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Estrada index of dynamic random graphs

SHANG Yi-lun

Abstract. The Estrada index of a graph G on n vertices is defined by EE(G) =
∑n

i=1 e
λi ,

where λ1, λ2, · · · , λn are the adjacency eigenvalues of G. We define two general types of dy-

namic graphs evolving according to continuous-time Markov processes with their stationary

distributions matching the Erdös-Rényi random graph and the random graph with given ex-

pected degrees, respectively. We formulate some new estimates and upper and lower bounds for

the Estrada indices of these dynamic graphs.

§1 Introduction

Let G = (V,E) be a simple graph on vertex set V = {1, 2, · · · , n} with |V | = n and edge set

E ⊆ V × V . The adjacency matrix of G is a binary matrix denoted by A(G) = (aij) ∈ Rn×n,

where aij = aji = 1 if vertices i and j are adjacent, and aij = aji = 0 otherwise. As G is an

undirected graph, A(G) is symmetric and its n eigenvalues can be arranged in the non-increasing

order λ1(A(G)) ≥ λ2(A(G)) ≥ · · · ≥ λn(A(G)); see e.g. [4].

The Estrada index of a graph G, defined by

EE(G) =
n∑

i=1

eλi(A(G)),

is a graph spectral invariant put forward by Estrada [6] in the year 2000. Abundant applications

of Estrada index have been found in biochemistry and complex networks including quantifying

the degree of folding of long-chain molecules [7, 10, 11] as well as network resilience metrics

[15, 16]. Upper and lower bounds and varied mathematical properties have been examined for

Estrada index and its close variants, see [1, 2, 5, 8, 12,17,18] to name a few.

Most of the existing work in this field has focused on static graphs. However, almost all

real networks have vertices or edges appearing or disappearing as the network topology evolves

with time. In [17], the present author proposed a calculation scheme for Estrada index in

dealing with evolving graphs, where the dynamic graph is taken as a set of ordered snapshots of

network architecture. The results are further extended to study Laplacian Estrada index and
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normalized Laplacian Estrada index in [18]. The snapshots in these works, nevertheless, are

taken as independent measurements of the dynamic graph and the strong correlations between

them are overlooked. This potentially ignored a wealth of hidden information in the evolving

system.

In this paper, following this line of research, we aim to study the Estrada index of a couple

of dynamic graphs where the edges appear and disappear following continuous-time Markov

processes. By doing so, the entire history of the graph, instead of uncorrelated individual

snapshots, is taken into consideration. The models considered here are fairly general in the

sense that the edges in the graph are allowed to change with heterogeneous time-dependent

rates. Moreover, the stationary distributions of these dynamical graph models can be viewed

as classical Erdös-Rényi random graph [9] and random graph with given expected degrees [3],

respectively. In this sense, our results also extend the Estrada index result of random graphs [2].

By considering these dynamic random graphs, we are able to track the change of Estrada index

at each time instant rather than only presenting an overall “average” index for a sequence of

deterministic graphs as in the previous work [17,18].

We mention that dynamic graphs modeled by Markov chains akin to our models have been

developed extensively in statical physics; see, e.g. [14]. However, the focus of these works is

often on the topological and behavioral properties of dynamic processes over the networks and

statistical data fitting. The rest of the paper is organized as follows. The main theoretical

results together with illustrative computer simulations are presented in Section 2. We conclude

the paper in Section 3.

§2 Main results

In this section, we estimate the Estrada index EE of two dynamic random graph models.

To this end, we will use standard Landau asymptotic notations. For example, for two functions

f(n) and g(n), f(n) = o(g(n)) implies that limn→∞ f(n)/g(n) = 0; f(n) = O(g(n)) means that

|f(n)/g(n)| ≤ C for some constant C and sufficiently large n. A property for a random graph

model holds asymptotically almost surely (a.a.s.) if its probability tends to 1 as n → ∞.

2.1 Estrada index for dynamic random graphs

We first consider a simple dynamic random graph model, in which the appearance and

disappearance of each edge following a continuous-time Markov process with identical rates. In

the next section, we will extend this assumption to heterogeneous rates.

