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Stabilization of fractional bilinear systems with multiple

inputs

Thouraya Kharrat Fehmi Mabrouk Fawzi Omri

Abstract. In this paper, we study in a constructive way the stabilization problem of fraction-

al bilinear systems with multiple inputs. Using the quadratic Lyapunov functions and some

additional hypotheses on the unit sphere, we construct stabilizing feedback laws for the consid-

ered fractional bilinear system. A numerical example is given to illustrate the efficiency of the

obtained result.

§1 Introduction

The history of fractional systems is more than three centuries old, yet it only receives much

attention and interest in the past 20 years, the reader may refer to [6,15] for the theory and

applications of fractional calculus. The earliest more or less systematic studies seem to have

been made in the 19th century by Liouville, Riemann, Leibniz,... [14,16].

The Stability analysis of nonlinear systems attracts the attention of many researchers [1,17].

Recently, the stability analysis of fractional systems is more developed. As in classical calculus,

stability analysis is a central task in the study of fractional differential systems and fractional

control [12,21]. For the stability of nonlinear classical ordinary differential equations, the re-

searches are in general based on Lyapunov theory, see for instance [4]. Following Lyapunov’s

seminal 1892 thesis, these two methods are expected to also work for fractional differential

equations.

Lyapunov’s first method: the method of linearization of the nonlinear equation along its so-

lutions. The asymptotic stability of the linearized system implies the local asymptotic stability

of the initial system.

Lyapunov’s second method: the method of Lyapunov candidate functions, i.e. there exists

a positive definite scalar function such that the derivative of this function decreases along the

orbits of the system.
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A similar tool is developed for the stability study of fractional systems. There has been

many researches on Lypunov’s second method for fractional differential equations [9] or [10].

The relation between the Lyapunov function and the fractional differential equation is not

elementary nor simple [7,8] . In [2], the author proposes some other Lyapunov functionals,

where the relation between them and the fractional differential system is more elementary, but

these functionals are neither simple, and they are valid for fractional systems with specific

characteristics. In nonlinear systems, only Lyapunov’s direct method (also called the second

method of Lyapunov) provides a way to analyze the stability of a system without explicitly

solving the differential equation. This method generalizes the idea which shows that the system

is asymptotically stable if there exists some Lyapunov function for the system. The Lyapunov

direct method is a sufficient tool to show the stability of a nonlinear system, which means the

system may be stable even one cannot find a Lyapunov function to conclude the system stability

property.

The problems of stability and stabilization of fractional-order systems have also great at-

tractions due to the inherent memory advantage of fractional derivatives. In [11], the authors

provided a method for the asymptotic stabilization of fractional-order linear systems with sat-

uration nonlinearity. In [18], Shahri and al. proposed a new stability condition for estimating

the domain of attraction via ellipsoid approach based on saturation functions. In [19], Esmat

and al. study the stability and the stabilization for a class of uncertain fractional order (FO)

systems subject to input saturation. The authors investigate the problem of the robust sta-

bility of saturation control. In [20], the authors used the Lyapunov approach for the study of

uncertain FO system stability analysis. To the best of our knowledge, the researches on the

stability and stabilization of the fractional-order systems using the Lyapunov approach are not

abundant enough.

In this paper, we will study in a constructive way the stabilization of the following fractional

bilinear system with multiple inputs:

CDα
t0x(t) = Ax(t) +

p∑
i=1

uiBix(t), t ∈ R (1)

where x(t) ∈ Rn, ui ∈ R, ∀i ∈ {1, ..., p}, A ∈ Rn×n, Bi ∈ Rn×n. We will show that the above

fractional bilinear system can be made globally asymptotically stable by means of homogeneous

feedback functions of degree zero.

The paper is organized as follows. In section 2, some basic notations and preliminaries are

given. The stabilization problem and the construction of feedback functions, which make the

fractional bilinear systems globally asymptotically stable, are presented in section 3. In section

4, two examples are presented to illustrate the results. Conclusion is given in section 5.

§2 Notations and preliminaries

We start by introducing some notations that will be useful throughout the paper.

Notation:
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Rn: the real n-dimensional vector space.

Rn×n: the set of all n× n real matrices.

⟨., .⟩: the usual inner product on Rn.

∥x∥: the norm of the vector x that belongs to Rn, i.e.
√
⟨x, x⟩ = ∥x∥.

Sn−1: the unit sphere, i.e. Sn−1 = {x ∈ Rn, ∥x∥2 = 1}.
Let A ∈ Rn×n:

the matrix A is positive semi-definite (A ≥ 0) if ⟨Ax, x⟩ ≥ 0 for all x ∈ Rn;

A is negative semi definite if −A is positive semi definite;

AT denotes the transpose of the matrix A;

A is symmetric if AT = A;

As: the symmetric part of A where A is any square matrix, i.e. As =
A+AT

2 .

