.

Furthermore, some numerical examples are given to show the effectiveness of our obtained the-

oretical results.

§1 Introduction

The theory of differential equations with impulse effects of integer order has found extensive

applications in realistic mathematical modeling of a wide variety of practical situations and has

emerged as an important area of investigation in recent years. However, impulsive differential

equations of fractional order have not been extensively studied and many aspects of these

equations are yet to be explored. The study of these equations was initially carried out very

slowly. This was due to the great problems caused by the specific properties of the impulsive

equations such as beating, bifurcation, merging and dying of the solutions. Despite these

difficulties, a boom in the development of the theory of impulsive differential equations of

fractional order is observed recently.

In addition, in recent decades, the study of fractional order systems has gained impor-

tance [6,9,24]. The fractional calculus has been considered as the generalization of the classical

integer-order calculus which motivates several authors to take a serious interest in this calculus.

In [21,22], some comparison theorems are established, and the author investigated the problem

of asymptotic stability and Mittag-Leffler stability of impulsive fractional differential equa-

tions. As for [11], several sufficient conditions are given to guarantee proprieties of the global

asymptotic stability and global Mittag-Leffler stability for impulsive fractional-order differential

equations on networks. In [23], the author investigated the global Mittag-Leffler stability and

synchronization for the proposed delayed fractional-order neural networks by means of appro-

priate impulsive perturbations. Furthermore, stability analysis of Hilfer fractional differential
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systems are shown in [15]. On the other hand, in [27], the authors described the asymptotical

stability of a nonlinear fractional differential system with Caputo derivative.

In the literature, the traditional Lyapunov theory attempts to assess the stability, asymp-

totic stability and instability of a system with respect to all of the variables. In recent years

considerable attention has been paid to the generalization of these stability concepts in several

directions. In particular, the concept of partial stability or stability with respect to a part of the

variables has been studied by several authors for ordinary differential equations and nonlinear

fractional differential equations, as e.g. V V Roumiantzeff [17], C Corduneanu [4,5], N Rouche

and K Peiffer [16], O Akinyele [1] and [3,7,18-20,25]. Recently, A B Makhlouf [3] investigated the

problems of partial stability or, briefly, the PSt-problem related to nonlinear Caputo fractional

differential equations without impulse effects. Sufficient conditions of stability, uniform stabil-

ity, Mittag Leffler stability and asymptotic uniform stability are obtained within the method

of Lyapunov-like functions. However, to the best of our knowledge, no paper in the literature

has tackled the PSt-problem analysis for fractional order systems with impulse effects. By this

fact, the main contribution of this paper is to study PSt-problem of nonautonomous systems

with impulse effects in the sense of Caputo fractional derivative. This paper is organized as

follows: In Section 2, some definitions and notations are given, and the concept of stability with

respect to part of the variables is presented. Sufficient conditions for stability, uniform stability,

asymptotic uniform stability and Mittag-Leffler stability with respect to part of the variables of

nonlinear impulsive fractional systems are the focus of Section 3. In Section 4, some examples

are worked out to illustrate the main results.

§2 Preliminary Notes

In this section a brief description of the main classes of fractional equations that will be

used in the paper.

Definition 2.1. [6] The Riemann-Liouville fractional integral of an arbitrary integrable func-

tion l on the interval [a, b] of order α ∈ (0, 1) is defined by

Iαa l(t) =
1

Γ(α)

∫ t

a

(t− s)α−1l(s)ds, t ∈ [a, b]

where Γ(z) =

∫ +∞

0

tz−1e−tdt is the Gamma function which converges in the right-half of the

complex plane Re(z) > 0.

Definition 2.2. [6] Given an interval [a, b] of R, the Caputo fractional derivative of a function

l of order α > 0 is defined by
cDα

a,tl(t) = Im−α
a l(m)(t)

where m stands for the smallest integer not less than α. When α ∈ (0, 1), the Caputo fractional

derivative of order α, for a function l ∈ C1
(
[a, b],Rn

)
, b > a, is defined as

cDα
a,tl(t) =

1

Γ(1− α)

∫ t

a

l′(s)

(t− s)α
ds, t ∈ [a, b].

