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New hybrid inertial CQ projection algorithms with

line-search process for the split feasibility problem

DANG Ya-zheng∗ WANG Long YANG Yao-heng

Abstract. In this paper, we propose two hybrid inertial CQ projection algorithms with line-

search process for the split feasibility problem. Based on the hybrid CQ projection algorithm, we

firstly add the inertial term into the iteration to accelerate the convergence of the algorithm, and

adopt flexible rules for selecting the stepsize and the shrinking projection region, which makes an

optimal stepsize available at each iteration. The shrinking projection region is the intersection

of three sets, which are the set C and two hyperplanes. Furthermore, we modify the Armijo-type

line-search step in the presented algorithm to get a new algorithm.The algorithms are shown to

be convergent under certain mild assumptions. Besides, numerical examples are given to show

that the proposed algorithms have better performance than the general CQ algorithm.

§1 Introduction

Split Feasibility Problem (SFP) was firstly introduced by Censor and Elfving [4] in 1994,

which is to find a point x∗ satisfying

x∗ ∈ C ;Ax∗ ∈ Q, (1)

where C and Q are nonempty convex sets in ℜN and ℜM , respectively, and A is an M by N real

matrix. Problem (1) together with many variants of it has received much attention from opti-

mization community due to its broad applications to many disciplines, such as signal processing,

image reconstruction, intensity-modulated radiation therapy, etc. [1,2,3,7]. Therefore, many ef-

fective methods have been proposed to solve the problem (1), see [5,6,8,16,17,22,23]. A very suc-

cessful algorithm that solves the SFP seems to be the CQ algorithm of Byrne [2] which is defined

as follows: Denote Pc by the orthogonal projection onto C, that is, PC(y) = argminx∈C ||x−y||,
for y ∈ C; then take an initial point arbitrarily and define the iterative step by
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xk+1 = PC(I − γAT (I − PQ)A)(x
k), (2)

where 0 < γ < 2/∥A∥2. The CQ algorithm (2) can be regarded as a special case of the gradient

projection method if we consider the convex minimization problem

min
x∈C

1

2
∥(I − PQ)Ax∥2.

Observe that, the choice of stepsize in CQ algorithm depends on the norm of the operator,

which is not a simple work. To avoid this computation, some modifications of the CQ algorithm

and the self-adaptive method have been developed for solving the SFP. L pez et al. [12]

introduced a new way of selecting the stepsizes for solving SFP (1) such that the information of

operator norm is not necessary. Motivated and inspired by the work of [12,20,24,27], the authors

of [14] introduced a self-adaptive CQ-type algorithm for solving the SFP in the setting of infinite

dimensional real Hilbert spaces. Inspired by the projection and contraction method and the

hybrid descent approximation method, Gibali et al. [11] investigated the problem of finding a

common solution to a fixed point problem involving demi-contractive operator and a variational

inequality with monotone and Lipschitz continuous mapping in real Hilbert spaces. Shehu et al.

[19] introduced iterative algorithms and proved their strong convergence for solving proximal

split feasibility problems and fixed point problems for k-strictly pseudocontractive mappings in

Hilbert spaces. Dang et al. [9] proposed a hybrid CQ projection algorithm with Armijo-type

line-search step, which is different from the general self-adaptive Armijo-type procedure [25,26].

On the other hand, in [15], Polyak firstly proposed the inertial term as an acceleration process

to solve the smooth convex minimization problem. In recent years, scholars have proposed some

inertial iterative algorithms for solving the SFP. Based on [12], Taddele et al. [21] proposed

an iterative algorithm with inertial extrapolation to approximate the solution of multiple-set

SFP. Shehu et al. [18] introduced new CQ methods with alternated inertial procedure and self-

adaptive stepsize for solving SFP. Li et al. [13] proposed two inertial relaxed CQ algorithms for

solving the SFP in real Hilbert spaces according to the previous experience of applying inertial

technology to the algorithm. Godwin et al [10] introduced a new inertial extrapolation method

for solving a certain class of generalized SFP without the prior knowledge of the operator norm

or the coefficient of an underlying operator.

