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Application and comparison of kernel functions for linear

parameter varying model approximation of nonlinear

systems
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Abstract. In this paper, a comparative study for kernel-PCA based linear parameter varying

(LPV) model approximation of sufficiently nonlinear and reasonably practical systems is carried

out. Linear matrix inequalities (LMIs) to be solved in LPV controller design process increase

exponentially with the increase in a number of scheduling variables. Fifteen kernel functions

are used to obtain the approximate LPV model of highly coupled nonlinear systems. An error

to norm ratio of original and approximate LPV models is introduced as a measure of accuracy

of the approximate LPV model. Simulation examples conclude the effectiveness of kernel-PCA

for LPV model approximation as with the identification of accurate approximate LPV model,

computation complexity involved in LPV controller design is decreased exponentially.

§1 Introduction

LPV is a class of systems to approximate the dynamic behavior of nonlinear systems by

some linear dynamic relation between inputs and outputs of system. This relation depends on

a set of some measurable signals which are called scheduling variables. These signals represent

variable operating conditions of the original system. This ability to represent and capture

nonlinear dynamics using linear relation, which depends on measurable signals makes the use

of linear control theory possible in controller synthesis process.

In linear parameter varying (LPV) models, the nonlinear systems can be described as the

parameterized linear systems where the parameters are dependent on the measurable signals
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known as scheduling signals [1]. The LPV systems in state-space form, can be represented as:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t)

y(t) = C(θ(t))x(t) +D(θ(t))u(t), (1)

θ(t) ∈ S

here θ(t) ∈ ℜθ represents the parameter-varying vector in region S, where ℜ denotes the set

of real numbers, A(θ(t)) ∈ ℜns×ns , B(θ(t)) ∈ ℜns×nu are the system matrix and input matrix

while ns is number of states and nu is the number of inputs of the LPV system. Where x(t), u(t),

and y(t) are state, input and output vectors. The scheduling parameters θ(t) vary as function

of scheduling signals ρ(t). The scheduling variables can be external or internal to the system

making the model pure-LPV or quasi-LPV respectively. The function relating the parameter

variations and scheduling signals is called the scheduling function, i.e., θ(t) = p(ρ(t)). The

scheduling function is chosen to reflect the similar behavior as the nonlinear model in the whole

scheduling region S. Representation of a nonlinear system as an LPV system can be a nontrivial

issue. There are many methods to represent the nonlinear systems as an LPV system including

the one where nonlinearities in the systems can be treated as the scheduling variables [1]. This

nonlinear embedding approach can be represented as:

A(θ(t))x+B(θ(t))u = f(x, u), θ(t) ∈ S (2)

where f(x, u) is the nonlinear model. From Eq. 2 it can be concluded that the LPV

representation has the equivalent variation as the nonlinear model in the scheduling region S.

One way of looking at LPV system is as the extension of linear-time-invariant (LTI) systems

since both have similar properties when the parameters in LPV systems are frozen at some

operating point for a given time. The representation of LPV model, when frozen at some given

operating points can be viewed as shown in Fig. 1.

Figure 1. Representation of LPV systems [2].

However, a number of variables in LPV model have significant impact in conservatism, over-

bounding and increasing complexity in scheduling regions [3]. For polytopic LPV representation,

computational complexity in controller synthesis is increased exponentially with increase in a

number of variables, i.e. with 2n where n is number of scheduling variables. Therefore, a

common problem to solve in LPV controller synthesis is the reduction of scheduling variables

[4]-[5]. This reduction of scheduling variables can be viewed, in the LPV context, a form
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of model reduction. Hence, in LPV sense, model reduction can be thought of as either the

reduction of model order or the reduction of scheduling variables or both. Both of these are

strongly related from a complexity point of view [5]. In this paper, reduction of a number of

variables in LPV models is addressed.

Complexity reduction posed by a number of scheduling variables in LPV controller synthesis

of LPV systems is addressed in [3]. Linear principal-component-analysis (PCA) is applied for

the reduction of a number of scheduling variables in LPV system. The paper discusses the

parameter reduction for a 2-link robot-manipulator which is a sufficiently simple and slower

system with only ten scheduling variables. Kernel-PCA is proposed for the same system in

[6]. The kernel-PCA was able to capture more dynamics for the same system using the same

number of reduced parameters and thus resulting in a faster controller using the approximate

LPV model with more accurate tracking compared to that in [3]. Linear-PCA is also applied

for LPV model order reduction of selective-catalytic-reduction (SCR) in [7]. SCR is extremely

slow industrial process and thus one can not conclude that PCA can be used for the LPV model

order reduction of faster and extremely nonlinear systems.