In the theory of integer-order differential systems, the exponential function is frequently

used. In this work, we shall use the Mittag-Leffler function which plays an important role in

the theory of non-integer order differential equations.
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Definition 2.3. [9] The Mittag-Leffler function with two parameters α, β > 0 is defined as

Eα,β(z) =

+∞∑
k=0

zk

Γ(kα+ β)

where z ∈ C. For β = 1, we have Eα(z) = Eα,1(z) =
+∞∑
k=0

zk

Γ(kα+ 1)
and E1,1(z) = ez

2.1 Definitions of stability with respect to part of the variables

Let Rn be the n−dimensional Euclidean space with norm ∥.∥ and Ω be an open set in

Rm,m ≤ n containing the origin 0Rm . Consider the nonlinear systems of impulsive fractional

differential equations for β ∈ (0, 1)
cDβ

t0,tx(t) = f(t, (y(t), z(t)), t ̸= τk, k = ±1,±2, ...

△x(τk) = Ik(x(τ
−
k )), t = τk, k = ±1,±2, ...

(1)

where xT = (yT , zT ) ∈ Rm × Rp, f : R × Ω × Rp → Rn, τk < τk+1, k = ±1,±2, ... such

that lim
k→±∞

τk = ±∞ and Ik : Ω × Rp → Rn. Throughout this paper, suppose the variables

constituting the phase vector x of system (1) are divided into two groups xT = (yT , zT ) =

(y1, .., ym, z1, ..., zp), y ∈ Rm, z ∈ Rp, m > 0, p ≥ 0, n = m + p, namely the y−variables with

respect to which the stability of x = 0 is to be investigated and the remaining z−variables.

More precisely, this partitioning depends on the nature of the problem under study. In

general, we assume that the choice of variables has already been made at the moment when a

partial stability problem has to be analyzed. The z−variables are correspondingly called the

uncontrollable variables.

Throughout this paper, the following notation is adopted

∥y∥ =
( m∑

i=1

y2i

) 1
2

, ∥z∥ =
( p∑

i=1

z2i

) 1
2

and ∥x∥ =
(
∥y∥2 + ∥z∥2

) 1
2

.

Let t0 ∈ R, x0 ∈ Ω × Rp. Denote by x(t) , x(t, t0, x0) the solution of system (1) satisfying

the initial condition x(t+0 , t0, x0) = x0. In this paper, the functions f and Ik, k = ±1,±2, ...,

are smooth enough on R×Ω×Rp and Ω×Rp, respectively, to guarantee existence, uniqueness

and continuability of the solution x(t) of the system (1) on the interval [t0,+∞) for all suitable

initial data x0 ∈ Ω × Rp and t0 ∈ R. We also assume that the functions E + Ik : Ω × Rp →
Ω× Rp, k = ±1,±2, ..., where E is the identity in Ω× Rp.

Note that, the solutions x(t) of system (1) are, in general, piecewise continuous functions

with points of discontinuity of the first kind at which they are left continuous, that is, at the

moments τk, k = ±1,±2, ..., the following relations are satisfied

x(τ−k ) = x(τk) and x(τ+k ) = x(τk) + Ik(x(τk)) = x(τk) +△x(τk)

where x(τ+k ) := lim
h→0+

x(τk + h) and x(τ−k ) := lim
h→0+

x(τk − h) represent the right- and left-sided

limits of x(t) at t = τk, respectively. Note that in theory of differential and fractional impulsive

systems, the elements of the sequence (τk)k∈Z are the moments of impulsive perturbations due

to which the state x(t) changes from the position x(τk) into the position x(τ+k ) and the functions

Ik characterize the magnitude of the impulse effect at the moments τk.
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In the following, we recall the next Lyapunov stability definitions for the system (1) that

will be used in this paper.

Definition 2.4. (Partial Boundedness) The solutions of system (1) are uniformly bounded with

respect to y ( y−uniformly bounded, y−UB) if there exists a positive constant c, independent of

t0, and for every a ∈ (0, c), there is β = β(a) > 0, independent of t0, such that for all x0 ∈ Rn,

∥x0∥ < a, we have

∥y(t, t0, x0∥ ≤ β, t ≥ t0.

Definition 2.5. [25](Partial Stability)

The equilibrium point x = 0 of impulsive fractional-order system (1) is said to be:

(a) Stable with respect to y (or, briefly, y−Stable (y−St)), if for any numbers ε > 0, t0 ∈ R+,

there exists δ = δ(t0, ε) > 0 such that from ∥x0∥ < δ it follows that ∥y(t, t0, x0)∥ < ε for

all t ≥ t0.

(b) Uniformly stable with respect to y (y−Uniformly stable, y− USt), if is y−St and δ does

not depend on t0.