Inspired by the works mentioned above, we propose two hybrid inertial CQ projection

algorithms with line-search process for the split feasibility problem. The main features of the

proposed algorithms as follows:

1. Based on [9], we incorporate the inertial term into the iteration to construct Algorithm

3.1, which improves the efficiency of convergence. Furthermore, we adjust the Armijo-type

line-search step in Algorithm 3.1 to get Algorithm 3.2.

2. Algorithms perform a computationally inexpensive Armijo-type linear search along the

search direction to generate a hyperplane.

3. The next iteration is generated by the projection of the initial point on the intersection

of the set C with the hyperplanes, which makes an optimal stepsize available at each iteration.
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Different from the algorithms in [11,19], two hyperplanes are constructed in our algorithms to

generate the shrinking projection region.

The paper is organized as follows. In section 2, Some useful definitions and results are

collected for the convergence analysis of the proposed algorithms. In Section 3, we propose

two hybrid inertial CQ projection algorithms for the split feasibility problem and show their

convergence. In Section 4, numerical experiments are reported to conclude the effectiveness of

our algorithms. Finally, some conclusions are given in Section 5.

§2 Preliminaries

We denote by I the identity operator and by Fix(T ) the set of fixed points of an operator

T , that is, Fix(T ) := {x|x = Tx}.
Recall that a mapping T : ℜn → ℜ is said to be monotone if

⟨T (x)− T (y), x− y⟩ ≥ 0, ∀x, y ∈ ℜn.

For a monotone mapping T , ⟨T (x)− T (y), x− y⟩=0 iff x = y, then it is said to be strictly

monotone.

A mapping T : ℜn → ℜn is called non-expansive if

∥T (x)− T (y)∥ ≤ ∥x− y∥ , ∀x, y ∈ ℜn.

Lemma 2.1 [9,13] Let Ω be a nonempty closed and convex subset in H. Then, for any x, y ∈ H

and z ∈ Ω, the following hold:

(1) ⟨x− PΩ(x), z − PΩ(x)⟩ ≤ 0.

(2) ∥PΩ(x)− PΩ(y)∥2 ≤ ⟨PΩ(x)− PΩ(y), x− y⟩.

(3) ∥PΩ(x)− PΩ(y)∥ ≤ ∥x− y∥ , ∀x, y ∈ ℜn, or more precisely,

∥PΩ(x)− PΩ(y)∥2 ≤ ∥x− y∥2 − ∥PΩ(x)− x+ y − PΩ(y)∥2.

(4) ∥PΩ(x)− z∥2 ≤ ∥x− z∥2 − ∥PΩ(x)− x∥2.

Remark 2.1 In fact, the projection property (1) also provides a sufficient and necessary con-

dition for a vector u ∈ K to be the projection of the vector x; that is,u = PK(x) if and only

if

⟨u− z, x− u⟩ ≥ 0, ∀z ∈ K.

Lemma 2.2 [18] The following statements hold in ℜn:

(1) ∥x+ y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2, for all x, y ∈ ℜn.
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(2) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩, for all x, y ∈ ℜn.

Lemma 2.3 [3] Let f(x) := 1
2∥(I − PQ)Ax∥2, x ∈ C. Then

(1) f is convex and differentiable.

(2) ∇f(x) = AT (I − PQ)Ax, x ∈ ℜN .

(3) f is lower semicontinuous on ℜN .

(4) ∇f Lipschitz continuous with Lipschitz constant ∥A∥2.

Throughout the paper, the solution set of split feasibility problem is denoted by Γ, that is

Γ := {x∗ ∈ C|Ax∗ ∈ Q}. (3)

§3 Algorithms and their convergence analysis

Let

F (x) := (AT (I − PQ)A)(x).

Then we know that F is Lipschitz-continuous with constant ∥A∥2. We first note that the

solution set coincides with zeros of the following projected residual function:

e(x) := x− PC(x− F (x)), e(x, µ) := x− PC(x− µF (x));

with this definition, we have e(x, 1) = e(x), and x ∈ Γ if and only if e(x, µ) = 0. For any

x ∈ ℜN and α ≥ 0, define

x(α) = PC(x− αF (x)), e(x, α) = x− x(α).

The following lemma is useful for the convergence analysis in the next section.

Lemma 3.1 [25] Let F be a mapping from ℜN into ℜN . For any x ∈ ℜN and α ≥ 0, we have

min{1, α} ∥e(x, 1)∥ ≤ ∥e(x, α)∥ ≤ max{1, α} ∥e(x, 1)∥ .