From the literature, several kernel functions can be chosen for LPV model reduction. Choos-

ing a suitable kernel function however still remains an open problem [8]. Testing all, or several

of the available kernel functions is obviously a time-consuming task. Neither are there guide-

lines available from which one can have an idea as to which kernel is likely to do the job. In

this paper, an attempt is made to provide answer to this question. It has been shown through

simulation experiments, on two coupled nonlinear multivariable systems, that polynomial kernel

is the kernel of choice to start with for LPV model reduction.

The main contributions of this paper include the comparative analysis of kernel-PCA based

approximated LPV models obtained through fifteen kernel functions for highly coupled, non-

linear, and faster systems. The paper also uses two statistical tools, including error to norm

ratio and best fit ratio for the comparison of approximated LPV and full-order LPV model.

The rest of the paper is organized as: section 2 briefly discusses the application of kernel-

PCA LPV model order reduction. Section 3 is about the brief introduction and quasi-LPV

modeling of the nonlinear systems used for the model approximation and comparison of reduced

LPV models obtained through different kernel functions. A detailed discussion on results is

made in section 4. Finally, conclusions are drawn in section 5.

§2 LPV model approximation using kernal-based PCA

To perform model order reduction, one needs to collect data from simulations or measure-

ments. Consider the LPV model in Eq. 3:

ẋ(t) = A((ρ(t)))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t) (3)

where, x ∈ ℜn, u ∈ ℜnu , y ∈ ℜny are state matrix, input matrix and output matrix respectively.

A(ρ(t)), B(ρ(t)), C(ρ(t)) and D(ρ(t)) are continuous functions of scheduling signals. From here
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onwards, θ(t) and ρ(t) will be denoted as θt and ρt respectively. The scheduling parameters are

computed as:

θ(ρt) =
[
θ1 . . . θN

]
=

[
ρ(p1) . . . ρ(pN )

]
∈ ℜn×N (4)

with N number of samples such that N ≥ n and n being total number of scheduling parame-

ters and p represents the nonlinear function, known as scheduling function, to relate scheduling

signals with scheduling variables. Because of high dimension of feature space, separation of the

data can be easily achieved. The effectiveness of this method is due to famous kernel-trick, which

allows to perform linear operations in feature-space without mapping the scheduling variables in

feature-space. Kernel PCA is used for dimensionality reduction of scheduling variables in LPV

modeling. Assuming that scheduling variables mapped in features pace with ψ(θ1) . . . ψ(θn),

with n being number of parameters, we are assuming that parameters in feature-space are cen-

tered i.e.
∑N
i=1 ψ(θi) = 0. For performing normal PCA, one needs to find the covariance matrix

given by:

C̄ =
1

N

N∑
i=1

ψ(θi)ψ
T (θi) (5)

To extract principal components, λv = Cv̄ should be satisfied. Hence, we may deduce:

λ(v · ψ(θ)) = Cv̄ · ψ(θj), ∀j = 1 . . . N (6)

and x.y = xT y is the dot product. For details of the procedure, reader is referred to [6]. It

is very important to note that k-PCA does not necessary require the computation of mapping

in feature-space, what it does require is the characterization of dot product in feature-space.

This characterization can be obtained by defining a kernel function. Now, Gram kernel matrix,

K ∈ ℜN×N is defined as:

Kij = (ψ(θi).ψ(θj)) (7)

here, k(., .) represents nonlinear kernel function. Finally, to extract the principal compo-

nents, one needs to find the projections of image of some test point θt on eign vector vred in

feature-space as:

ϕred,t = vredψ(θ) =

N∑
j=1

αred,jk(θj , p(ρt)) (8)

In Eq. 8 ϕt is projection of ψ(θt) on vred and ϕred,t is r
th entry of ϕt. Since it is assumed

that the data is centered in feature-space, which is unknown for certain due to unavailability of

featured-space. So, the centered kernel matrix can be obtained by replacing ψ(θi) by ψ̂(θi) =

ψ(θi)
1
n

∑n
i=1 ψ(θi). Here, new centered matrix is reproduced as [9]:

K̂ = K − 1NK −K1N + 1NK1N (9)

here, 1N ∈ ℜn×n with each element in 1N being 1
N . Fraction of total variation is used to

calculate the accuracy of reduced model. It is defined as:

V (m) =

∑m
i=1 λi∑m̄
i=1 λi

(10)

with m being number of the reduced variables and λi the i
th eign value of K̂. Using Eq. 10,
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one can choose m based on the significant eign-values. m̄ represents total number of scheduling

variables which is taken to be n. When compared to simple or linear PCA, kernel-PCA has a

limitation that the reduced LPV model approximated through kernel-PCA has no longer affine

dependence on new scheduling variable ϕt [3]. In order to identify the reduced LPV model

with affine dependence on ϕt, one needs to minimize the square of Frobenius norm of error

between original state-space (the one having n scheduling variables) and the new state-space

with reduced (m) number of variables. That is the extra computational cost of kernel-PCA

involved in model approximation over that of using PCA. The mathematical formulation of

optimization problem is given by:

Min
1

N

N∑
i=1

∥S(θt)−Qr(ϕt)∥2F

s.t : Qr(ϕt) = Q(ro) +
m∑
i=1

Qr,iϕt,i =

[
Â(ϕt) B̂(ϕt)

Ĉ(ϕt) D̂(ϕt))

]
(11)

here, ∥.∥F represents Frobenius norm, N is total number of samples and m is reduced

number of scheduling variables. While S(θt) is given by:

S(θ) =

[
A(θt) B(θt)

C(θt) D(θt))

]
(12)

§3 Kernel Functions

Fifteen kernel function are used in this work for LPV model approximation of nonlinear

systems using reduced numbers of scheduling variables (θt). The kernel functions used in this

work are discussed in subsequent sections.

3.1 Polynomial Kernel Function

Polynomial kernel implementation function can given as [10]

k(x, y) = (xT y)d (13)

It is a non-stationary kernel. It should be applied to the normalized training data. It has a

single adjustable parameter d where d ∈ ℜ, x and y.are the vectors This parameter can be tuned

for desired performance.

3.2 Affine Kernel Function

Affine kernel implementation function is given as [11]

k(x, y) = (xT y + c)d (14)

It is a non-stationary kernel. It should be applied to the normalized training data. It has two

adjustable parameters c and d. These parameters are tuned or. adjusted according to desired

specifications.
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3.3 Sigmoid Kernel Function

Sigmoid kernel implementation function can be written as [10]

k(x, y) = tanh(kxT y + b) (15)

It is also known as hyperbolic tangent function or Multilayer Perceptron (MLP) kernel. It

comes from Artificial Neural Network (ANN) field. In ANN field bipolar sigmoid function is

often used as an activation function of artificial neuron. As its origin is from neural network

field so it is quite popular in Support Vector Machine (SVM) [12]. Surprisingly SVM model

with sigmoid activation function is equivalent to two-layer perceptron. Although it is positive

definite, but it performs good in actual. Sigmoid kernel has two adjustable parameters, k and

b. Usually value of k is taken 1/N where N is dimension of data.

3.4 Gaussian Kernel Function

Gaussian kernel is implemented using following equation [13]

k(x, y) = exp(
−∥x− y∥2

(2σ2)
(16)

It is an example of radial basis function kernel [11]. Alternatively, it could be implemented

using following function

k(x, y) = exp(−γ∥x− y∥2) (17)

In the first equation σ is an adjustable parameter. It plays a crucial role in kernel performance.

It should be properly tuned for problem at hand. If a high value of σ is chosen, then the expo-

nential will start to behave linearly, and nonlinear power of its higher dimensional projection

will start to deteriorate. A small value of σ on the other hand would let sensitivities of decision

boundary propagate and function will start loosing data.

3.5 Laplacian Kernel Function

Laplacian kernel can be implemented using the following equation

k(x, y) = exp(
−∥x− y∥

σ
) (18)

It can be termed as a type of radial basis function kernel. It is equivalent to exponential kernel,

but it is less sensitive to the variation of σ parameter. The consequences of changing sigma

parameter to the Gaussian kernel also can be held for the Laplacian kernel [13].

3.6 Log Kernel Function

Log kernel can be represented by the following equation

k(x, y) = −log(∥x− y∥d + 1) (19)

It is conditionally positive definite and well suited for images.



64 Appl. Math. J. Chinese Univ. Vol. 38, No. 1

3.7 Cosine Kernel Function

The cosine kernel function can be written as:

k(x, y) =
(xT y)

∥x∥∥y∥
(20)

here, ∥.∥ represents the L2 norm.

3.8 ANOVA Kernel Function

The function that expresses ANOVA kernel can be written as [14]

k(x, y) =

n∑
k=1

exp(−σ(xk − yk)2)d (21)

It works well in regression problems with multiple dimensions. It is also a type of radial basis

function kernel just like gaussian, Laplacian, and exponential kernels.

3.9 Multiquadric Kernel Function

The expression defining multiquadric kernel is given as [15]

k(x, y) =
√
∥x− y∥2 + c2 (22)

It is a well-known example of non-positive definite kernel. It can be used in same circumstances

as rational quadratic kernel.

3.10 Inverse Multiquadric Kernel Function

It is represented by the following equation [15]

k(x, y) =
1√

∥x− y∥2 + c2
(23)

It results in an infinite dimensional feature space just like the Gaussian kernel because it results

into matrix with full rank.