Definition 2.6. [3,24](Partial Attractivity) The equilibrium point x = 0 of impulsive fractional-

order system (1) is said to be:

(a) Attractive with respect to y or briefly y−Attractive (y−A), if for all t0 ∈ R, there exists

λ = λ(t0) > 0 such that for all x0 ∈ Ω× Rp, ∥x0∥ < λ, we have

lim
t→+∞

∥y(t, t0, x0)∥ = 0. (2)

The domain ∥x0∥ < λ, being contained in the domain of y−attraction of the point x = 0

for the initial time t0.

(b) Equi-attractive with respect to y or briefly y−Eq-Attractive (y−Eq-A), if for all (t0, ϵ) ∈
R×R∗

+, there exist λ = λ(t0) > 0 and T = T (t0, ϵ) > 0 such that, for all x0 ∈ Ω, ∥x0∥ < λ,

we have

∥y(t, t0, x0∥ < ϵ, ∀ t ≥ T + t0.

(c) Uniformly attractive with respect to y (y−UA), if it is y−Eq-A with λ and T are indepen-

dent of t0 ∈ R.

(d) Globally equi-attractive with respect to y, if for all t0 ∈ R, ν, ϵ ∈ R∗
+, there exist γ =

γ(t0, ν, ϵ) > 0 such that, for all x0 ∈ Rn, ∥x0∥ < ν, we have

∥y(t, t0, x0∥ < ϵ, ∀ t ≥ t0 + γ.

(e) Globally uniformly attractive with respect to y (y−GUA) if the number γ in (d) is inde-

pendent of t0 ∈ R.

Definition 2.7. [20,24,25](Partial Asymptotic Stability)

The equilibrium point x = 0 of impulsive fractional-order system (1) is said to be:

(a) Asymptotically stable with respect to y (y−ASt), if it is y−St and y−A

(b) Uniformly asymptotically stable with respect to y (y− UASt), if it is y− USt and y−UA
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(c) Globally equi-asymptotically stable with respect to y , if it is y−St and globally equi-

attractive;

(d) Globally uniformly asymptotically stable with respect to y (y−GUASt), if it is y−USt and

y−GUA and the solutions of system (1) are y−UB.

Definition 2.8. [3](Partial Mittag-Leffler Stability)

The equilibrium point x = 0 of impulsive fractional-order system (1) is said to be Mittag-Leffler

stable with respect to y (y−M-LSt) , if given δ > 0, we have ∥x0∥ < δ implies

∥y(t, t0, x0)∥ ≤
[
m(x0)Eα(−λ(t− t0)

α
]b
, for all t ≥ t0 (3)

where α ∈ (0, 1), λ > 0, b > 0 , m(0) = 0, m(x) ≥ 0 and m is locally Lipschitz continuous with

respect to x ∈ Ω× Rp, ∥x∥ < δ.

Remark 2.1. Mittag-Leffler stability of a solution of system (1), implies its asymptotic stability

(see [12,13]).

Remark 2.2. Geometrically, the definitions introduced mean the following. In the case of

y−St, inside any ϵ−cylinder ∥y∥ < ϵ is a δ−sphere ∥x0∥ = δ such that any solution x(t, t0, x0)

of system (1), once originated from the δ−sphere at t = t0, will remain inside the ϵ−cylinder

for all t ≥ to. In the case of y−ASt, the solution x(t) will, in addition, asymptotically approach

the ϵ−cylinder axis.

The fact that the solutions of (1) are piecewise continuous functions requires introducing

some analogous of the classical Lyapunov functions which have discontinuities of the first kind

[2, 10]. By means of such functions it becomes possible to solve basic problems related to the

application of Lyapunov second method to impulsive fractional systems.

Let τ0 = t0 ∈ R and introduce the sets

Gk = {(t, x) ∈ R× Ω× Rp : τk−1 < t < τk}, k = ±1,±2, .... and G =
∪

k=±1,±2,....

Gk.

Definition 2.9. [24] A function V : R× Ω× Rp → R+ belongs to the class V0, if

1. V (t, x) is continuous in G and locally Lipschitz continuous with respect to its second

argument on each of the sets Gk, k = ±1,±2, ....

2. For each k = ±1,±2, ... and x ∈ Ω× Rp, there exist the finite limits

V (τ−k , x) = lim
t→τk
t<τk

V (t, x), V (τ+k , x) = lim
t→τk
t>τk

V (t, x)

and the following equalities are valid

V (τ−k , x) = V (τk, x).

