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Some results on derivations of MV-algebras

WANG Jun-tao1 HE Peng-fei2 SHE Yan-hong1,∗

Abstract. In this paper, we review some of their related properties of derivations on MV-

algebras and give some characterizations of additive derivations. Then we prove that the fixed

point set of Boolean additive derivations and that of their adjoint derivations are isomorphic.

In particular, we prove that every MV-algebra is isomorphic to the direct product of the fixed

point set of Boolean additive derivations and that of their adjoint derivations. Finally we show

that every Boolean algebra is isomorphic to the algebra of all Boolean additive (implicative)

derivations. These results also give the negative answers to two open problems, which were

proposed in [Fuzzy Sets and Systems, 303(2016), 97-113] and [Information Sciences, 178(2008),

307-316].

§1 Introduction

MV-algebras were introduced by Chang for the purpose of providing an algebraic proof of

the completeness theorem of infinite-valued propositional logics [2]. In the present paper, the

infinite-valued logic refers to that proposed by  Lukasiewicz and Tarski [14] with truth values

in the interval [0,1] of real numbers. Thus, in a certain sense, MV-algebras stand in relation to

multiple-valued logic as Boolean algebras do to classical logic. Moreover, Chang [3] established

a bijective correspondence between the linearly ordered MV-algebras and the linearly ordered

abelian ℓ-groups with a strong unit and used this result in order to obtain an algebraic proof

for the completeness theorem of  Lukasiewicz propositional logic in another way. For a detailed

consideration of MV-algebras and their related results, we refer to [2-4,17-22].

The notion of derivations, introduced from the analytic theory, is helpful for studying alge-

braic structures and properties in algebraic systems. In 1957, Posner [15] introduced the notion

of derivations in a prime ring (R,+, ·), which is a map d : R → R satisfying the following two

conditions:
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(i) d(x + y) = d(x) + d(y), (ii) d(x · y) = d(x) · y + x · d(y)

for all x, y ∈ R. Subsequently, a number of research articles have appeared on derivations in

the theory of rings and references there in [1,5,12]. Inspired by derivations on rings, Jun et

al [13] applied the notion of derivations to BCI-algebras and gave some characterizations of p-

semisimple BCI-algebras. In the past few years, Xin [24] introduced the concept of derivations

in a lattice (L,∧,∨), which is a map d : L → L satisfying the two conditions:

(i) d(x ∨ y) = d(x) ∨ d(y), (ii) d(x ∧ y) = (d(x) ∧ y) ∨ (x ∧ d(y))

for all x, y ∈ L, and characterized modular lattices and distributive lattices by isotone deriva-

tions; Ghorbain et al [10] introduced the notions of additive derivations on an MV-algebra

(L,⊕, ∗, 0), which is a map d : L → L satisfying the following two conditions:

(i) d(x⊕ y) = d(x) ⊕ d(y), (ii) d(x⊙ y) = (d(x) ⊙ y) ⊕ (x⊙ d(y))

for any x, y ∈ L, and proved that an additive derivation of a linearly ordered MV-algebra is

isotone. In order to get the general algebraic results of derivation on t-norm based logical alge-

bras, He [11] investigated derivations on residuated lattices and characterized Heyting algebras

in terms of derivations, and proved that the fixed point set of principal ideal derivations and

that of their adjoint derivations are lattice isomorphic.

It always been known that ideals play a central role in studying logical algebras, and so the

relationship between derivations and ideals is an important research topic to study. For example,

Xin proved the fixed point set of a lattice derivation is an ideal in lattices and proposed an open

problem related to them as follow: (OP1) for any lattice ideal I of a lattice L, whether

there exists a derivation d such that Fixd(L) = I. They gave the positive answer to the

(OP1) under certain conditions [23, Theorem 4.13]. Inspired by this, He further clarified the

relationship between lattice ideal and derivations in residuated lattices, and proposed another

open problem is similar to that of (OP1), that is, (OP2) for any lattice ideal I of a general

residuated lattice L, whether there exists a derivation d such that Fixd(L) = I. He

also gave the positive answer to the (OP2) under certain conditions in Heyting algebras in

[24, Theorem 4.14]. Unfortunately, none of the above-mentioned open problems have been

completely solved so far.