Now, we describe our first algorithm as follows:

Algorithm 3.1

Step 0. Choose arbitrary initial points x0, x1 ∈ ℜN , and parameters η0 > 0, tk ∈ (0, 1),

γ ∈ (0, 1), σ ∈ (0, 1), ε ∈ (0, 1) and θ > 1, and set k = 0.

Step 1. Assuming xk−1, xk have been constructed, compute

wk = PC [x
k + tk(x

k − xk−1)], (4)

zk = PC [w
k − µkF (wk)], (5)



148 Appl. Math. J. Chinese Univ. Vol. 38, No. 1

where µk is a positive number satisfying ε < µk ≤ min
{

2
ρ(ATA)

− ε, 1
}
. Obviously, e(wk, µk) =

wk − zk. If e(wk, µk) = 0, then stop;

Step 2. Compute

yk = wk − ηke(w
k, µk), (6)

where ηk = γmkµk, with mk being the smallest nonnegative integer m satisfying⟨
F (wk − γmkµke(w

k, µk)), e(w
k, µk)

⟩
≥ σ

µk

∥∥e(wk, µk)
∥∥2. (7)

Step 3. Compute

xk+1 = PC∩H1
k∩H2

k
(x0), (8)

where

H1
k =

{
x ∈ ℜN |

∥∥yk − x
∥∥2 ≤

∥∥wk − x
∥∥2} ,

H2
k =

{
x ∈ ℜN |

⟨
x− xk, x0 − xk

⟩
≤ 0

}
.

Set k = k + 1 and go to Step 1.

Before establishing the global convergence of Algorithm 3.1, we first give the following

lemmas.

Lemma 3.2 There exists a nonnegative number m satisfying (7), for all k ≥ 0.

proof. Suppose that, for some k, (7) is not satisfied for any integer m , that is,⟨
F (wk − γmµke(w

k, µk)), e(w
k, µk)

⟩
≤ σ

µk

∥∥e(wk, µk)
∥∥2. (9)

By the definition of e(wk, µk), and Lemma 2.1 we know that⟨
PC(w

k − µkF (wk))− (wk − µkF (wk)), wk − PC(w
k − µkF (wk))

⟩
≥ 0.

Then ⟨
F (wk), e(wk, µk)

⟩
≥ 1

µk

∥∥e(wk, µk)
∥∥2 > 0. (10)

Since γ ∈ (0, 1) and ε < µk ≤ min
{

2
ρ(ATA)

− ε, 1
}
, from (9) we get

lim
m→∞

(wk − γmµke(w
k, µk)) = wk.

Hence, ⟨
F (wk), e(wk, µk)

⟩
≤ σ

µk

∥∥e(wk, µk)
∥∥2 <

1

µk

∥∥e(wk, µk)
∥∥2. (11)

But (11) contradicts (10) because
∥∥e(wk, µk)

∥∥ ≥ 0. Hence, (7) is satisfied for some integer m.

Lemma 3.3 If the solution set Γ ̸= ∅, then Γ ⊂ H1
k ∩ C for all k ≥ 0.
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proof. Let x∗ ∈ Γ, then∥∥zk − x∗∥∥2 =
∥∥PC(w

k − µkA
T (I − PQ)Awk)− x∗∥∥2

≤
∥∥wk − x∗ − µkA

T (I − PQ)Aw
k
∥∥2

=
∥∥wk − x∗∥∥2 − 2µk

⟨
wk − x∗, AT (I − PQ)Awk

⟩
+µk

2
∥∥AT (I−PQ)Awk

∥∥2
=

∥∥wk − x∗∥∥2 − 2µk

⟨
A(wk − x∗), (I − PQ)Awk

⟩
+µk

2
∥∥AT (I−PQ)Awk

∥∥2
=

∥∥wk − x∗∥∥2 − 2µk

⟨
Awk − PQAw

k + PQAwk −Ax∗, (I − PQ)Awk
⟩

+ µk
2
∥∥AT (I − PQ)Aw

k
∥∥2

=
∥∥wk − x∗∥∥2 − 2µk

∥∥(I − PQ)Aw
k
∥∥2

− 2µk

⟨
PQAw

k −Ax∗, (I − PQ)Aw
k
⟩
+ µk

2
∥∥AT (I − PQ)Awk

∥∥2.
From Lemma 2.1, we obtain∥∥zk − x∗∥∥2 ≤

∥∥wk − x∗∥∥2 − µk

{
2
∥∥(I − PQ)Aw

k
∥∥2 − µk

∥∥AT (I − PQ)Awk
∥∥2}

≤
∥∥wk − x∗∥∥2 − µk

(
2

ρ (ATA)
− µk

)∥∥AT (I − PQ)Awk
∥∥2 (12)