λ(A) denotes the set of all the eigenvalues of A;

λmax(A) = max{Re(λ) : λ ∈ λ(A)}, λmin(A) = min{Re(λ) : λ ∈ λ(A)}.

In the following, we recall some classical definitions and results which will play important

roles in our study.

Definition 1 (Caputo fractional derivative [5]). Let k ∈ N∗ and k − 1 ≤ α < k, the Caputo

fractional derivative of a function x of order α > 0 is defined as

CDα
t0x(t) =

1

Γ(k − α)

∫ t

t0

(t− s)k−α−1x(k)(s)ds. (2)

Let the system described by
CDα

t0x(t) = f(t, x), (3)

where the map f : R×U → Rn is continuous locally Lipschitz, f(t, 0) = 0, ∀ t ≥ 0 and U is an

open set of Rn. Denote x(t, t0) the solution of (3) starting at x0 at time t0.

Definition 2. The equilibrium point x = 0 of the system (3) is said to be:

i) stable if

∀ε > 0,∀t0 ≥ 0, ∃δ = δ(t0, ε) > 0, such that ∥ x0 ∥< δ =⇒∥ x(t, t0) ∥< ε, ∀t ≥ t0

ii) attractive if there exists a neighborhood V of 0 such that for any initial condition x0 belonging

to V, the corresponding solution x(t, t0) is defined for all t ≥ t0 and lim
t→+∞

x(t, t0) = 0.

If V = Rn, x = 0 is globally attractive.

iii) asymptotically stable if it is stable and attractive.

iv) globally asymptotically stable (GAS) if it is stable and globally attractive.

Definition 3. Let us consider the following control system :{
CDα

t0x = X(x, u)

x ∈ U, u ∈ U
(4)
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where U is an open set of Rn,U ⊂ Rm, x is called the state of (4), u is called the control and

X : U × U −→ Rn is a smooth function satisfying X(0, 0) = 0.

We say that the system (4) is stabilizable (respectively globally stabilizable), if there exists a

feedback function u = u(x) such that the vector field X(x, u(x)) is at least continuous and the

closed-loop system:
CDα

t0x = X(x, u(x))

admits the origin as an asymptotically stable equilibrium point (respectively globally asymptoti-

cally stable).

Definition 4. [4] A continuous function γ : [0, t) −→ [0,+∞) is said to belong to class K if it

is strictly increasing and γ(0) = 0.

Lemma 1. [22] Let V : D → R be a continuous positive definite function defined on a domain

D ⊂ Rn that contains the origin. Let Bd = {x ∈ Rn : ∥x∥ < d} ⊂ D for some d > 0. Then

there exist class K functions λ1 and λ2 defined on [0, d), such that

λ1(∥x∥) ≤ V (x) ≤ λ2(∥x∥), (5)

for all x ∈ Bd. If D = Rn, the functions λ1 and λ2 are defined on [0,∞).

Theorem 1 (Fractional-order extension of Lyapunov direct method [10]).

Let x = 0 be the equilibrium point of the fractional-order system (3). Assume that there exists a

fractional Lyapunov function V (t, x(t)) : [0,∞)× Rn → R and class K functions λi, i = 1, 2, 3

satisfying:

(i) λ1(∥x∥) ≤ V (t, x(t)) ≤ λ2(∥x∥),

(ii) CDα
t0V (t, x(t)) ≤ −λ3(∥x∥).

Then the fractional-order system (3) is asymptotically stable.

Moreover, if U = Rn, then the fractional-order system (3) is globally asymptotically stable.

Lemma 2. [13] Let x(t) ∈ R be a real continuous and differentiable function. Then, for any

time t ≥ t0,
1

2
CDα

t0x
2(t) ≤ x(t)CDα

t0x(t), for all 0 < α < 1. (6)

Remark 1. [3] In the case when x(t) ∈ Rn, lemma (2) is still valid. That is, α ∈ (0, 1) and

t ≥ t0,
1

2
CDα

t0x
T (t)x(t) ≤ xT (t)CDα

t0x(t).

In addition, let x(t) ∈ R be a real continuous and differentiable function. Then, for any p = 2n,

n ∈ N, we have
CDα

t0x
p ≤ p xp−1 CDα

t0x(t),

where 0 < α < 1.