3.11 Power Kernel Function

The equation describing power kernel is given as

k(x, y) = −∥x− y∥d (24)

It is a triangular kernel. It can also be called as scale-invariant kernel [16]. It is only condition-

ally positive definite.

3.12 Rational Quadratic Kernel Function

The defining equation of rational quadratic kernel is

k(x, y) = 1− ∥x− y∥2

(∥x− y∥2 + c)
(25)
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It is less computationally intensive and can be used in place of Gaussian kernel when Gaussian

kernel become too massive.

3.13 Exponential Kernel Function

It is described by equation

k(x, y) = exp(
−∥x− y∥
(2σ2)

) (26)

It is closely related to the Gaussian kernel where only power of norm is removed. Like Gaussian

kernel it is also a type of radial basis function kernel [13].

3.14 Spherical Kernel Function

It can be described by the following equation

k(x, y) = 1− 3∥x− y∥
2σ

+
1

2
(
∥x− y∥

σ
)3 (27)

if∥x− y∥ < σ zerootherwise (28)

It is similar to the circular kernel function but is positive definite in R3.

3.15 Cauchy Kernel Function

It is described by following formula [15]:

k(x, y) =
1

(1 + ∥x−y∥2

σ2

(29)

Over the high dimension space, it can be used to give sensitivity and long-range influence.

Basically, it comes from Cauchy distribution and it is long tailed kernel.

§4 Nonlinear systems consideration for model approximation

In this work, two highly coupled nonlinear systems are used for the verification of kPCA

based LPV model approximation using fifteen different kernel functions. The nonlinear sys-

tems considered as case studies in this work include 4-DOF control moment gyroscope (CMG)

and twin-rotor aerodynamic systems. Both of these systems are highly coupled nonlinear and

naturally unstable. Considering the complexities posed by the dynamics of sated systems, the

effectiveness kernel-based PCA for LPV model approximation can be accurately validated. The

quasi-LPV modeling of both systems is briefly discussed in following sections.

4.1 4-DOF Control Moment Gyroscope (CMG)

CMG has four bodies named as; A,B,C and D providing the 4 angular degrees of freedom.

Coordinate frames of a 4-DOF CMG is shown in Fig 2. Bodies B,C and D are referred to as

gimbals while, A is the rotor in the gimbal B. Two DC motors provide torques τ1andτ2 for

spinning the rotor and rotating the gimbal B. Gimbals C and gimbal D rotate about the axes
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3 and axes 4 [17]. No active torque is applied to gimbal C and D. q1 is the angular position

of body A, q2 represents relative angle between gimbal B and gimbal C, relative angle between

gimbal C and gimbal D is q3 and q4 is the relative angle between the gimbal D and inertial

frame of reference. ω1, ω2, ω3 and ω4 denote the angular speeds of rotor, gimbal B, gimbal C

and gimbal D respectively.

Figure 2. ECP Model 750 - The Control Moment Gyroscope [18].

All the angular positions are measured using optical encoders. Angular momentum of fixed

magnitude is generated through the spin of rotor at a constant speed. By applying torque τ2

on gimbal B, the orientation of rotor is changed which redirects the angular momentum of the

rotor. This change in direction of angular momentum results in generating gyroscopic torque

which is used to rotate body D [19]. The quasi-LPV model based on Eq. 1 can be designed for

CMG. The state and input matrices for the CMG can be represented as:

A(ρ) =


0 0 0 1 0

0 0 0 0 1

0 0 θ1(ρ) θ2(ρ) θ3(ρ)

0 0 θ4(ρ) θ5(ρ) θ6(ρ)

0 0 θ7(ρ) θ8(ρ) θ9(ρ))



B(ρ) =


0 0

0 0

θ10(ρ) θ11(ρ)

θ12(ρ) θ13(ρ)

θ14(ρ) θ15(ρ)

 (30)

The inputs, outputs, scheduling signal and state of the designed quasi-LPV model are given as:

u =
[
τ1 τ2

]T
, y =

[
q3 q4

]T
, ρ =

[
q2 q3

]T
x =

[
q3 q4 ω1 ω2 ω3 ω4

]T
(31)

here, (θ1(ρ) . . . θ15(ρ)) are scheduling parameters and function of scheduling signal, ρt ∈ {q2, q3},
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which can be measured in real time or simulation. In this work, ρt are obtained through

simulations. It is can be seen from Eq. 30 that the quasi-LPV model of 4-DOF CMG consists

of fifteen scheduling variables (θ1(ρ) . . . θ15(ρ)) requiring a massive computational effort, as

one needs to solve 215 linear-matrix-inequalities (LMIs) to design the LPV controller. Same

scheduling variables are used in [21].

