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A Comparative study on generalized Manev potential and

Newtonian potential in perturbed restricted four-body

problem

Jagadish Singh1 Omale Solomon Okpanachi2

Abstract. The motion of a test particle within the context of the restricted four-body problem

(R4BP) driven by a new kind of potential, called the generalized Manev potential, with pertur-

bations in the Coriolis and centrifugal forces is considered in this study. The system possesses

eight libration points which were distributed on its plane of motion in different manner from

those of the usual Newtonian potential. Unlike the case of the perturbed R4BP under Newto-

nian potential, where two of these librations are stable, all of them are unstable in linear sense

under Manev potential. We found that a gradual perturbation in the centrifugal force causes

the trajectories of motion to drift inward but the Coriolis force was proven to have no effect on

the location of the libration points of the system. Using first order Lyapunov characteristic ex-

ponents, the dynamical behavior of the system is found irregular. We experimented with a high

velocity stellar system (82 G. Eridani) to establish the applicability of the model in astrophysics.

§1 Introduction

Modified Newtonian potential is the new frontier in the studies of the dynamics of gravitating

particle systems. In recent times, researches have shown that there are lapses in using the

classical Newton’s law of gravitation to explain certain phenomena such as the orbit of the

Moon around the Earth and the observed perihelion advances of Mercury in solar dynamics.

Following these limitations, Newton in [1] demonstrated that a central-force problem having

this kind of potential A
r + B

r2 leads to a precessional elliptic relative orbit. The general relativity

theory excelled in explaining well such phenomena in both quantitative and qualitative manner,

but according to Diacu [2] formulating relativistic n-body problem is difficult.

However, in Maneff [3],[4],[5],[6] the Bulgarian Physicist George Manev obtained a similar

model in the twenties, and proposed a suitable substitute for the relativity theory. Manev came
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up with a potential of form µ
r + 3µ2

2C2r2 , where µ is the gravitational parameter of the two-body

and C the speed of light. Several authors have investigated the restricted few-body problem

with Manev-type forces. For instance, Blaga [7] worked on the precessing orbits, central forces

and Manev potential; Ivanov and Prodanov [8] studied Manev potential and general relativity;

Haranas and Mico [9] investigated Manev potential and satellite orbits; Kirk et al [10] examined

satellite motion in a Manev potential with drag. Blaga [11] considered circular orbits, Lyapunov

stability and Manev-type forces. Barrabes et al [12] studied spatial collinear restricted four-

body problem with repulsive Manev potential by considering a quasi-homogeneous potential of

the form −(ar +
e
r2 ), where a and e are real constants and r is the distance between the particles.

Various factors such as variation of the mass of the primaries, Coriolis force, PR drag, Stokes

drag, oblateness of participating bodies, radiation pressure force and centrifugal force, etc are

studied as generalization in the restricted few-body. Several researchers such as Bhatnager and

Hallan[13], Singh and Aguda[14], Singh and Omale [15], Singh and Omale [16], Vincent et. al

[17], Abouelmagad et al [18] have considered the effects of little perturbations in the Coriolis

and centrifugal forces in the framework of restricted few- body problem.

Our motivation in this study is to carry out a numerical investigation of the motion of a

test particle in the gravitational field of three primaries having Lagrangian configuration under

the effect of small perturbations in the Coriolis and centrifugal forces together with the bodies

possessing Manev potential. Also, we carried out a comparative study of the motion of the

infinitesimal body in the cases of Newtonian potential and Manev potential. The governing

equations of motion for the system are set up in section 2. In sections 3 and 4 the equilibrium

points and the linear stability were studied respectively, then section 5 is for the determination

of Chaos using LCEs, while section 6 is the model application to a stellar system, namely, 82.

G Eridani. Finally, the discussion and conclusion are presented in section 7.

§2 GOVERNING EQUATIONS OF MOTION

We take cue from [12], [13], [14] and [15] to set up the equations of motion for the system.