§3 Stabilization via feedback laws

In this section, we give an explicit design of the stabilizing feedbacks and we present sufficient

conditions for the stabilization of bilinear systems.
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3.1 Stabilization of driftless bilinear systems

We consider the system (1) in the case where A = 0. This system is called without drift

and can be written as:

CDα
t0x(t) =

p∑
i=1

uiBix(t), (7)

where x ∈ Rn, ui ∈ R, i ∈ {1, 2, ..., p}, and Bi ∈ Rn×n. Denote

Si = {x ∈ Rn : ⟨Bix, x⟩ = 0}, i ∈ {1, 2, ..., p}.
In the sequel, we introduce the following condition:

(H) :

p∩
i=1

Si = {0} (8)

Lemma 3. If the condition (H) holds, then the function f(x) =

p∑
i=1

⟨Bix(t), x(t)⟩2 verifies:

there exists two positive reals m and M such that

0 < m∥x∥4 ≤ f(x) ≤ M∥x∥4, ∀x ∈ Rn\{0}.

Proof We suppose that the condition (H) holds. Let x ∈ Rn\{0}, denote y = x
∥x∥ . It is easy

to verify that the function f(y) is positive and continuous on a the compact set Sn−1, then f(y)

admits a maximum and a minimum on Sn−1. Denote m = min
y∈Sn−1

f(y) and M = max
y∈Sn−1

f(y).

By hypothesis (H) and for all y ∈ Sn−1, y ̸= 0, we deduce that 0 < m ≤ M.

That implies 0 < m ≤ f(y) ≤ M, ∀y ∈ Sn−1.

It follows that

0 < m∥x∥4 ≤ f(x) ≤ M∥x∥4, ∀x ∈ Rn\{0}.
�

Theorem 2. If the condition (H) is satisfied, then there exist feedback laws

ui(x) = −⟨Bix, x⟩, i ∈ {1, 2, ..., p} (9)

that makes the closed-loop system (7) GAS.

Proof Let us consider the quadratic function V : Rn → R defined by

V (x) =
1

2
∥x∥2 (10)

The function V is positive definite.

Using the lemma 2, 3 and Remark 1, the derivative of V along the trajectories of the system

(7) induces:
CDα

t0V (x) ≤ xT (t)CDα
t0x(t)

≤ xT (t)

p∑
i=1

ui(x)Bix(t)
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≤
p∑

i=1

ui(x)⟨Bix(t), x(t)⟩

≤ −
p∑

i=1

⟨Bix(t), x(t)⟩2

≤ −m∥x∥4.
So, according to theorem 1, the closed loop system (7) by the feedback laws (9) is GAS. �

Theorem 3. If the condition (H) is satisfied, then there exist bounded feedback laws ui(x) = −⟨Bix, x⟩
∥x∥2

, x ̸= 0

ui(0) = 0
, i ∈ {1, 2, ..., p} (11)

such that the closed loop system (7) becomes GAS.

Proof Let us consider the quadratic function

V (x) =
1

2
∥x∥2,

V is positive definite. If the condition (H) holds, then, the derivative of V along the solutions

of the closed loop system (7) by the feedback (11) becomes :

CDα
t0V (x) ≤ xT (t)CDα

t0x(t)

≤ xT (t)

p∑
i=1

uiBix(t)

≤ −
p∑

i=1

ui(x)⟨Bix(t), x(t)⟩

≤ − 1

∥x∥2
p∑

i=1

⟨Bix(t), x(t)⟩2

≤ −m∥x∥2.
The proof of the theorem is completed by using the theorem 1. �

3.2 Stabilization of bilinear systems with drift

We consider the system with drift (1):

CDα
t0x(t) = Ax+

p∑
i=1

uiBix(t),

Theorem 4. If the condition (H) is satisfied, then there exist bounded feedback laws ui(x) = −c
⟨Bix, x⟩
∥x∥2

, x ̸= 0

ui(0) = 0
, i ∈ {1, 2, ..., p} (12)
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where c is a positive constant which will be chosen later, such that the closed-loop system (1)

becomes GAS.

Proof Let us consider the quadratic function

V (x) =
1

2
∥x∥2,

V is positive definite. If the condition (H) holds, then, the derivative of V along the solutions

of the closed loop system (1) by the feedback (12) becomes :
CDα

t0V (x) ≤ xT (t)CDα
t0x(t)

≤ ⟨Ax, x⟩+
p∑

i=1

ui(x)⟨Bix, x⟩

≤ ⟨Ax, x⟩ − c

∥x∥2
p∑

i=1

⟨Bix(t), x(t)⟩2

We have,

⟨Ax, x⟩ = ⟨Asx, x⟩
where As =

A+AT

2 . So, let

λmax = max
x ̸=0

⟨Asx, x⟩
∥x∥2

= max
y∈Sn−1

⟨Asy, y⟩

Therefore, we have
CDα

t0V (x) ≤ (λmax − cm)∥x∥2.
If we choose c > λmax

m , then the closed loop system (1) by the feedback laws (12) is GAS. �

Remark 2. For the mono-input system,
CDα

t0x = Ax+ uBx, (13)

our method is still effective. Actually, replacing the condition (H) by the condition

{x ∈ Rn : ⟨Bx, x⟩ = 0} ⊆ {x ∈ Rn : ⟨Ax, x⟩ < 0},
we can construct a feedback uc(x) = −c ⟨Bx,x⟩

∥x∥2 , such that CDα
t0V (t, x(t)) ≤ −λ3(∥x∥). Thus, the

feedback uc stabilizes the system (13).