4.2 Twin-rotor Aerodynamic System (TRAS)

TRAS is a multi-input and multi output laboratory system. It is an approximate model of

helicopter. It can perform motion in two directions, lateral and longitudinal. It consists of a

beam fixed at its center on vertical rod. Two propellers are mounted on it, a main propeller and

tail propeller. Main propeller is responsible for pitch motion and tail propeller is responsible

for azimuth motion. TRAS is shown in Fig. 3.

Figure 3. Twin-rotor Aerodynamic (TRAS) system [20].

In the control study of TRAS, mainly the interest lies in controlling azimuth and pitch

angles by calculating controlled input for main and tail propellers. Like CMG, TRAS is also

highly coupled nonlinear and unstable systems. Nonlinear model of TRAS is given in following

equations [22].

Jψψ̈ = uψ + Jψ̇ϕ̇ sin(2ϕ)−Kψψ − Cψψ̇ (32)

Jϕϕ̈ = uϕ − J
ψ2

2
sin(2ϕ)− Cϕϕ̇−Kgg (33)

where,

Jψ = (mml
2
m +mtl

2
t ) cos

2(ϕ) + 2mcωlcω sin
2(ϕ) + Jz

Jϕ = mml
2
m +mtl

2
t + 2mcωlcω + Jx

J = mml
2
m +mtl

2
t − 2mcωlcω

Kg = (mmlm −mtlt) cos(ϕ) + 2mcωlcω sin(ϕ)

The distance of tail and main rotors from the origin is denoted by lt and lm respectively.

Whereas mm and mt represent the counterweights at the main and tail of the beam. Moreover,
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mcω and lcω represent the masses at the ends of levers and the relevant lengths of the levers

respectively. Jacobean linearization is applied to the nonlinear model to linearize it around

moving operating points to obtain qausi-LPV representation. Parameter values can be found

in [22]. TRAS model consists of four states azimuth angle (ϕ), azimuth velocity (ψ), pitch

angle (ϕ̇) and pitch velocity (ψ̇). Performing jacobian linearization of nonlinear model, the

quasi-LPV model of the TRAS is given by:

A =


0 1 0 0

0 θ1(ρ) θ2(ρ) 0

0 0 0 1

0 θ3(ρ) θ4(ρ) −0.4233

 , B =


0 0

θ5(ρ) 0

0 0

0 6.73

 (34)

where x ∈ Ren×1, A ∈ ℜn×n, B ∈ ℜn×p, θ(t) ∈ {ϕ, ψ}. The state vector for TRAS is given as:

x =
[
ϕ ϕ̇ ψ ψ̇

]T
(35)

The quasi-LPV model of the twin-rotor designed in this paper consists of five scheduling vari-

ables required to solve 25 LMIs in LPV polytopic control design process. The quasi-LPV system

is comparatively simpler than that of CMG as it includes one third number of scheduling vari-

ables compared to CMG. The scheduling variables of the TRAS are given as follows.

θ1(ρ) =
−0.005889

0.0238 cos2(ψ) + 0.00301

θ2(ρ) =
(0.0238 cos2(ψ) + 0.00301)(−0.216 sin(ψ))− (−0.216 cos(ψ))

(0.0238 cos2(ψ) + 0.00301)2

− (0.005889)(0.0476 sin(ψ) cos(ψ))

(0.0238 cos2(ψ) + 0.00301)2
ϕ̇

θ3(ρ) =
−0.021248

0.03
sin(ψ) cos(ψ)× 2ϕ̇

θ4(ρ) =
−1.7143

0.03
(−0.0292 sin(ψ) + 0.054 cos(ψ))

−0.021248

0.03
ϕ̇2(cos2(ψ) sin2(ψ))

θ5(ρ) =
0.216 cos(ψ)

0.0238 cos2(ψ) + 0.00301

§5 Results and discussion

Fifteen kernel functions of the support vector machines, discussed in section 3, are chosen

for the LPV model approximation of above mentioned highly coupled nonlinear systems. The

approximated LPV model needs to be compared with the full order LPV model. For that

purpose, two statistical tools, i.e. error to norm ratio and best fit ratio are chosen. Error to

norm ratio can be defined by the following equation.