Given that three point-masses m1, m2 and m3are in circular motion about their centre of mass

which is fixed at the origin of the coordinate system and are at the vertices of an equilateral

triangle. A fourth mass m taken as a test particle in motion in the same plane under the

influences of the force of gravity of the three bodies and the triangle is oriented in such a manner

where m1 is placed on the positive x-axis and m2,m3 having equal masses, are positioned

symmetrically with relative to x- axis. Normalizing the unit of the system, letthe point masses

add up to be 1 and the respective distances between them also equal to 1 and time unit is

chosen so that the gravitational constant G and mean motionn are also a unity. Let the

coordinates of the test particle be (x, y) and those of the point masses m1,m2 and m3 be(√
3µ, 0

)
, (−

√
3
2 (1− 2µ) , 1

2 ) and (−
√
3
2 (1− 2µ) ,−1

2 ) respectively. With µ = m2

m1+m2+m3
=

m3

m1+m2+m3
as the mass parameter. The equations that govern themotion of the test particlem

under perturbations in the Coriolis (α) and centrifugal forces (β) with the generalized Manev
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potential in the rotating frame of reference are given as

ẍ− 2αẏ = ∂Ω
∂x

ÿ + 2αẋ = ∂Ω
∂y

}
(2.1)

With

Ω =
β

2

(
x2 + y2

)
+(1− 2µ)

(
1

r1
+

3 (1− 2µ)

2c2r21

)
+µ

(
1

r2
+

3µ

2c2r22

)
+ µ

(
1

r3
+

3µ

2c2r23

)
(2.2)

r21 =
(
x−

√
3µ
)2

+ y2

r22 =
(
x+ 1

2

√
3 (1− 2µ)

)2
+
(
y − 1

2

)2
r23 =

(
x+ 1

2

√
3 (1− 2µ)

)2
+
(
y + 1

2

)2
r2 = x2 + y2

α = 1 + ε, |ε| ≪ 1,

β = 1 + ε
′
,
∣∣∣ε′
∣∣∣≪ 1

where ε, ε
′
represent perturbationsin the Coriolis and the centrifugal forces respectively and

c is the speed of light. Following the concept of Dubeibe [19], we normalize by setting c = 1.

More so, to enable our investigations switch between the classical Newtonian potential and the

generalized Manev potential, we use the following transformation

1

c2
→ σ

1

c2

Where σis the Manev parameter and taking c = 1,equation (2.2) becomes

Ω =
β

2

(
x2 + y2

)
+ (1− 2µ)

(
1

r1
+

3σ (1− 2µ)

2r21

)
+ µ

(
1

r2
+

3σµ

2r22

)
+ µ

(
1

r3
+

3σµ

2r23

)
, σ ∈ [0, 1] .

(2.3)

Taking σ = 0 we realise the classical Newtonian potential, for σ ∈ (0, 1],we have the Manev

potential case, while for σ ∈ [−1, 0) we have the repulsive Manev potential case. We shall be

using the Potential function in Equation (2.3) all through our computations and investigations.

§3 Location of Libration Points

The points of libration or equilibrium correspond to the positions in the plane where the

influence of gravity and the centrifugal force associated with the rotating coordinate system

cancel each other, with the implication that a test particle ( say an artificial satellite or a

circumstellar dust ) positioned at one of these libration points appears stationary in the rotating

frame. Therefore at the libration points ẍ = ÿ = ẋ = ẏ = 0. It thus follow from Equations

(2.1) and (2.3), that the equilibrium points are solutions of
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βx− (1− 2µ)
(
x−

√
3µ
)( 1

r31
+

3σ (1− 2µ)

r41

)
− µ

(
x+

1

2

√
3 (1− 2µ)

)(
1

r32
+

3σµ

r42

)
− µ

(
x+

1

2

√
3 (1− 2µ)

)(
1

r33
+

3σµ

r43

)
= 0

(3.1)

βy − (1− 2µ) y

(
1

r31
+

3σ (1− 2µ)

r41

)
− µ

(
y − 1

2

)(
1

r32
+

3σµ

r42

)
− µ

(
y +

1

2

)(
1

r33
+

3σµ

r43

)
= 0 (3.2)

It is intuitive to observe that Eqs. (3.1) and (3.2) are independent of α. This shows that

Coriolis force perturbation has no effect on the positions of libration points. The solutions of

Eqs. (3.1) and (3.2) are points of intersection of the curves in the xy-plane. When y = 0 ,

σ = 0.8, µ = 0.0190, and β = 1, two collinear points L1,2 were obtained on the x-axisand six

non-collinear points Lj (j=3,4,. . . ,8), as shown in figs. 1 and 2 respectively.Similar results are

observed in Baltagiannis and Papadakis[20] and [14].

Figure 1. The two collinear points in red colour with the blue lines as the path of motion for
the test particle.