Given any pair of vertices, for t ≥ 0 define λ(t) to be the rate of the appearance of an edge

between these two vertices where previously it is not there. Similarly, define µ(t) to be the rate

of disappearance of an existing edge between these two vertices. Let p0(t) and p1(t) be the

probabilities that there is no edge and one edge, respectively, between the given pair of vertices

at time t. Therefore, we have the master equation

dp1(t)

dt
= λ(t)p0(t)− µ(t)p1(t) = −dp0(t)

dt
. (1)
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Given the initial graph at time t = 0, we call this dynamic graph model Gn(λ(t), µ(t), t). Recall

that the Erdös-Rényi random graph Gn(p), on the other hand, is a static random graph where

each edge appears independently with probability p.

Theorem 1. Let Gn(λ(t), µ(t), t) (t ≥ 0) be a dynamic random graph. We have the following.

(i) For t ≥ 0, EE(Gn(λ(t), µ(t), t)) = exp
(
Cne−

∫ t
0
(λ(s)+µ(s))ds + n

∫ t

0
λ(s)e−

∫ t
s
(λ(u)+µ(u))du

ds
)
· (eO(

√
n) + o(1)), a.a.s., where C = 0 if the initial graph at time t = 0 is an empty

graph and C = 1 if it is a complete graph.

(ii) Suppose λ(t) ≡ λ and µ(t) ≡ µ. For any initial graph,

lim
t→∞

EE(Gn(λ, µ, t)) = EE
(
Gn

( λ

λ+ µ

))
= e

λn
λ+µ · (eO(

√
n) + o(1)) a.a.s.

Proof. (i) By the definition of the dynamic random graph Gn(λ(t), µ(t), t), we have p0(t) +

p1(t) = 1 for all t ≥ 0. This together with (1) yields the solution

p1(t) = Ce−
∫ t
0
(λ(s)+µ(s))ds +

∫ t

0

λ(s)e−
∫ t
s
(λ(u)+µ(u))duds, (2)

where the constant C is determined by the initial condition of the edge in question. If the edge

is not present at t = 0, then p1(0) = 0 and hence C = 0. If the edge is present at t = 0, then

p1(0) = 1 and hence C = 1.

Since the Markov processes on each edge have the same rates and run independently,

Gn(λ(t), µ(t), t) is a random graph with edge probability p1(t). In view of the result [2, Theorem

2.3] that EE(Gn(p)) = enp(eO(
√
n) + o(1)) a.a.s., we obtain by (2)

EE(Gn(λ(t), µ(t), t)) =enp1(t)(eO(
√
n) + o(1))

= exp
(
Cne−

∫ t
0
(λ(s)+µ(s))ds + n

∫ t

0

λ(s)e−
∫ t
s
(λ(u)+µ(u))duds

)
· (eO(

√
n) + o(1)),

where C = 0 if the initial graph is an empty graph and C = 1 if it is a complete graph.

(ii) When λ(t) ≡ λ and µ(t) ≡ µ, the solution (2) for any edge reduces to

p1(t) =
λ

λ+ µ
− C ′e−(λ+µ)t,

where C ′ = λ
λ+µ − C. In the limit of t → ∞, the probability of an edge between any pair of

vertices p1(t) → λ
λ+µ . Note that EE(Gn(λ, µ, t)) is a continuous function with respect to t.

Hence,

lim
t→∞

EE(Gn(λ, µ, t)) = EE
(
Gn

( λ

λ+ µ

))
= e

λn
λ+µ · (eO(

√
n) + o(1)) a.a.s.

by applying again Theorem 2.3 in [2]. �
Remark 1. Assume λ(t) ≡ λ, µ(t) ≡ µ and the initial graph is empty. By (i) we derive

EE(Gn(λ, µ, t)) = e
λn
λ+µ (1−e−(λ+µ)t) · (eO(

√
n) + o(1)) a.a.s. (3)

for all t ≥ 0. Moreover, the stationary distribution of the dynamic random graph model

Gn(λ, µ, t) is simply the Erdös-Rényi random graph Gn(p) with p = λ
λ+µ .

To illustrate the theoretical result, we consider a dynamic graph Gn(λ, µ, t) with the initial

graph at t = 0 as an empty graph. The probability of having an edge between any pair of
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vertices at t = 1 is given by p1(1) = a := λ
λ+µ (1 − e−λ−µ) through applying (2) and C = 0.