Definition 2.10. [24] Let t ∈ [τk, τk+1), k = ±1,±2, ... and x ∈ Ω×Rp. The upper right-hand

derivative of V in the Caputo sense of order β, 0 < β < 1, with respect to system (1) is defined

by
cDβ

+V (t, x) = lim
χ→0+

sup
1

χβ

[
V (t, x)− V (t− χ, x− χβf(t, x))

]
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Remark 2.3. [6, 26] By simple calculation , if x = x(t) is a solution of system (1), then for

t ̸= τk, k = 1, 2, ...

cDβ
+V (t, x(t)) =

1

Γ(1− β)

∫ t

0

D+
(1)V (τ, x(τ))

(t− τ)β
dτ

where

D+
(1)V (t, x(t)) = lim

δ→0+
sup

1

δ

[
V (t+ δ, x(t+ δ))− V (t, x)

]
.

Definition 2.11. [8] A continuous function α : R+ → R+ is said to belong to class K if it is

strictly increasing and α(0) = 0. It is to belong to class K∞ if in addition lim
s→+∞

α(s) = +∞.

The following lemmas will also be required in the investigations of the paper.

Lemma 2.1. [24] Assume that the function V ∈ V0 is such that:

i) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Ω× Rp, t = τk, τk > t0

ii) cDβ
+V (t, x) ≤ qV (t, x), (t, x) ∈ G, t ∈ [t0,+∞).

Then,

V (t, x(t, t0, x0)) ≤ V (t+0 , x0)Eβ

(
q(t− t0)

β
)
, t ∈ [t0,+∞).

Lemma 2.2. [24] Assume that the function V ∈ V0 is such that:

i) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Ω× Rp, t = τk, τk > t0

ii) cDβ
+V (t, x) ≤ 0, (t, x) ∈ G, t ∈ [t0,+∞).

Then,

V (t, x(t, t0, x0)) ≤ V (t+0 , x0), t ∈ [t0,+∞).

The goal of this paper, is to investigate the stability of the zero solution x(t) ≡ 0 of system (1).

That is why the following conditions will be assumed :

(C1) The origin x = 0 is an equilibrium point of fractional-order system (1); that is, f(t, 0) =

0, t ≥ t0.

(C2) Ik(0) = 0, k = ±1,±2, ....

In addition, in the proofs of our main results, we shall use piecewise continuous Lyapunov

functions V : [t0,+∞)× Rn → R+, V ∈ V0 for which the following condition is true :

(C3) V (t, 0) = 0, t ≥ t0.

§3 Main results

In this section, some sufficient conditions are given to guarantee y−stability, y−asymptotic

stability and y−Mittag-Leffler stability of the nonlinear systems of impulsive fractional differ-

ential equations (1).
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3.1 Partial stability

Theorem 3.1. Assume that conditions (C1) and (C2) are met. Let V ∈ V0 be such that (C3)

holds and

i) α1(∥y∥) ≤ V (t, x), α1 ∈ K, (t, x) ∈ [t0,+∞[×Ω× Rp,

ii) cDβ
t0,tV (t, x) ≤ 0, (t, x) ∈ Gk, k = ±1,±2, ...,

iii) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Ω× Rp, t = τk, k = ±1,±2, ...

where β ∈ (0, 1). Then, the zero solution of system (1) is y−St.

Proof. Let ϵ > 0. From the properties of the function V , it follows that there exists a constant

δ = δ(t0, ϵ) > 0 such that if ∥x∥ ≤ δ , then

sup
∥x∥≤δ

V (t+0 , x) < α1(ϵ) (4)

Let x0 ∈ Ω × Rp such that ∥x0∥ ≤ δ ; and let x(t) = x(t, t0, x0) = (y(t, t0, x0), z(t, t0, x0)) be

the solution of (1). We shall prove that ∥y(t, t0, x0)∥ ≤ ϵ for t ≥ t0. Suppose that this is not

true. Then there exists t∗ > t0, t
∗ ∈ [τk, τk+1[, for some fixed integer k such that

∥y(t∗)∥ > ϵ and ∥y(t, t0, x0∥ ≤ ϵ, t ∈ [t0, τk].

By using the condition iii) and the properties of functions E + Ik, k = ±1,±2, ..., it’s possible

to find t̆ ∈]τk, t∗], such that

∥y(t̆)∥ > ϵ and y(t̆, t0, x0) ∈ Ω.

Then, for t ∈ [t0, t̆] it follows from Lemma 2.2 that

V (t, x(t, t0, x0)) ≤ V (t+0 , x0)

and

α1(ϵ) < α1(∥y(t̆, t0, x0)∥) ≤ V (t̆, x(t̆, t0, x0)) ≤ V (t+0 , x0) < α1(ϵ).