≤
∥∥wk − x∗∥∥2. (13)

Also, it follows from the definition of yk that∥∥yk − x∗∥∥2 =
∥∥wk − x∗ − ηk(w

k − zk)
∥∥2

=
∥∥wk − x∗∥∥2 − 2ηk

⟨
wk − x∗, wk − zk

⟩
+ ηk

2
∥∥wk − zk

∥∥2,
which can be rewritten as⟨

wk − x∗, wk − zk
⟩
= − 1

2ηk

{∥∥yk − x∗∥∥2−∥∥wk − x∗∥∥2−ηk
2
∥∥wk − zk

∥∥2}. (14)

On the other hand, by the definition of yk, we have∥∥yk − x∗∥∥2 =
∥∥wk − x∗ − ηk(w

k − zk)
∥∥2

=
∥∥zk − x∗ + (1− ηk)(w

k − zk)
∥∥2

=
∥∥zk−x∗∥∥2+2(1−ηk)

⟨
zk − x∗, wk − zk

⟩
+ (1− ηk)

2
∥∥wk − zk

∥∥2
=

∥∥zk−x∗∥∥2+2(1−ηk)
⟨
zk−wk+wk−x∗, wk−zk

⟩
+(1−ηk)

2
∥∥wk−zk

∥∥2
=

∥∥zk−x∗∥∥2+2(1−ηk)
⟨
wk − x∗, wk − zk

⟩
+(ηk

2 − 1)
∥∥wk − zk

∥∥2. (15)

Since
∥∥zk − x∗

∥∥2 ≤
∥∥wk − x∗

∥∥2, then by (14) and (15) we get

1

ηk

∥∥yk − x∗∥∥2 =
∥∥zk − x∗∥∥2+(

1

ηk
− 1)

∥∥wk − x∗∥∥2 + (ηk − 1)
∥∥wk − zk

∥∥2
≤

∥∥wk − x∗∥∥2 + (
1

ηk
− 1)

∥∥wk − x∗∥∥2 =
1

ηk

∥∥wk − x∗∥∥2.
Hence ∥∥yk − x∗∥∥2 ≤

∥∥wk − x∗∥∥2,
which implies x∗ ∈ H1

k . Moreover, it is easy to see that Γ ⊂ H1
k ∩ C, ∀k ≥ 0.

The following lemma says that if the solution set is nonempty, then Γ ⊂ H1
k ∩H2

k ∩ C and
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thus H1
k ∩H2

k ∩ Cis a nonempty set.

Lemma 3.4 [9, Lemma 3.4] If the solution set Γ ̸= ∅, then Γ ⊂ H1
k ∩H2

k ∩ C for all k ≥ 0.

For the case that the solution set is empty, we have that H1
k ∩H2

k ∩C is also nonempty from

the following lemma, which implies the feasibility of Algorithm 3.1.

Lemma 3.5 Suppose that Γ = ∅, then H1
k ∩H2

k ∩ C ̸= ∅ for all k ≥ 0.

Lemma 3.6 Let
{
xk

}
be a sequence generated by algorithm 3.1. Then

(i) lim
k→∞

∥∥xk − wk
∥∥ = 0;

(ii) lim
k→∞

∥∥xk − yk
∥∥ = 0;

(iii) lim
k→∞

∥∥xk − zk
∥∥ = 0;

(iv) lim
k→∞

∥∥AT (I − PQ)Aw
k
∥∥ = 0.

proof. (i) From [9, theorem 3.1], we know that
{
xk

}
is a bounded sequence and convergent,

which implies that

lim
k→∞

∥∥xk+1 − xk
∥∥ = 0. (16)