Likewise, if initially the edge is present then the probability of disappearance of this edge at

t = 1 is p0(1) = b := µ
λ+µ (1 − e−λ−µ) through solving (2) with C = 1 and p0(1) = 1 − p1(1).

With these probabilities, we can conveniently model the dynamic random graph in discrete

observation time as follows. Start with an empty graph at t = 0. At time t + 1, each edge

appears with probability a if it does not exist at time t. Similarly, each edge disappears with

probability b if it exists at time t. It is direct to check that the limit probability λ
λ+µ = a

a+b .

In Fig. 1, we show the logarithmic Estrada index lnEE(Gn(λ, µ, t)) for a dynamic random

graph with λ = 1 and µ = 2 over n = 5000 vertices. The initial graph is chosen as an empty

graph. We observe that the behavior of lnEE(Gn(λ, µ, t)) is consistent with the theoretical

result (3).

Figure 1. Logarithmic Estrada index lnEE(Gn(λ, µ, t)) for dynamic graph with λ = 1, µ = 2,
n = 5000. We define y(t) = λn

λ+µ (1−e−(λ+µ)t) and the observation time interval is ∆t = 1. The

blue crosses are the data points. Inset: the same result (with observation time interval ∆t = 5)
displayed over a larger time span.

2.2 Estrada index for dynamic random graphs with given expected

degrees

Given n vertices and a sequence w = (w1, w2, · · · , wn), the well-known random graph with

given expected degrees [3], denoted by Gn(w), is defined by connecting each pair of vertices

i and j with probability
wiwj∑n
l=1 wl

independently. Note that loops and multi-edges are allowed

but their presence does not play any essential role. The expected degree of each vertex i is wi

in this static model. The Erdös-Rényi random graph Gn(p) can be viewed as a special case of

Gn(w) with wi = np for all i.

Here, we consider a dynamic version of this model. For t ≥ 0 we consider the Poisson

process where each of the existing edges in the graph is deleted independently at rate µ, and

for any pair of vertices i and j, edges between them are added at rate λ. Note that there can

be k (k ≥ 0) edges connecting each pair of vertices, and k is incremented at the rate λ but

decremented at the rate kµ. Let pk(t) be the probability that a given pair of vertices has k
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edges at time t. Thus, we have the master equation

dpk(t)

dt
= λpk−1(t) + (k + 1)µpk+1(t)− λpk(t)− kµ(t)pk(t). (4)

Given the initial graph at time t = 0, we call this dynamic graph model Gn(λ, µ,w, t). In the

following, we will focus on a special situation where λ = µ
wiwj∑n
l=1 wl

. In this case, the stationary

distribution of Gn(λ, µ,w, t) is the same as the static random graph model with given expected

degrees Gn(w) (see below).

Let ∆ = max1≤l≤n wl. We have the following estimates for the Estrada index of Gn(λ, µ,w,

t).

Theorem 2. Let Gn(λ, µ,w, t) (t ≥ 0) be a dynamic random graph with given expected degrees.

Assume ∆ ≫ ln4 n and λ = µ
wiwj∑n
l=1 wl

for any pair of vertices i and j. We have the following.

(i) For t ≥ 0, e−(2+o(1))
√
∆ ·

∑n
l=1 e

λl(A) ≤ EE(Gn(λ, µ,w, t)) ≤ e(2+o(1))
√
∆ ·

∑n
l=1 e

λl(A)

a.a.s., where A = (pij) ∈ Rn×n with pij =
wiwj∑n
l=1 wl

(1 − e−µt) if there is no edge between

vertices i and j in the initial graph at time t = 0, while pij =
wiwj∑n
l=1 wl

+ exp
(
− µt −

wiwj∑n
l=1 wl

)(
1− 2wiwj∑n

l=1 wl

)
if there is an edge between vertices i and j in the initial graph.

(ii) For any initial graph, e−(2+o(1))
√
∆ ·

∑n
l=1 e

λl(A) ≤ limt→∞ EE(Gn(λ, µ,w, t)) = EE(Gn

(w)) ≤ e(2+o(1))
√
∆ ·

∑n
l=1 e

λl(A) a.a.s., where A = (pij) ∈ Rn×n with pij =
wiwj∑n
l=1 wl

.