The contradiction obtained shows that

∥y(t, t0, x0)∥ ≤ ϵ

for ∥x0∥ ≤ δ and t ≥ t0. This implies that the equilibrium point x = 0 of system (1) is y−St.

Theorem 3.2. Let the conditions of Theorem 3.1 hold, and let a function α2 ∈ K exists such

that

V (t, x) ≤ α2(∥w∥), (t, x) ∈ [t0,+∞[×Ω× Rp (5)

where w = (x1, x2, ..., xk)
T ∈ Rk, m ≤ k ≤ n. Then, the zero solution of system (1) is y−USt.

Proof. Let ϵ > 0 be chosen. Choose δ = δ(ϵ) > 0 so that α2(δ) < α1(ϵ). Let x0 ∈ Ω× Rp such

that ∥x0∥ < δ and x(t) = x(t, t0, x0) be the solution of problem (1). It follows from Corollary

1.4 that

V (t, x(t)) ≤ V (t+0 , x0), t ≥ t0.

From the above inequalities and (5), we get to the inequalities

α1(∥y(t, t0, x0)∥) ≤ V (t+0 , x0) ≤ α2(∥w0∥) ≤ α2(∥x0∥) ≤ α2(δ) < α1(ϵ)

where x0 = (x10, x20, ..., xk0, xk+10, ..., xn0)
T ∈ Ω×Rp and w0 = (x10, x20, ..., xk0)

T ∈ Rk. From

which it follows that

∥y(t, t0, x0)∥ ≤ ϵ for t ≥ t0.

This proves the uniform y−stability of the zero solution of system (1).
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Theorem 3.3. Assume that conditions (C1) and (C2) are met. In addition, suppose there

exists a function V ∈ V0 such that (C3) holds and

i) α1(∥y∥) ≤ V (t, x) ≤ α2(∥w∥), t ∈ [t0,+∞), x ∈ Ω× Rp,

ii) cDβ
+V (t, x) ≤ −α3(∥w∥), α3 ∈ K, (t, x) ∈ Gk, k = ±1,±2, ...

iii) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Ω× Rp, t = τk, k = ±1,±2, ...

where β ∈ (0, 1) and w = (x1, x2, ..., xk)
T ∈ Rk, m ≤ k ≤ n. Then, the zero solution of system

(1) is y−UASt.

Proof. Firstly, it is easy to see that all conditions of Theorem 3.2 are satisfied. Then, the zero

solution x = 0 is y−USt.

Now, consider h > 0 and x0 ∈ Ω such that ∥x0∥ ≤ h. Let ϵ > 0 be chosen. Choose η = η(ϵ) so

that α2(η) < α1(ϵ), and let T >
[
α2(h)Γ(β+1)

α3(η)

] 1
β

. If we assume that for each t ∈ [t0, t0 + T ] the

inequality ∥w(t, t0, x0∥ ≥ η is valid, then from ii) and iii), we get

V (t, x(t, t0, x0)) ≤ V (t+0 , x0)−
1

Γ(β)

∫ t

t0

α3(∥w(s, t0, x0)∥)(t− s)β−1ds,

≤ α2(∥w0∥)−
α3(η)

Γ(β)

∫ t

t0

(t− s)β−1ds,

≤ α2(∥x0∥)−
α3(η)

Γ(β)

∫ t

t0

(t− s)β−1ds,

≤ α2(h)−
α3(η)

Γ(β + 1)
(t− t0)

β .

If t = t0 + T , then

V (t0 + T, x(t0 + T, t0, x0)) ≤ α2(h)−
α3(η)

Γ(β + 1)
T β < 0

which contradicts (i) of Theorem 3.3. Then, there exists t∗ ∈ [t0, t0 + T ], such that

∥w(t∗, t0, x0∥ < η.

It follows that for t ≥ t∗, in particular for any t ≥ t0 + T the following inequalities hold

α1(∥y(t, t0, x0)∥ ≤ V (t, x(t, t0, x0)

≤ V (t∗, x(t∗, t0, x0)),

≤ α2(∥w(t∗, t0, x0)∥) ≤ α2(η) < α1(ϵ).

Therefore, ∥y(t, t0, x0)∥ < ϵ for t ≥ t0 + T . It follows that the zero solution of system (1) is

y−UA. Since it is y−USt, then the solution x = 0 is y−UASt.