In this paper, we will further study the derivations of MV-algebras. One of our aims is

to obtain some representations and characterizations of MV-algebras and Boolean algebras via

derivations. In particular, we will obtain the following main results:

(1) Every MV-algebra is isomorphic to the direct product of the fixed point set of Boolean

additive derivations and that of their adjoint derivations, which shows that Boolean deriva-

tions coincide with direct product decompositions of MV-algebras (See Theorem 5.16 and

Corollary 5.17).

(2) The fixed point set of Boolean additive derivations and that of their adjoint derivations

in MV-algebras are isomorphic. Indeed, this result essentially goes a step further of the

following result in [24, Theorem 4.10] that the fixed point set of principal ideal derivations and

that of their adjoint derivations are lattice isomorphic. (See Theorem 5.15)



128 Appl. Math. J. Chinese Univ. Vol. 38, No. 1

(3) Every Boolean algebra is isomorphic to the algebra of all Boolean additive (implicative)

derivations. Indeed, this result essentially go a step further of the following result in [24, Theo-

rem 3.29] that every distributive lattice is isomorphic to the algebra of all principle derivations

in distributive lattices. (See Theorem 5.21 and Theorem 5.22)

The other aim of us is to further study the relationship between derivations and ideals of

MV-algebras. Indeed, we will obtain the following main results:

(4) We also give a negative answer to the above two open problems (OP1) and (OP2). (See

Remark 4.7)

The paper is organized as follows: In Section 2, we review some basic definitions and results

about MV-algebras. In Section 3, we further study derivations in MV-algebras. In Section

4, we further clarify the relationship between ideal and derivations in MV-algebras and give

a negative answer to open problems in [11,24]. In Section 5, we obtain some representations

and characterizations of MV-algebras and Boolean algebras via Boolean derivations and their

adjoint derivations.

§2 Preliminary

In this section, we summarize some definitions and results about MV-algebras, which will

be used in the following sections.

An algebra (L,⊕,∗ , 0) of type (2, 1, 0) is called an MV-algebra if it satisfies the following

conditions:

(1) (L,⊕, 0) is a commutative monoid,

(2) (x∗)∗ = x,

(3) 0∗ ⊕ x = 0∗,

(4) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x,

for any x, y ∈ L.

We shall adopt the usual conventions for MV-algebras: ∗ operation is more binding than ⊕.

On each MV-algebra L, we define the constant 1 and the operations ⊙, ⊖, → as follows:

1 = 0∗, x⊙ y = (x∗ ⊕ y∗)∗, x⊖ y = x⊙ y∗ and x → y = x∗ ⊕ y

for any x, y ∈ L. We define x ≤ y if and only if x∗ ⊕ y = 1. It follows that ≤ is a partial order,

called the natural order of L. The natural order determines a lattices structure, in which,

x ∨ y = (x⊙ y∗) ⊕ y, x ∧ y = x⊙ (x∗ ⊕ y)

for any x, y ∈ L. The structure (L,∧,∨, 0, 1) is a bounded distributive lattice. We say that the

MV-algebra L is linearly ordered if the lattice (L,∧,∨, 0, 1) is linearly ordered. An MV-algebra

is a Boolean algebra if its satisfies the additional equation x ⊕ x = x (or x ⊙ x = x) for any

x ∈ L, and denote by B(L) = {x ∈ L | x⊕x = x} be the set of all idempotent elements of L. As

MV-algebras form a variety, the notions of homomorphism, subalgebra are just the particular

cases of the corresponding universal algebraic notions [2,3,4].