By the definition of wk, it follows that ,∥∥xk − wk
∥∥ =

∥∥xk − PC [x
k + tk(x

k − xk−1)]
∥∥

≤
∥∥xk − [xk + tk(x

k − xk−1)]
∥∥

= |tk| ·
∥∥xk − xk−1

∥∥ .
Therefore, from the selection of parameter tk and (16), we have

lim
k→∞

∥∥xk − wk
∥∥ = 0. (17)

(ii) From (16) and (17), we obtain∥∥xk+1 − wk
∥∥ =

∥∥xk+1 − xk + xk − wk
∥∥

≤
∥∥xk+1 − xk

∥∥+
∥∥xk − wk

∥∥ → 0 as k → ∞,

which with xk+1 ∈ H1
k implies that

lim
k→∞

∥∥xk+1 − yk
∥∥ = 0.

Again, since
∥∥xk − yk

∥∥ ≤
∥∥xk − xk+1

∥∥+
∥∥xk+1 − yk

∥∥, it then follows that

lim
k→∞

∥∥xk − yk
∥∥ = 0. (18)

(iii) Since
∥∥wk − yk

∥∥ ≤
∥∥wk − xk

∥∥+
∥∥xk − yk

∥∥, then form (17) and (18) we have

lim
k→∞

∥∥wk − yk
∥∥ = 0. (19)

From the definition of yk, we get

wk − yk=ηke(w
k, µk)=ηk

(
wk − zk

)
.
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Then, note that from the construction of ηk and (19), we have∥∥wk − zk
∥∥= 1

|ηk|
∥∥wk − yk

∥∥ → 0 as k → ∞. (20)

Hence, from (17) and (20), we get∥∥xk − zk
∥∥ ≤

∥∥xk − wk
∥∥+

∥∥wk − zk
∥∥ → 0 as k → ∞.

(iv) Observe that by (12)

µk

(
2

ρ (ATA)
− µk

)∥∥AT (I − PQ)Aw
k
∥∥2 ≤

∥∥wk − x∗∥∥2 − ∥∥zk − x∗∥∥2
=

∥∥wk − zk
∥∥2 + 2

⟨
zk − x∗, wk − zk

⟩
≤ 2

⟨
zk − x∗, wk − zk

⟩
.

From (i), we know that
{
xk

}
is a convergent and bounded sequence. By the definition of wk,

the sequence
{
wk − x∗} is bounded, for ∀x∗ ∈ Γ. And since

∥∥zk − x∗
∥∥2 ≤

∥∥wk − x∗
∥∥2, we

conclude that
{
zk − x∗} is bounded. Then, from (20), it follows that

lim
k→∞

µk

(
2

ρ (ATA)
− µk

)∥∥AT (I − PQ)Awk
∥∥2 = 0. (21)

This together with the fact that lim
k→∞

µk

(
2

ρ(ATA)
− µk

)
̸= 0 further implies

lim
k→∞

∥∥AT (I − PQ)Aw
k
∥∥ = 0. (22)

We now prove our main convergence result.

Theorem 3.1 Suppose the solution set Γ is nonempty, then the sequence
{
xk

}
generated by

Algorithm 3.1 is bounded, and all its cluster points belong to the solution set. Moreover, the

sequence
{
xk

}
globally converges to a solution x∗ such that x∗ = PΓ(x

0).

proof. We have already kown in (i) that lim
k→∞

∥∥xk − x0
∥∥ exists.

Now, we show that xk → x̄ ∈ Γ. Let m,n ∈ N , since

xn = PH1
n−1∩H2

n−1∩C(x
0),

then

∥xm − xn∥2 ≤
∥∥xm − x0

∥∥2 − ∥∥xn − x0
∥∥2.

Hence lim
m,n→∞

∥xm − xn∥2=0. Thus
{
xk

}
k≥2

is a Cauchy sequence in C. Since C is nonempty

convex sets in ℜN , it implies that there exists x̄ ∈ C such that xk → x̄ as k → ∞. More so,

since
∥∥xk − wk

∥∥ → 0, then wk → x̄ and by the linearity of A, we have Awk → Ax̄.

Also from (22), we have

lim
k→∞

∥∥AT (I − PQ)Awk
∥∥2 =

∥∥AT (I − PQ)Ax
∥∥2=0.