Tables 1 and 2 show the results of the equilibrium points for the increasing value of pertur-

bation in the centrifugal force parameter β with fixed Manev parameter σ = 0.8 σ = 0.8

We observe from the tables 1 and 2 above that with the increasing value of perturbation in

the centrifugal force, there are notable changes in the positions of collinear and non-collinear

libration points that result in gradual inward shiftsof the trajectories of the infinitesimal mass.

Fig 1 shows that there is no difference in the number of the collinear libration point even if the

equation of motion is governed by Manev potential. Fig 3 reveals this obvious shifting of the

trajectories and instead of the usual dumbbell contour around the two equal masses in the case

of classical Newtonian potential as shown in Fig 4, the Manev potential gives a highly distorted
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Figure 2. The eight equilibrium points without perturbation; the blue and the yellow lines are
the contours of the orbit of the test particles with the red as the point of interception.

Table 1. collinear libration points at constant Manev parameter.

β L1 L2

1.0 1.397620 -1.363740
1.1 1.361960 -1.327310
1.2 1.330280 -1.294880
1.4 1.276080 -1.239270
1.44 1.266440 -1.229350
1.6 1.231070 -1.192950
1.8 1.192800 -1.153460

Table 2. Increasing Centrifugal force and the six non-collinear libration points at constant
Manev parameter σ = 0.8.

β L3,4 L5,6 L7,8

1.0 -0.624035 1.218980 -0.752644 0.453444 -1.170370 0.747898
1.1 -0.605657 1.187860 -0.751817 0.453012 -1.145790 0.725343
1.2 -0.590338 1.159650 -0.750966 0.452571 -1.124060 0.706105
1.4 -0.566350 1.110230 -0.749191 0.451656 -1.087520 0.675150
1.44 -0.562375 1.101270 -0.748824 0.451468 -1.081150 0.669922
1.6 -0.548558 1.068010 -0.747313 0.450698 -1.058240 0.651545
1.8 -0.534976 1.031250 -0.745324 0.449694 -1.034520 0.633187

irregular contour or orbit as shown in Fig 2.

In Fig 5 we have compared the effect of differentpotentials with respect to the orbit of

the infinitesimal mass. The inner orbit corresponds to the Newtonian potential, while the
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outer orbit is for the Manev potential. It shows that the Newtonian potential gives a smaller

orbit than the Manev potential. Illustratively, Fig 5 suggests that all things being equal, a

space asset undertaking motion on the Newtonian orbit might have an economic advantage in

terms of fuel consumption, because the period of the motion will usually be lesser than that

of the model designed on the Manev orbit. However, in the case of luminous primaries, the

electro-mechanical components of a space asset on the Newtonian orbit might experience high

adverse effect than a space asset on a Manev orbit, because the Newtonian (i.e the inner) orbit

is closer to the primaries. More so, the positions of libration points for the test particle are

not distributed in similar manner under the Manev potential and the Newton potential. This

suffices that the objective of a given space mission will determine the kind of potential that

is suitable for the model. In the nutshell, the Newtonian potential is an approximation of the

Manev potential in both quantitative and qualitative sense.

Figure 3. The orbit of the infinitesimal mass shifting inward with increasing centrifugal force
under Manev potential. The red point is when β = 1, the cyan point is when β = 1.4 and the
green point is when β = 1.6.

Figure 4. The orbit of the infinitesimal mass under Newtonian Potential with the blue and the
yellow lines as the contours and the black points as the equilibrium points.
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Figure 5. Concentric orbits under the Manev Potential and the Newton potential. The inner
orbits with the black points is the Newtonian orbit while the outer orbit with the red points is
the Manev orbit.

§4 Linear Stability

We study the linear stability of the motion of the test particle when a specific equilibrium

point (x0, y0) experience small displacementsτ and γin the coordinates so that x = x0 + τand

y = y0 + γ. Consequently, the variational form of the equations of motion corresponding to

Eqns.(2.1) are as given in (4.1)

τ̈ − 2αγ̇ = τ
(

∂2Ω
∂x2

)
0
+ γ

(
∂2Ω
∂x∂y

)
0

γ̈ + 2ατ̇ = τ
(

∂2Ω
∂x∂y

)
0
+ γ

(
∂2Ω
∂y2

)
0

 (4.1)

Where the dots are the derivatives with respect to time t and the subscripts 0 implies the

values are estimated at the equilibrium point (x0, y0). Neglecting other higher terms in τand

γ, we took into cognizance only the linear terms in τ and γ. Supposing Eqns.(4.2) are the

solutions of Eqns.(4.1)