Proof. (i) Fix a pair of vertices i and j. Define a probability generating function H(x, t) =∑∞
k=0 pk(t)x

k. Drawing on the master equation (4) and λ = µ
wiwj∑n
l=1 wl

, we derive

∂H(x, t)

∂t
= (x− 1)µ ·

( wiwj∑n
l=1 wl

H(x, t)− ∂H(x, t)

∂x

)
.

Since H(1, t) = 1, it can be checked easily that the solution is

H(x, t) = exp
( wiwj∑n

l=1 wl
(x− 1)

)
φ((x− 1)e−µt), (5)

where φ(x) is any once-differentiable function satisfying φ(0) = 1 determined by the initial

condition. If there is no edge between vertices i and j at t = 0, we have p0(0) = 1 and

pk(0) = 0 for k ≥ 1. We have H(x, 0) = 1 and from (5) if follows that φ(x) = exp
(
− wiwjx∑n

l=1 wl

)
.

The average number of edges between vertices i and j is given by

∂H(x, t)

∂x

∣∣∣∣
x=1

=
wiwj∑n
l=1 wl

+ e−µtφ′(0) =
wiwj∑n
l=1 wl

(1− e−µt).

We denote this value by pij . Similarly, if there is one edge between vertices i and j at t = 0,

we have p0(0) = 0, p1(0) = 1 and pk(0) = 0 for k ≥ 2. Hence, H(x, 0) = x and it follows from

(5) that φ(x) = (x+ 1) exp
(
− wiwjx∑n

l=1 wl

)
. The average number of edges between vertices i and

j is given by

pij :=
∂H(x, t)

∂x

∣∣∣∣
x=1

=
wiwj∑n
l=1 wl

+ e−µtφ′(0) =
wiwj∑n
l=1 wl

+ e
−µt−

wiwj∑n
l=1

wl

(
1− 2wiwj∑n

l=1 wl

)
.

The same expressions hold for each pair of vertices in the graph depending on the initial

condition, i.e., whether the edge exists or not at t = 0.

At any t ≥ 0, Gn(λ, µ,w, t) can be viewed as an edge-independent random graph with mean

number of edges pij on a pair of vertices i and j. Since ∆ ≫ ln4 n, from Theorem 1 [13], it follows
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readily that the eigenvalues can be estimated as |λi(A(Gn(λ, µ,w, t)))−λi(A)| ≤ (2+o(1))
√
∆

a.a.s. for each i = 1, · · · , n, where A = (pij) ∈ Rn×n. Therefore,

λi(A)− (2 + o(1))
√
∆ ≤ λi(A(Gn(λ, µ,w, t))) ≤ λi(A) + (2 + o(1))

√
∆ a.a.s.

Based on the definition of Estrada index, we obtain

e−(2+o(1))
√
∆ ·

n∑
l=1

eλl(A) ≤ EE(Gn(λ, µ,w, t)) ≤ e(2+o(1))
√
∆ ·

n∑
l=1

eλl(A) a.a.s.

(ii) For any initial graph at t = 0, in the limit of t → ∞, the average number of edges

between any vertices i and j tends to pij =
wiwj∑n
l=1 wl

, implying that the stationary state of the

model is the static random graph with given expected degrees Gn(w). Since EE(Gn(λ, µ,w, t))

is continuous with respect to t, the result of (i) gives rise to e−(2+o(1))
√
∆ ·

∑n
l=1 e

λl(A) ≤
limt→∞ EE(Gn(λ, µ,w, t)) = EE(Gn(w)) ≤ e(2+o(1))

√
∆ ·

∑n
l=1 e

λl(A) a.a.s., where A = (pij) ∈
Rn×n. This completes the proof. �

§3 Conclusion

We have studied Estrada index of two classes of dynamic random graphs, which can be

viewed as generalizations of static Erdös-Rényi random graph and random graph with given

expected degrees, respectively. The evolution of graph follows continuous-time Markov process-

es with general heterogeneous time-varying rates. Some interesting directions for future work

include extension to other relevant graph-theoretical metrics such as the Laplacian Estrada in-

dex. Another appealing open problem is to consider both edge dynamics and vertex dynamics

in the graph evolution as well as more general random graph models [19,20], which characterize

many realistic large-scale networks.
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