Since the projected residual function

e(xk) = xk − PC(x
k −AT (I − PQ)Axk),

then, we have

e(x̄) = lim
k→∞

e(xk) = x̄− PC(x̄−AT (I − PQ)Ax̄)=x̄− PC(x̄)=0.



152 Appl. Math. J. Chinese Univ. Vol. 38, No. 1

Thus x̄ is a solution of problem (1).

Now, we prove that the sequence
{
xk

}
converges to a point contained in Γ.

Let x∗ = PΓ

(
x0

)
. Since x∗ ∈ Γ, by Lemma 3.4 we have

x∗ ∈ H1
kj−1 ∩H2

kj−1 ∩ C, ∀j.
So, by the iterative sequence of Algorithm 3.1 we have∥∥xkj − x0

∥∥ ≤
∥∥x∗ − x0

∥∥ .
Thus ∥∥xkj − x∗∥∥2 =

∥∥xkj − x0 + x0 − x∗∥∥2
=

∥∥xkj − x0
∥∥2 + ∥∥x0 − x∗∥∥2 + 2

⟨
xkj − x0, x0 − x∗⟩

≤
∥∥x∗ − x0

∥∥2 + ∥∥x0 − x∗∥∥2 + 2
⟨
xkj − x0, x0 − x∗⟩ .

Letting j → ∞ , we have

∥x̄− x∗∥2 ≤ 2
∥∥x0 − x∗∥∥2 + 2

⟨
x̄− x0, x0 − x∗⟩

= 2
⟨
x̄− x∗, x0 − x∗⟩ ≤ 0,

where the last inequality is due to Lemma 2.1 and the fact that x∗ = PΓ(x
0) and x̄ ∈ Γ. So,

x̄ = x∗ = PΓ

(
x0

)
.

Thus, the sequence
{
xk

}
has a unique cluster point PΓ

(
x0

)
, which shows the global convergence

of
{
xk

}
.

Now, we put another line search method in the Algorithm 3.1 to get a new algorithm.

Algorithm 3.2

Step 0. Choose arbitrary initial points x0, x1 ∈ ℜN , and parameters η0 > 0, tk ∈ (0, 1),

γ ∈ (0, 1), σ ∈ (0, 1), ε ∈ (0, 1), and θ > 1, and set k = 0.

Step 1. Assuming xk−1, xk have been constructed, compute

wk = PC [x
k + tk(x

k − xk−1)],

zk = PC [w
k − µkF (wk)],

where µk is a positive number satisfying ε < µk ≤ min
{

2
ρ(ATA)

− ε, 1
}
. We have e(wk, µk) =

wk − zk. If e(wk, µk) = 0, then stop;

Step 2. Compute

yk = (1− δk)w
k + δk(z

k − ηke(w
k, µk)), (23)

where ε <δk<
1

(1+ηk)
and ηk = γmkµk with mk being the smallest nonnegative integer m satis-

fying ⟨
F (wk − γmkµke(w

k, µk)), e(w
k, µk)

⟩
≥ σ

µk

∥∥e(wk, µk)
∥∥2.

Step 3. Compute

xk+1 = PC∩H1
k∩H2

k
(x0),

where

H1
k =

{
x ∈ ℜN |

∥∥yk − x
∥∥2 ≤

∥∥wk − x
∥∥2} ,
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H2
k =

{
x ∈ ℜN |

⟨
x− xk, x0 − xk

⟩
≤ 0

}
.

Set k = k + 1 and go to Step 1.

Theorem 3.2 Let {xk} be a sequence generated by Algorithm 3.2, If Γ ̸= ∅, then {xk}
globally converges to a solution x∗ such that x∗ = PΓ(x

0).

proof. The proof of Theorem 3.2 is similar to that of Theorem 3.1, so we provide only a sketch.