τ = χ eλ t, γ = Θeλ t (4.2)

where χ,Θ are constants and λ is a parameter. Then the characteristic polynomial of the

system (4.1) is derived as

λ4 + aλ2 + b = 0 (4.3)

With

a = 4α2 −
(
∂2Ω

∂x2

)
0

−
(
∂2Ω

∂y2

)
0

b =

(
∂2Ω

∂x2

)
0

(
∂2Ω

∂y2

)
0

−
(

∂2Ω

∂x∂y

)
0

2
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A libration point is considered to be linearly stable if Eqn (4.3) evaluated at that point has

four complex roots all of which have negative real parts or all of which are purely imaginary,

and this can only be if the under listed conditions are all satisfied
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In the current study, the ancillary equation for the linear stability of the collinear libration

points is

λ4 +

(
4α2 −

(
∂2Ω

∂x2

)
0

−
(
∂2Ω

∂y2

)
0

)
λ2 +

(
∂2Ω

∂x2

)
0

(
∂2Ω

∂y2

)
0

= 0 (4.7)

Since
(

∂2Ω
∂x∂y

)
0
= 0 at y = 0.

Table 3. Eigenvalues of the Libration pointsunder Manev parameter( σ = 0.8).

Equilibrium Points λ1,2 λ3,4

L1 (1.397620, 0) 0.858598 - 0.711316i 0.858598 +0.711316i
L2 (−1.36374, 0) 0.902262 - 0.773713i 0.902262 +0.773713i
L3,4 (-0.624035,1.218980) 0.882602 - 0.752621i 0.882602 + 0.752621i
L5,6 (-0.752644, 0.453444) 9.64689 6.28864i
L7,8 (-1.170370, 0.747898) 0.800838 - 0.598697i 0.800838 + 0.598697i

Table 3 shows the computation of the eigen roots of (4.7) and (4.3) respectively for the

libration points Lj , (j=1,2,. . . 8). It is observe that, under Manev potential, the motion of the

test particle is unstable around all the libration points unlike in [14] where there were at least

two stable equilibrium points in the case of Newtonian potential.

§5 Determination of Chaos by Lyapunov Characteristic Exponents

This tool has been used by researchers such as Kumari and Kushvah [21] to examine the

presence of regularity or irregularity of the dynamical system. In application, if the orbits of the

dynamical system divergence fast from each other, it implies difficulty to predict the behavior of

the system, hence with regards to Dubeibe and Bermudez [22], any dynamical system which all

of its Lyapunov exponents are not negative is chaotic. Using Mathematica package developed

by Sandri [23], the first order LCEs of the system (2.1) is computed along with the graph

in Fig (6). We have seen the presence of chaos in the system since the LCEs [1, 1,1, 1] are

all positive exponents with respect to a set of arbitrary initial conditions [0.99977, 0.99977,

0.99977, 0.99977]. The LCEs observed here under Manev parameter ( σ = 0.8.) differs from

the one that whose equations of motion is governed by the Newtonian potential as shown in

[15] where there is obvious divergence.
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Figure 6. The Lyapunov Characteristic Exponents of the system.

§6 Numerical Applications of Model

We apply the model to astellar system, namely, 82 G. Eridani. This star is a high-velocity

star—it is moving quickly compared to the average star and it is slightly smaller in size and

less massive than the sun, making it marginally dimmer than the Sun in terms of luminosity.

We compute the libration points for the motion of a grain in the vicinity of 82 G. Eridani,

82 G. Eridani d, and 82 G. Eridani e. The mass of the primary star is 0.85 Msun. The

other secondary stars 82 G. Eridani d, and 82 G. Eridani e both having equal mass

1.4414410−5Msun. Thus, µ = 0.000016940602. The libration points and the eigen roots for

the stellar system are as shown in Tables (4) and (5) for the cases of Manev gravitational

field and Newtonian gravitational field, respectively. In the Manev potential case, there exist

nineequilibrium points for the stellar system, while there exist ten equilibrium points in the

Newtonian case. In both cases, some of the equilibrium points are very close to each other

as shown in figs 7 and 8 respectively. Fig (9) shows that the stellar system under Manev

potential have a larger orbit, while the inner orbit represents the trajectories of the system under

Newtonian potential. This proves that the motion of the system exhibits different behavior

under different potentials. It is also found that all of the libration points for the stellar system

arelinearly unstable as tabulated in tables (4) and (5).