3.2 Partial Mittag-Leffler Stability

Let t0 = 0. In this part, we extend the problem of Mittag-Leffler stability introduced

by Podlubny and his co-authors. Precisly, we shall investigate the problem of Mittag-Leffler

stability with respect to y of the equilibrium point x = 0 of system (1). Using the fractional

Lyapunov method, some sufficient conditions for Mittag-Leffler stability with respect to a part

of the variables are given.
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Theorem 3.4. Assume that :

1. Conditions (C1) and (C2) hold for t0 = 0.

2. There exists a function V ∈ V0 such that (C3) holds, and

i) c1∥y∥a ≤ V (t, x) ≤ c2∥w∥ab, t ∈ R+, x ∈ Ω× Rp,

ii) cDβ
+V (t, x) ≤ −c3∥w∥ab, (t, x) ∈ Gk, t ∈ R+,

iii) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Ω× Rp, t = τk > 0

where β ∈ (0, 1), w = (x1, x2, ..., xk)
T ∈ Rk, m ≤ k ≤ n, c1, c2, c3, a and b are positive constants.

Then, the zero solution of system (1) is y−M-LSt. If the assumptions hold globally on Rn, then

the zero solution of system (1) is y−GM-LSt.

Proof. let x(t) = x(t, 0, x0) be the solution of (1) with initial condition (0, x0) where x0 ∈ Ω×Rp

such that ∥x0∥ < δ. By using conditions (i) and (ii) it follows that

cDβ
+V (t, x(t)) ≤ −c3

c2
V (t, x(t)), t ̸= τk, t > 0.

Therefore, for t ∈ [0,+∞) there exists a nonnegative function W (t) satisfying
cDβ

+V (t, x(t)) +W (t) = −c3c
−1
2 V (t, x(t)), t ̸= τk. (6)

Taking the Laplace transform of (6) for t ̸= τk, , t > 0 gives

sβV(s)− sβ−1V (0) +W (s) = −c3c
−1
2 V(s),

where V (0) = V (0, x(0)) and V(s) = L[V (t, x(t))](s). From the last equality we obtain

V(s) = V (0)sβ−1 −W (s)

sβ + c3
c2

.

The unique solution of (6) is ( see [14])

V (t, x(t)) = V (0, x(0))Eβ

(
− c3

c2
tβ
)
−W (t) ∗

[
tβ−1Eβ,β

(
− c3

c2
tβ
)]
, t ̸= τk, t > 0

where ∗ denotes the convolution operator. Since both tβ−1 and Eβ,β

(
− c3

c2
tβ
)
are nonnegative

for t ∈ (τk−1, τk], k = ±1,±2, ..., t > 0, it follows that for any closed interval contained in

(τk−1, τk]

V (t, x(t)) ≤ V (0, x(0))Eβ

(
− c3

c2
tβ
)
.

Set R = V (0, x(0))Eβ

(
− c3

c2
tβ
)
. From condition iii) it follows that, if V (τk, x(τk)) ≤ R, then

V (τ+k , x(τ+k )) = V (τ+k , x(τk) + Ik(x(τk))) ≤ V (τk, x(τk)) ≤ R

which implies the solution x(t) cannot exceed R by jump. Therefore

V (t, x(t)) ≤ V (0, x(0))Eβ

(
− c3

c2
tβ
)
, ∀ t ≥ 0.

From the last inequality and i) we have

∥y(t, t0, x0)∥ ≤
[V (0, x(0))

c1
Eβ

(
− c3

c2
tβ
)] 1

a

, t ≥ 0.

Let m(x) = V (0,x)
c1

≥ 0. Then, we have

∥y(t, t0, x0)∥ ≤
[
m(x(0))Eβ

(
− c3

c2
tβ
)] 1

a

, t ≥ 0.
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From the properties of the Lyapunov function V (t, x) it follows that m is Lipschitz with respect

to x and m(0) = 0, which imply the Mittag-Leffler stability with respect to y of the zero solution

of system (1). This completes the proof of Theorem 3.5.

3.3 Global partial Stability

Consider the system of impulsive fractional differential equations (1) where the open set

Ω = Rn−p. Suppose again that the functions f : R×Rn → Rn and Ik : Rn → Rn, k = ±1,±2, ...

are smooth enough on [t0,+∞)×Rn and Rn, respectively, to guarantee the existence, uniqueness

and continuability of the solution of (1) on the interval [t0,+∞) for all x0 ∈ Rn and t ≥ t0.

In this subsection the global equi-asymptotic stability and global asymptotic stability with

respect to y of (1) will be considered.