Enx =
∥x− x̂∥2
∥x∥2

(36)

∥.∥2 represents the L2 norm, x and x̂ denote the states of full-order and approximated LPV

models of the system. The smaller is the value of Enx, the better is performance of the ap-
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proximated LPV model. Ideally the value of Enx is zero i.e. when the approximated model is

same as the original one. The significance of error to norm ratio lies in the its ability to provide

comparison of each state of the approximated LPV model with the corresponding state of the

full-order LPV model. A comparison of complete approximate LPV model with the full-order

LPV model is also made using best-fit-ratio (BFR). Best fit ratio is a statistical tool used to

check the performance of the approximate LPV model. The best fit ratio can be defined as [6]:

%BFR = 100%×max{∥x− x̂∥2
∥x− x̄∥2

, 0} (37)

∥.∥2 shows the L2 norm, x represents the states of the original model, x̂ represents the states of

the approximated model and x̄ is the mean of the states of the original model. BFR is taken in

percentage to see how much percent the dynamics of the approximated model match with the

original one. It should be noted that the approximation errors, and the criteria based on which

the approximations are good and poor is given in Eq. 36 (error to norm ratio) and Eq. 37

(percent best fit ratio). The model approximation is good if the error to norm ration is minimum

and percent best fit ration is maximum, i.e. greater than 90% while the approximation will be

poor if vice versa and hence the approximation error would be large. The error to norm ratio

criterion is applied for validation of accuracy of approximation of each state while the percent

best fit ratio is applied to the reduced model to validate the accuracy of complete model.

The results obtain through the application of kernel-PCA based LPV model approximation

for 4-DOF CMG and TRAS are discussed as follows.

5.1 LPV Model Approximation for 4-DOF CMG

The scheduling signals generated through the simulation of nonlinear CMGmodel are used to

create the scheduling variables θt. The kernel PCA-based LPV model approximation discussed

in section 2 is applied on scheduling variables. Based on fraction of total variation Vm, the

number of scheduling variables for reduced order LPV model are selected. The fraction of

total variation for all fifteen kernel functions applied on CMG is shown in Table 1. The table

shows Vm for fifteen kernel functions when used for the model approximation by using up to 7

scheduling variables. The Vm up to 15 variables is not shown due to limitation of the space. It

can be seen from the table that polynomial and affine kernel functions offer more flexibility in

model approximation using lesser number of scheduling variables when compared with any other

function. Also, one can note from the table, Vm using lesser number of scheduling variables is

increased for both affine and polynomial kernel functions by increasing their degree d. Increasing

the tuning parameter σ for gaussian and exponential kernel functions also causes increase in Vm

using lesser number of scheduling variables. Both, gaussian and exponential kernel functions

have same Vm. Similarly, Laplacian and log functions have same Vm. Approximate model

for CMG is then identified using one, two and three number of scheduling variables for each

function. Table 2 shows the performance of approximated LPV models of CMG with full-order

LPV model.
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Table 1. Fraction of total variation for CMG.

Vm

Kernel

Function m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

Polynomial d=1 0.45 0.68 0.78 0.85 0.91 0.94 0.97

& Affine d=3 0.55 0.76 0.85 0.92 0.96 0.98 0.99

d=5 0.63 0.81 0.89 0.95 0.98 0.99 1.00

d=6 0.68 0.86 0.92 0.96 0.99 1.00 1.00

d=7 0.71 0.88 0.94 0.97 0.99 1.00 1.00

d=8 0.75 0.92 0.97 0.98 0.99 1.00 1.00

Sigmoid k=1, b=1 0.21 0.35 0.46 0.54 0.62 0.69 0.74

k=1, b=2 0.34 0.52 0.67 0.75 0.82 0.86 0.91

k=1, b=3 0.38 0.58 0.72 0.80 0.87 0.91 0.94

k=2, b=3 0.45 0.64 0.78 0.86 0.91 0.94 0.96

Gaussian σ =5 0.25 0.32 0.47 0.62 0.69 0.72 0.74

& Expo. σ =10 0.41 0.57 0.69 0.80 0.83 0.85 0.89

σ =5 0.75 0.92 0.97 0.98 0.99 1.00 1.00

Laplacian & Log 0.13 0.23 0.32 0.41 0.48 0.54 0.59

Cosine 0.50 0.53 0.61 0.63 0.77 0.79 0.84

ANOVA 0.35 0.43 0.48 0.52 0.61 0.72 0.77

MQ 0.17 0.19 0.28 0.29 0.34 0.43 0.56

IMQ 0.34 0.43 0.49 0.58 0.69 0.78 0.82

Power 0.51 0.54 0.59 0.62 0.64 0.68 0.71

RQ 0.23 0.28 0.32 0.38 0.46 0.49 0.55

Spherical 0.11 0.19 0.22 0.28 0.34 0.39 0.45

Table 2. Comparison of original and approximated models of CMG.