Let x∗ ∈ Γ, from the definition of yk, we obtain∥∥yk − x∗∥∥2 =
∥∥(1− δk)w

k + δk(z
k − ηke(w

k, µk))− x∗∥∥2
=

∥∥wk − x∗ − (1 + ηk)δk(w
k − zk)

∥∥2
=

∥∥wk − x∗∥∥2−2(1+ηk)δk
⟨
wk−x∗, wk−zk

⟩
+(1+ηk)

2δk
2
∥∥wk−zk

∥∥2, (24)

which can be written as⟨
wk−x∗,wk−zk

⟩
=− 1

2(1+ηk)δk

{∥∥yk−x∗∥∥2−∥∥wk−x∗∥∥2−(1+ηk)
2
δk

2
∥∥wk−zk

∥∥2}. (25)

On the other hand, by the definition of yk, we can get∥∥yk−x∗∥∥2 =
∥∥zk−x∗ − ((1 + ηk)δk − 1)(wk − zk)

∥∥2
=

∥∥zk − x∗∥∥2 − 2((1 + ηk)δk − 1)
⟨
zk − x∗ , wk − zk

⟩
+ ((1 + ηk)δk − 1)2

∥∥wk − zk
∥∥2

=
∥∥zk − x∗∥∥2 − 2((1 + ηk)δk − 1)

⟨
wk − x∗ , wk − zk

⟩
+ ((1 + ηk)

2δk
2 − 1)

∥∥wk − zk
∥∥2. (26)

Since
∥∥zk − x∗

∥∥2 ≤
∥∥wk − x∗

∥∥2 and the choice of δk, then from (25) and (26) we have

1

(1 + ηk)δk

∥∥yk−x∗∥∥2 ≤ 1

(1 + ηk)δk

∥∥wk − x∗∥∥2 + ((1 + ηk)δk − 1)
∥∥wk − zk

∥∥2
≤ 1

(1 + ηk)δk

∥∥wk − x∗∥∥2. (27)

This implies that ∥∥yk − x∗∥∥2 ≤
∥∥wk − x∗∥∥2.

Then we have x∗ ∈ H1
k , therefore Γ ⊂ H1

k ∩ C.

We know that the sequence
{
wk − x∗} is bounded, for ∀x∗ ∈ Γ. Since

∥∥zk − x∗
∥∥2 ≤

∥∥wk − x∗
∥∥2,

we have ∥∥wk − zk
∥∥ ≤

∥∥wk − x∗∥∥+
∥∥zk − x∗∥∥ ,

≤ 2
∥∥wk − x∗∥∥ , (28)

which implies that
{
wk − zk

}
is a bounded sequence. Then using similar arguments in obtaining

(24), one can show that∥∥xk − yk
∥∥2=∥∥xk−wk

∥∥2 + 2(1+ηk)δk
⟨
xk − wk, wk − zk

⟩
+(1 + ηk)

2δk
2
∥∥wk − zk

∥∥2,
which can be written as∥∥wk−zk

∥∥2=− 1

(1 + ηk)
2
δk

2

{∥∥xk−yk
∥∥2−∥∥xk−wk

∥∥2−2(1+ηk)δk
⟨
xk−wk, wk−zk

⟩}
.
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From (17) and (18), we have

lim
k→∞

∥∥wk − zk
∥∥ = 0. (29)

Note also that ∥∥xk − zk
∥∥2 ≤

∥∥xk − wk
∥∥2 + ∥∥wk − zk

∥∥2.
Therefore by (17) and (28), we get lim

k→∞

∥∥xk − zk
∥∥ = 0.

The rest of the convergence proof is identical to that of Theorem 3.1.

Remark 3.1 In the two algorithms, a projection from ℜN onto the intersection C ∩H1
k ∩H2

k

needs to be computed, that is, procedure xk+1 = PC∩H1
k∩H2

k
(x0) at each iteration. Surely,

if the domain set C has a special structure such as a box or a ball, then the next iteration

xk+1 can easily be computed. If the domain set C is defined by a set of linear (in) equalities,

then computing the projection is equivalent to solving a strictly convex quadratic optimization

problem.

§4 Numerical experiments

In this section, we present two numerical examples to compare the performance of our

algorithms with the genaral CQ algorithm. Throughout the computational experiments, the

parameters are set as γ = 0.7, σ = 0.6, θ = 1.5, η0 = 0.3, β = 1. We define the error as
∥xk+1−xk∥2

2

∥x2−x1∥2
2

, and use
∥xk+1−xk∥2

2

∥x2−x1∥2
2

< 10−5 as the stopping criterion. The implementations are

done in MATLAB to solve the following examples.

Example 4.1 Let C=
{
x ∈ ℜ3

∣∣x1 + x2
2 + 2x3 ≤ 0

}
, Q =

{
x ∈ ℜ3

∣∣x1
2 + x2−x3 ≤ 0

}
. A =

ones(3). Find x ∈ C with Ax ∈ Q.