Theorem 3.5. Suppose that conditions (C1) and (C2) hold for system (1). Let V ∈ V0 be a

Lyapunov function such that (C3) holds, and

i) α1(∥y∥) ≤ V (t, x), α1 ∈ K∞, (t, x) ∈ R+ × Rn,

ii) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Rn, t = τk,

iii) cDβ
+V (t, x) ≤ −cV (t, x), α3 ∈ K, (t, x) ∈ Gk, k = 1, 2, ...

where c > 0 and β ∈ (0, 1). Then, the zero solution of system (1) is y−GEq-ASt.

Proof. Let ϵ > 0. From the properties of the function V (t, x), it follows that there exists a

constant δ = δ(t0, ϵ) > 0 such that if x ∈ Rn such that ∥x∥ < δ , then sup
∥x∥<δ

V (t+0 , x) < α1(ϵ).

Let x0 ∈ Rn such that ∥x0∥ < δ. By Lemma 2.2, the following hold

V (t, x(t, t0, x0)) ≤ V (t+0 , x0), t ∈ [t0,+∞).

Consequently

α1(∥y(t, t0, x0)∥) ≤ V (t, x(t, t0, x0)) ≤ V (t+0 , x0) < α1(ϵ),

which imply that ∥y(t, t0, x0)∥ < ϵ for t ≥ t0. Then, the zero solution of system (1) is y−St.

Now we shall prove that it is globally equi-attractive with respect to y.

Let ν > 0 and x0 ∈ Rn such that ∥x0∥ < ν. By Lemma 2.1, it follows that for t ≥ t0, the

following inequality is valid

V (t, x(t, t0, x0)) ≤ V (t+0 , x0)Eβ

(
− c(t− t0)

β
)
. (7)

Let consider

ℵ(t0, ν) = sup
{
V (t+0 , x), ∥x∥ < ν

}
and

γ = γ(t0, ν, ϵ) >
[−1

c
E−1

β

( α1(ϵ)

ℵ(t0, ν)
)] 1

β

For t ≥ t0 + γ, from (7) it follows that

V (t, x(t, t0, x0)) < α1(ϵ).

From the last inequality and condition i) of Theorem 3.5 we have

∥y(t, t0, x0)∥ < ϵ

which means that the zero solution of system (1) is y−GEq-A.
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In the next Theorem, some sufficient conditions are given to ensure the global asymptotic

stability with respect to y of the zero solution of system (1).

Theorem 3.6. Assume that conditions (C1) and (C2) hold for system (1). Let V ∈ V0 be a

Lyapunov function such that (C3) holds, and

i) α1(∥y∥) ≤ V (t, x) ≤ α2(∥w∥), α1, α2 ∈ K∞, (t, x) ∈ [t0,+∞)× Rn,

ii) cDβ
+V (t, x) ≤ −α3(∥w∥), α3 ∈ K∞, (t, x) ∈ G, t ∈ [t0,+∞)

iii) V (t+, x+ Ik(x)) ≤ V (t, x), x ∈ Rn, t = τk, k = ±1,±2, ...,

where w = (x1, x2, ..., xk)
T ∈ Rk, m ≤ k ≤ n, β ∈ (0, 1). Then, the zero solution of system (1)

is y−GASt.

Proof. Firstly, by conditions i) and ii), the zero solution of system (1) is y−USt.

Now, we shall prove that the solutions of system (1) are uniformly bounded with respect to y.

Let consider a nonnegative constant r and x0 ∈ Rn such that ∥x0∥ < r. By using the fact

lim
s→+∞

α1(s) = +∞, then it is possible to choose ρ = ρ(r) so that α1(ρ) > α2(r). From

conditions ii) and iii), all hypothesis of Lemma 2.2 are satisfied. Then,

V (t, x(t, t0, x0)) ≤ V (t+0 , x0), t ∈ [t0,+∞).

From i) and ii) and the above inequality, we obtain the following

α1(∥y(t, t0, x0∥) ≤ V (t, x(t, t0, x0)) ≤ V (t+0 , x0),

≤ α2(∥w0∥,
≤ α2(∥x0∥),
≤ α2(r) < α1(ρ).

Therefore, ∥y(t, t0, x0∥) ≤ ρ, for t ≥ t0, which implies that the solutions of system (1) are

y−UB. To complete the proof of this Theorem, we shall prove that the zero solution x(t) ≡ 0

of system (1) is y−UGA. Let ν > 0 be arbitrarily chosen and ϵ > 0 be given small. Let the

number η = η(ϵ) > 0 be chosen such that α1(ϵ) < α2(η) and let γ = γ(ν, ϵ) > 0 be satisfying

the following

γ >
[α2(ν)Γ(β + 1)

α3(η)

] 1
β

.