Proposition 1. If there exist scalars k1, k2, ..., kp ∈ R such that

k1B1s + k2B2s + ...+ kpBps > 0 or k1B1s + k2B2s + ...+ kpBps < 0

then the condition (H) holds, i.e.

p∩
i=1

Si = {0}.

Proof Without loss of generality, we suppose that there are p numbers k1, k2, ..., kp ∈ R such

that

k1B1s + k2B2s + ...+ kpBps > 0

For x ∈ S1 ∩ ... ∩ Sp, we have

⟨Bix, x⟩ = ⟨Bisx, x⟩ = 0, i ∈ {1, 2, ..., p}
Then

⟨(k1B1s + k2B2s + ...+ kpBps)x, x⟩ = 0
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Thus, x = 0, which implies that

p∩
i=1

Si = {0}, i.e. the condition (H) is checked. �

§4 Illustrating examples

Example 1. Let us consider the system
CDα

t0x(t) = Ax+ u1(x)1x+ u2(x)B2x. (14)

where

A =

 0.25 0.25 0.5

0.25 0 −0.5

−0.25 0.25 0.75

 , B1 =

 0.25 −0.75 0

0, 75 −0.5 0.25

0 −0.25 0.25


,

B2 =

 0.5 0 −0.25

0 −1.5 0.25

0.75 −0.25 −1


and α ∈ (0, 1). We can easily verify that

B1s =

 0.25 0 0

0 −0.25 0

0 0 0.25

 and B2s =

 0.5 0 0.25

0 −1.5 0

0.25 0 −1

.

Let k1 = −2.5 and k2 = 1. We have k1B1s + k2B2s =

 −0.125 0 0.25

0 −0.25 0

0.25 0 −1.62

.

We can verify that k1B1s + k2B2s < 0.

According to Theorem 4, the system (14) can be stabilized.

Example 2. Consider the system
CDα

t0x(t) = Ax+ u1B1x+ u2B2x+ u3B3x, with α ∈ (0, 1), (15)

where A =

 8.5 4.5 15.5

−3.5 30.5 37

27.7 −5 13

 B1 =

 8.5 4, 5 8.5

7.5 1.5 10

18.5 −24 −5.5


B2 =

 −6.5 −5 8

−6 14, 5 −9, 5

15 −8.5 4.5

 and B3 =

 10.5 −10 7.5

−12 12.5 −27

5.5 11 34

.

Let k1 = 1, k1 = −1 and k3 = 2. We can get

k1B1s + k2B2s + k3B3s =

 36 −10.5 15

−10.5 12 −14

15 −14 58

, k1B1s + k2B2s + k3B3s > 0.

According to Proposition 1, we have
3∩

i=1

Si = {0}. So the closed-loop system

CDα
t0x(t) = Ax+ u1(x)B1x+ u2(x)B2x+ u3(x)B3x, (16)
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where 

u1(x) = −1

2

17x2
1 + 24x1x2 + 54x1x3 + 3x2

2 − 28x2x3 − 11x2
3

x2
1 + x2

2 + x2
3

,

u2(x) =
1

2

13x2
1 + 22x1x2 − 46x1x3 − 29x2

2 + 36x2x3 − 9x2
3

x2
1 + x2

2 + x2
3

,

u3(x) = −1

2

20x2
1 − 44x1x2 + 26x1x3 + 25x2

2 − 32x2x3 + 68x2
3

x2
1 + x2

2 + x2
3

is asymptotically stable.

Figure 1. Evolution of the state x1(t), x2(t), and x3(t) of Example 2, without feedback and

initial conditions x1(0) = −1, x2(0) = 3 and x3(0) = 2.

Figure 2. Evolution of the state x1(t), x2(t), and x3(t) of Example 2, with α=0.98, c = 0.67

and initial conditions x1(0) = −1, x2(0) = 3 and x3(0) = 2.

The numerical solution to the system (16) is shown in the Figure 2 for some suitable value

of fractional order α = 0.98. It indicates that the zero solution is asymptotically stable.

§5 Conclusion

In this article, we studied the stabilization problem of fractional bilinear systems with mul-

tiple inputs by homogeneous feedbacks of degree zero. We construct under a given hypothesis

stabilizing feedback laws for bilinear systems without drift and with drift. These results are
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obtained using Lyapunov fractional functions. Our future goal is to stabilize homogeneous

fractional systems.
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