Example 2.1. ([3]) Let L = [0, 1] be the real unit interval. If we define
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x⊕ y = min{1, x + y}, x∗ = 1 − x

for any x, y ∈ L, then (L,⊕,∗ , 0) is an MV-algebra. Also, for each number n ≥ 2, then n-element

set

Sn = {0, 1
n−1 ,

2
n−1 , · · · ,

n−2
n−1 , 1}

is a subalgebra of an MV-algebra L.

Proposition 2.2. ([3,4]) In any MV-algebra L, the following properties hold: for all x, y, z ∈ L,

(1) x⊕ x∗ = 1,

(2) x⊙ x∗ = 0,

(3) x ≤ y if and only if x → y = 1,

(4) x⊙ y ≤ x ∧ y,

(5) x → (y ∧ z) = (x → y) ∧ (x → z),

(6) (x ∨ y) → z = (x → z) ∧ (y → z),

(7) x ≤ y implies x⊙ z ≤ y ⊙ z,

(8) x ∨ y = (x → y) → y = (y → x) → x,

(9) x ≤ y → x,

(10) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z),

(11) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z),

(12) x⊙ y ≤ z if and only if x ≤ y → z,

(13) x⊖ y ≤ z if and only if x ≤ y ⊕ z.

Proposition 2.3. ([10]) Let L be an MV-algebra and e ∈ B(L). Then the following properties

hold: for any x, y ∈ L,

(1) e ∧ (x⊙ y) = (e ∧ x) ⊙ (e ∧ y),

(2) e ∨ (x⊙ y) = (e ∨ x) ⊙ (e ∨ y),

(3) e ∧ (x⊕ y) = (e ∧ x) ⊕ (e ∧ y),

(4) e ∨ (x⊕ y) = (e ∨ x) ⊕ (e ∨ y),

(5) e⊙ (x → y) = e⊙ [(e⊙ x) → (e⊙ y)],

(6) e → (x → y) = (e → x) → (e → y).

Let L be an MV-algebra. A nonempty subset I of L is called an ideal of L if it satisfies: (1)

x, y ∈ I implies x⊕ y ∈ I; (2) x ∈ I, y ∈ L and y ≤ x imply y ∈ I. An ideal I of L is proper if

I ̸= L. A proper ideal I of L is called a prime ideal if for any x, y ∈ L such that x∧ y ∈ I, then

x ∈ I or y ∈ I. A nonempty subset I of L is called a lattice ideal of L if it satisfies: (i) for all

x, y ∈ I, x ∨ y ∈ I; (ii) for all x, y ∈ L, if x ∈ I and y ≤ x, then y ∈ I, that is, a lattice ideal of

an MV-algebra L is the notion of ideal in the underlying lattice.

For any nonempty subset X of L, the smallest lattice ideal containing X is called the lattice

ideal generated by X. The lattice ideal generated by X will be denoted by (X]. In particular,

if X = {t}, we write (t] for ({t}], (t] is called a principal lattice ideal of L. It is easy to check

that (t] =↓ t = {y ∈ L|y ≤ t}. From Principle of Duality, we can define the lattice filter and

the principal lattice filter of an MV-algebra L.
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Let I be an ideal of an MV-algebra L. We define a binary relation θI on L as follows:

for any x, y ∈ L, (x, y) ∈ θI if and only if (x ⊖ y) ⊕ (y ⊖ x) ∈ I. Then, θI is a congruence

relation on L. Thus, the binary relation ≤ on L/I which is defined by [x] ≤ [y], if and only if

x → y ∈ I, is an order relation on L/I. For any x ∈ L, let [x]I be the equivalence class [x]θI and

L/I = L/θI = {[x]I |x ∈ L}. Then L/I becomes an MV-algebra with the natural operations

induced from those of L ([6,7,16]).

Definition 2.4. ([9]) Given ordered sets E,F and order-preserving mappings f : E −→ F and

g : F −→ E, we say that the pair (f, g) establishes a Galois connection between E and F if

fg ≥ idF and gf ≤ idE .