Figure 7. Libration points of 82 G. Eridani Stellar System under Manev potential.
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Table 4. Stability of libration points in the triple stellar system: 82 G. Eridani, 82 G.
Eridani d, and 82 G. Eridani e under Manev Potential( σ = 0.8.) and Centrifugal
force (β=1.4).

Equilibrium Points λ1,2 λ3,4 Stability State
L2 -1.26286, 0 1.15707 0.394102i unstable
L4 -1.08523, 0.645909 1.1586 0.397881i Unstable
L5 -1.10097, 0.618505 1.15947 0.399555i Unstable
L6 -1.10097, -0.618505 1.15947 0.399555i Unstable
L7 -1.08523, -0.645909 1.1586 0.397881i Unstable
L8 -0.701532, 1.05008 1.15724 0.394513i Unstable
L9 -0.631179, 1.09382 1.15722 0.394515i Unstable
L10 -0.863453, 0.498532 37.0683 26.1102i Unstable
L11 -0.631179, -1.09382 1.15722 0.394515i Unstable

Figure 8. Libration points of 82 G. Eridani Stellar System under Newtonian potential.

Figure 9. Equilibrium points of 82 G. Eridani Stellar System under Manev potential (outer
orbit with red points) versus Newtonian potential (inner orbit with green points).



Jagadish Singh, Omale Solomon Okpanachi. A Comparative study on generalized Manev... 55

Table 5. Stability of Libration points for the system: 82 G. Eridani,82 G. Eridani d,and82
G. Eridani e under Newtonian Potential ( σ = 0) and Centrifugal force (β=1.4).

Equilibrium Points λ1,2 λ3,4 Stability State
L2 -0.885518, 0 0.740302 0.554813i Unstable
L4 0.883596, -0.0589214 0.742367 0.557724i Unstable
L 5 0.883596, 0.0589214 0.742367 0.557724i Unstable
L6 -0.871247, -0.503032 12.3561 8.7692i Unstable
L7 -0.766466, 0.442894 0.786512 0.604951i Unstable
Lt8 -0.871247, -0.503032 12.3561 8.7692i Unstable
L 9 -0.766466, -0.442894 0.786512 0.604951i Unstable
L10 -0.270192, 0.843309 0.741747 0.55692i Unstable
L 11 -0.270192, -0.843309 0.741747 0.55692i Unstable
L12 -0.343067, -0.816376 0.742517 0.557876i Unstable

§7 Discussion and Conclusion

We have carried out a numerical study on the existence, location, stability and dynamical

behavior of the equilibrium points of an infinitesimal mass under small perturbations in the

Coriolis and centrifugal forces in the restricted four-body problem when the primaries have

Langrangian configuration with a generalized Manev potential. We have found eight equilib-

rium points, two of which are collinear and the remaining six non-collinear. The positions of

the equilibrium points for the generalized Manev potential differ from the distribution of the

equilibrium points when the Newtonian potential is only considered.We have also observed that

the perturbations in the Coriolis and centrifugal forces caused the orbit of the infinitesimal

body to shrink, which in the practical sense implies a decrease in the orbital elements. More

so, due to the Manev potential, all of the equilibrium points are unstable in contrast to the

Newtonian case where L5,6 are stable (see, [14]). We found that an exploration model for-

mulated on the Newtonian potential will assume a slightly different dynamical behavior and

the orbital elements are lesser in values, for instance, the period of the motion than those of

the model formulated by the Manev potential. More succinctly, we implemented the model to

study the existence and stability of the equilibrium points of a stellar system 82 G. Eridani. In

figures (7) and (8) show that the stellar system 82 G. Eridani under the Manev potential has

nine equilibrium points which are distributed on the plane of motion in different pattern from

the ten equilibrium points of the stellar system under the Newtonian potential. Furthermore,

as shown in figure (9), taking the stellar system 82 G. Eridani as a case study and supposing

the primaries are luminoius, the electro-mechanical components of a space asset on the New-

tonian orbit might suffer higher adverse effect than a space asset on a Manev orbit since the

Newtonian (inner) orbit is closer to the primaries. These findings show clearly that a few-body

model derived on the basis of the usual Newtonian potential is an approximation to that of the

generalized Manev potential. Consequently, there is a need for onward researches that consider



56 Appl. Math. J. Chinese Univ. Vol. 38, No. 1

the Manev potential instead of the classical Newtonian potential, since there are ample dynam-

ical possibilities for varieties of results and newer innovative applications in astronomy, space

sciences and technology. The LCEs of the system was computed using a Mathematica package

and we found that it is a chaotic system because all of the exponents are non-negative.
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