Enx

Kernel

Function q2 q3 q4 ω2 ω3 ω4 %BFR

m=1 0.012 0.009 0.039 0.219 0.022 0.913 91.2

Polynomial m=2 0.003 0.002 0.014 0.142 0.001 0.282 92.3

m=3 0.004 0.002 0.005 0.062 0.009 0.030 95.1

m=1 1.151 1.670 0.985 1.409 2.471 0.957 83.4

Affine m=2 1.027 1.670 0.932 1.501 2.273 0.901 87.0

m=3 0.241 1.070 0.725 1.106 1.813 0.724 91.0

Continued on next page
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Table 2 – Continued from previous page

Kernel

Function q2 q3 q4 ω2 ω3 ω4 %BFR

m=1 1.823 2.429 0.845 2.955 3.865 0.646 53.1

Sigmoid m=2 1.518 1.955 0.839 2.010 2.789 0.636 60.2

m=3 1.338 1.678 0.858 1.649 2.215 0.674 90.0

m=1 1.259 1.548 0.855 1.413 2.035 0.686 54.4

Gaussian m=2 1.183 1.377 0.848 1.240 1.739 0.682 62.1

m=3 1.135 1.265 0.836 1.156 1.492 0.658 83.5

m=1 1.293 1.622 0.848 1.481 2.111 0.668 64.1

Laplacian m=2 1.284 1.597 0.854 1.478 2.099 0.679 72.5

m=3 1.279 1.584 0.857 1.476 2.093 0.685 88.1

m=1 10.343 29.606 0.947 22.158 57.623 0.879 53.1

Log m=2 10.343 1.066 0.947 22.158 1.107 0.879 60.2

m=3 1.441 1.659 0.947 1.711 2.196 0.879 90.0

m=1 1.234 1.498 0.853 1.349 1.952 0.687 47.4

Cosine m=2 1.208 1.439 0.851 1.288 1.856 0.686 52.3

m=3 1.134 1.265 0.836 1.156 1.492 0.658 73.6

m=1 3.407 6.488 0.829 6.025 10.021 0.696 57.4

ANOVA m=2 3.346 6.316 0.835 6.052 9.834 0.704 72.1

m=3 3.347 6.316 0.835 6.051 9.833 0.704 81.3

m=1 1.092 1.691 0.990 1.284 2.498 0.971 47.1

MQ m=2 1.064 1.483 0.990 1.149 2.028 0.971 52.8

m=3 1.019 2.430 0.990 1.009 4.156 0.971 73.9

m=1 6.684 7.953 0.990 47.729 17.091 0.971 67.1

IMQ m=2 6.683 2.386 0.991 47.792 4.097 0.971 77.1

m=3 1.558 7.946 0.990 4.898 17.087 0.971 89.1

m=1 13.092 1.261 0.979 136.295 1.582 0.941 69.9

Power m=2 5.180 1.013 0.979 47.789 1.026 0.941 81.0

m=3 1.185 1.131 0.979 2.586 1.280 0.941 89.9

m=1 0.979 1.989 1.856 1.508 3.388 3.456 56.2

RQ m=2 0.950 2.902 1.622 3.379 6.021 3.053 72.3

m=3 0.952 2.871 1.611 3.373 5.918 3.056 87.5

m=1 1.259 1.548 0.855 1.413 2.035 0.686 54.4

Exponential m=2 1.183 1.377 0.848 1.240 1.740 0.682 62.1

m=3 1.134 1.265 0.836 1.156 1.492 0.658 93.5

m=1 1.234 1.498 0.853 1.349 1.952 0.687 68.9

Continued on next page
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Table 2 – Continued from previous page

Kernel

Function q2 q3 q4 ω2 ω3 ω4 %BFR

Spherical m=2 1.208 1.439 0.851 1.288 1.856 0.686 69.6

m=3 1.134 1.265 0.836 1.156 1.492 0.658 79.3

m=1 26.684 12.252 3.991 47.029 27.091 2.372 69.0

Cauchy m=2 8.683 2.386 1.250 57.792 24.041 1.974 76.0

m=3 3.041 0.946 1.091 34.898 17.088 1.902 78.4

One can conclude from Table 2 that polynomial kernel function provides the best approximated

LPV model for CMG. It should be noted that MQ, IMQ and RQ in above Tables 1-2 denote

multiquadratic, inverse multiquadratic, and rational quadratic kernel functions respectively.

Error to norm ratio (Enx) is a more relevent tool as it can provide the comparison of each state

of the approximated model with the full-order LPV model. If the approximated model is not

close enough to the original LPV model based on best fit ratio, Enx can provide the insight by

comparison of the states. The comparison of the best approximated LPV and full-order LPV

models of the CMG are shown in Fig. 4 and Fig. 5. It can be viewed graphically from Fig.
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Figure 4. Approximated and original LPV model of CMG using polynomial kernel function.

4 that approximated model using three scheduling variables is more realistic as its response to

excitation is very close to the full-order LPV and nonlinear models of the CMG. Here, m in the
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Table 3. Fraction of total variation for TRAS.