Similar to the proof of Theorem 3.3, we obtain ∥y(t, t0, x0)∥ < ϵ for t ≥ t0 + γ, whenever

∥x0∥ < ν. Then, the zero solution of (1) is y−UGA.
Remark 3.1. In Theorem 3.6, if α1(s) = c1s

a, α2(s) = c2s
ab and α3(s) = c3s

ab where

c1, c2, c3, a and b are positive constants, then the system (1) is y−globally Mittag-Laffler stable.

§4 Examples

Example 1. Consider the following fractional order system

cDβ
0,tx1(t) = −x1(t) + sin

(
x1(t) + x2(t) + x3(t)

)
x1(t), t ≥ 0, t ̸= τk

cDβ
0,tx2(t) = −x2(t) + sin

(
x1(t))− x2(t) + 2x3(t)

)
x2(t), t ≥ 0, t ̸= τk

cDβ
0,tx3(t) = 2x3(t), t ≥ 0, t ̸= τk

x1(τ
+
k ) = k√

2+k2
x1(τk), τk > 0

x2(τ
+
k ) = k√

1+k2
x2(τk), τk > 0

x3(τ
+
k ) = ak, τk > 0

(8)
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where 0 < β < 1 and x(t) =
(
x1(t), x2(t), x3(t)

)
∈ R3. Consider the Lyapunov-like function :

V (t, x) =
x2
1 + x2

2

2
for t ≥ 0 and t ̸= τk, we have

cDβ
+V (t, x(t)) = x1(t)

cDβ
0,tx1(t) + x2(t)

cDβ
0,tx2(t)

= −x2
1(t) + sin

(
x1(t) + x2(t) + x3(t)

)
x2
1(t)− x2

2(t)

+ sin
(
x1(t))− x2(t) + 2x3(t)

)
x2
2(t)

≤ 0.

For t = τk, t > 0,

V (τ+k , x1(τ
+
k ), x2(τ

+
k ), x3(τ

+
k )) =

k2

2 + k2
x2
1

2
+

k2

1 + k2
x2
2

2
≤ V (τk, x1, x2, x3).

Then, the assumptions of Theorem 3.2 are satisfied. Hence, x = 0 is (x1, x2)−USt.

Remark 4.1. In the previous example, a simple calculation leads to

x3(t, t0, x0) = x30Eβ

(
2(t− t0)

β
)
+

k∑
i=1

ai

where x30 = x3(t0, t0, x0). Then x = 0 of system (8) is unstable.

Example 2. Consider the following system

cDβ
0,tx1(t) = −x2(t) cos

2(x1(t))− 4x1(t) + x2(t), t ≥ 0, t ̸= τk
cDβ

0,tx2(t) = x2(t) cos
2(x1(t))− 5x2(t), t ≥ 0, t ̸= τk

cDβ
0,tx3(t) = x3(t), t ≥ 0, t ̸= τk

∆x1(τk) = ckx1(τk), τk > 0

∆x2(τk) = dkx2(τk), τk > 0

∆x3(τk) = ak, τk > 0

(9)

where β ∈ (0, 1), x1, x2, x3 ∈ R, ck, dk ∈ [−2, 0] and ak ̸= 0.

Define the function V (t, x1, x2, x3) = |x1|+ |x2|.Then, for t ≥ 0 and t ̸= τk, we have
cDβ

+V (t, x(t)) = signx1(t)
cDβ

0,tx1(t) + signx2(t)
cDβ

0,tx2(t)

≤ −4|x1(t)| − 4|x2(t)|
= −4V (t, x).

For t = τk, t > 0,

V (τ+k , x1 + ckx1, x2 + dkx2, x3 + ak) = |1 + ck||x1|+ |1 + dk||x2| ≤ V (τk, x1, x2, x3).

Then, the assumptions of Theorem 3 are satisfied. Hence, x = 0 is Mittag-Leffler stable with

respect to (x1, x2).

§5 Conclusion

In this paper, Lyapunov functions is used to study the stability with respect to part of

the variables of the zero solution of a nonlinear impulsive fractional system. We introduce

the derivative of the Lyapunov function based on the Caputo fractional Dini derivative of a

function. By using the Lyapunov technique, some sufficient conditions for stability, uniform

stability , Mittag Leffler stability and asymptotic uniform stability are obtained. Furthermore,
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the theoretical conclusions have been verified by some numerical examples.
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