The numerical results are given in Table 1. To make it explicit, we also measure the

performance of the algorithms by plotting the curve of error. The corresponding results are

reported in Figure 1 and Figure 2. In the table, k denotes the number of iterations, s denotes

the computing time, and x∗ denotes the approximate solution.

Table 1. Results for Example 4.1 (Case tk = 0.5).

x0 = (0, 1, 2)′ x0 = (−2,−1, 3)′ x0 = (−3, 1, 2)′

Algorithm

3.1

k = 13; s = 0.0156;

x∗ = (−2.9164,−0.5533,−3.2353)′

k = 24; s = 0.0156;

x∗ = (−4.0049,−0.7343,−4.9438)′

k = 12; s = 0.0156;

x∗ = (−2.8158,−1.0362,−4.9884)′

Algorithm

3.2

k = 14; s = 0.0156;

x∗ = (0.5817, 0.2605,−2.4136)′

k = 13; s = 0.0156;

x∗ = (3.6451,−1.2376,−8.0093)′

k = 21; s = 0.0156;

x∗ = (3.6838,−1.8361,−6.6465)′

CQ

Algorithm

k = 211; s = 0.0313;

x∗ = (−0.0023, 0.0015, 0.0011)′

k = 170; s = 0.0313;

x∗ = (−0.0056, 0.0033, 0.0027)′

k = 208; s = 0.0625;

x∗ = (−0.0065, 0.0035, 0.0032)′
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Figure 1. The performance of our algorithms and the CQ algorithm (Case x0 = (−1, 2, 4)′ and
tk = 0.5 ).

Figure 2. The performance of Algorithms 3.1 (Case x0 = (−5, 2,−3)′ ).

In the view of Table 1 and Figure 1, it is easy to observe that our algorithms have better

performance than the general CQ Algorithm. It appears that our algorithms need fewer iter-

ations and converge more quickly than the general CQ Algorithm. In addition, by observing

Figure 2, we find that the magnitude of inertial term has a certain effect on the number of

iterations.

Example 4.2 Let A = (aij)M×N , aij ∈ (0, 1) be a random matrix, M ,N be two positive

integers. C = {x ∈ ℜN |
N∑
l=1

xl
2 ≤ r2}, Q = {x ∈ ℜM |x ≤ b}. To ensure the existence of the

solution of the problem, the vector b is generated by using the following way: Given a random

N -dimensional negative vector (each component is negative) z ∈ C, r = ∥z∥, taking b = Az.

Find x ∈ C with Ax ∈ Q.
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The numerical results of Example 4.2 can be seen from Table 2. In the table, k denotes the

number of iterations, s denotes the computing time.

Table 2. Results for Example 4.2.

M,N tk Algorithm 3.1 Algorithm 3.2 CQ Algorithm

M=20, N=10

x0 = (1, 1, 1, 0, 0, · · · , 0)′
0.2 k = 63; s = 0.0938 k = 67; s = 0.0938

k = 308; s = 0.12500.4 k = 61; s = 0.0625 k = 47; s = 0.0625

0.6 k = 59; s = 0.0625 k = 30; s = 0.0625

M=100, N=90

x0 = (1, 1, 1, 1, 1, 0, · · · , 0)′
0.1 k = 44; s = 0.1875 k = 23; s = 0.1250

k = 167; s = 0.34380.2 k = 43; s = 0.1875 k = 19; s = 0.1250

0.4 k = 42; s = 0.1875 k = 16; s = 0.0938

As can be seen from the numerical results in Table 2, in the case of higher dimensions, our

algorithms are still effective, and they still converge faster than the general CQ algorithm.

§5 Some concluding remarks

This paper presentes two hybrid inertial CQ projection algorithms with different rules of

stepsize selection for solving SFP. Based on the hybrid CQ projection algorithm, we add the

inertial term in the first projection step to accelerate the convergence of the algorithm. The

main difference between Algorithm 3.1 and Algorithm 3.2 is the projection region obtained

by different line-search methods in the second projection step. According to our convergence

theory and also confirmed by numerical simulations, we can see that our proposed algorithms

have better convergence properties than the general CQ algorithm.
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