Vm
Kernel
Function m = 1 m = 2 m = 3 m = 4 m = 5

Polynomial& Affine 0.94 0.96 0.97 1.00 1.00
Sigmoid 0.89 0.90 0.94 0.99 1.00
Gaussian & Exponential 0.90 0.91 0.95 0.98 1.00
Laplacian& Log 0.81 0.83 0.87 0.90 0.99
Multiquadratic 0.79 0.81 0.83 0.90 0.98
Inverse Multiquadric 0.74 0.79 0.88 0.92 0.99
Power 0.70 0.77 0.84 0.91 1.00
Rational Quadratic 0.69 0.72 0.78 0.85 0.95
Spherical 0.71 0.79 0.88 0.95 0.99
Cauchy 0.86 0.89 0.95 0.98 1.00

figure represents the number of reduced scheduling variables. The comparison of original and

approximated models using affine kernel function is shown in Fig. 5. From Fig. 4 and Fig. 5 it

is clear that the approximate LPV model using polynomial kernel function has more accurate

response. The same can be concluded from Table 2.
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Figure 5. Approximated and original LPV model of CMG using affine kernel function.
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5.2 LPV Model Approximation for TRAS

TRAS has lesser complexity in terms of number of scheduling variables as compared to

CMG. TRAS has 5 scheduling variables causing one to solve 25 LMIs during LPV controller

design process. We applied the same fifteen kernel functions and compared the approximate

LPV models obtained through each kernel. The fraction of total variation to select the number

of reduced variables for model approximation is shown in Table 3.

From Table 3, one can conclude that affine and polynomial kernel functions have highest

Vm using single scheduling variable. The comparison of approximate and original LPV models

is shown in Table 4.

Table 4. Comparison of original and approximated models of TRAS.

Enx

Kernel

Function ϕ ψ ϕ̇ ψ̇ %BFR

Polynomial 0.971 0.0721 0.000 0.000 96.94

Affine 31.23 13.514 0.000 0.000 97.19

Sigmoid 1.825 2.0242 0.000 0.000 94.18

Gaussian 7.225 8.1435 2.460 51.254 83.06

Laplacian 7.225 8.1435 2.460 3.254 91.09

Log 27.55 98.93 2.460 25.150 83.91

Cosine 1.825 2.024 0.209 0.837 89.33

ANOVA 2.172 4.852 1.000 1.000 86.16

Multiquadric 21.235 49.465 6.225 2.573 78.72

Inverse Multiquadric 21.238 43.589 6.225 3.517 80.9

Power 31.231 13.514 1.073 0.870 83.84

Rational Quadratic 20.142 38.199 2.301 2.148 86.02

Exponential 7.225 8.143 2.460 35.254 88.91

Spherical 13.01 1.261 0.978 1.294 91.42

Cauchy 7.745 8.362 2.021 4.001 89.72

From Table 4, it can be seen that three kernel functions including affine, polynomial, and

sigmoid kernel functions provide the approximated LPV model with closest dynamics to the

original LPV model as the error to norm ratio of states for these functions is very small. The

above-mentioned kernel functions are able to provide the model with the best-fit-ratio of more

than 96% by using a single scheduling variable. The states of approximated and original LPV

models of TRAS using polynomial and sigmoid kernel functions are shown in Fig. 6 and Fig.

7 respectively.
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Figure 6. Approximated and original LPV model of TRAS using polynomial kernel function.
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Figure 7. Approximated and original LPV model of CMG using affine kernel function.

Fig. 6 and Fig. 7 represent the states of original and approximated LPV model of TRAS

using polynomial and sigmoid kernel functions respectively. One can conclude that polynomial

kernel function provides better approximate LPV model using single scheduling signal compared

to sigmoid kernel function.

§6 Conclusion

Comparative analysis of kernel-PCA based model approximation is carried out using fifteen

kernel functions available in literature. The analysis is applied to two nonlinear systems of

sufficient high complexity. Choice of kernel function ensuring accurate approximated LPV
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model varies from system to system. However, the analytical study carried out in this paper

shows that the polynomial kernel function is common in both cases. Based on the findings

of this research, one is suggested to try polynomial kernel function before moving to other

functions available in literature. In future by following the suggested method for selection of

kernel function, the parameter dependent Lyapunov function-based controllers can be designed

for complex nonlinear systems and can be applied for experimental validation.
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[4] MMSiraj, R Tóth, S Weiland. Joint order and dependency reduction for LPV state-space

models, in Decision and Control (CDC) IEEE 51st Annual Conference, 2012, 6291-6296.

[5] R Toth, H S Abbas, H Werner. On the state-space realization of LPV input-output models:

Practical approaches, IEEE Trans Control Syst Technol, 2012, 20: 139-153.
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