§3 Some derivations of MV-algebras

In this section, we further study derivations on MV-algebras and give some characterizations

of additive derivations.

Definition 3.1. ([10]) Let L be an MV-algebra. A map d : L −→ L is called a derivation on

L if it satisfies the following condition: for any x, y ∈ L,

d(x⊙ y) = (d(x) ⊙ y) ⊕ (x⊙ d(y)).

Example 3.2. ([10]) Let L = {0, a, b, c, d, 1} and operations ⊕ and ∗ be defined as follows:

⊕ 0 a b c d 1

0 0 a b c d 1

a a c d c 1 1

b b d b 1 d 1

c c c 1 c 1 1

d d 1 d 1 1 1

1 1 1 1 1 1 1

∗ 0 a b c d 1

1 d c b a 0

Then ({0, a, b, c, d, 1},⊕, ∗, 0) is an MV-algebra. Define a map d : L −→ L by

d(x) =

{
0, x = 0, a, c

b, x = b, d, 1.

It is verified that d is a derivation on an MV-algebra L.

Proposition 3.3. ([10]) Let L be an MV-algebra and d be a derivation on L. Then we have:

for any x ∈ L,

(1) d(0) = 0,

(2) d(1) ∈ B(L),

(3) d(x) ⊙ x∗ = x⊙ d(x∗) = 0,

(4) d(x) ≤ x,

(5) d(x) = d(x) ⊕ (x⊙ d(1)).
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Definition 3.4. ([10]) Let L be an MV-algebra and d be a derivation on L.

(1) d is called an isotone derivation provided that x ≤ y implies d(x) ≤ d(y) for all x, y ∈ L,

(2) d is called an additive derivation provided that d(x⊕ y) = d(x) ⊕ d(y) for all x, y ∈ L.

Example 3.5. ([10]) Let S4 be the MV-algebra in Example 2.1. Define a map d : S4 −→ S4

by

d(x) =

{
0, x = 0, 1

3 , 1

1
3 , x = 2

3 .

Then d is a derivation on S4, but it is not an additive derivation on L, since

d( 1
3 + 2

3 ) = d(1) = 0 ̸= 1
3 = d( 1

3 ) + d( 2
3 ).

Moreover, d is not an isotone derivation on L, since

2
3 ≤ 1, d( 2

3 ) = 1
3 ≥ 0 = d(1).

Example 3.6. Let Sn be the MV-algebra in Example 2.1. Define a map d : Sn → Sn as

follows: for all x ∈ Sn,

d(x) =

{
1

n−1 , x = 1

1
n−1 ⊙ x, x ̸= 1

It is verified that d is not only an additive, but also an isotone derivation on Sn.

Proposition 3.7. Let L be an MV-algebra and d be an additive derivation on L. Then we

have: for any x, y ∈ L,

(1) d is an isotone derivation,

(2) d(x) = d(1) ⊙ x,

(3) d(d(x)) = d(x),

(4) d(x) ∈ B(L),

(5) d(d(x) → d(y)) = d(x → y),

(6) Fixd(L) = d(L), where Fixd(L) = {x ∈ L|d(x) = x},
(7) if d(L) = L, then d = idL,

(8) Ker(d) is an ideal of L, where Ker(d) = {x ∈ L|d(x) = 0}.

Proof. (1) If x ≤ y, then y = x ∨ y = x⊕ (x∗ ⊙ y). By Definition 3.4(2), we have

d(y) = d(x⊕ (x∗ ⊙ y)) = d(x) ⊕ d(x∗ ⊙ y) ≥ d(x),

which implies d(x) ≤ d(y).

(5) It follows from Propositions 2.3(5), 3.3(2) and (2) that

d(d(x) → d(y)) = d(1) ⊙ [(d(1) ⊙ x) → (d(1) ⊙ y)] = d(1) ⊙ (x → y) = d(x → y),

which implies d(d(x) → d(y)) = d(x → y) for any x, y ∈ L.

As a consequence of Propositions 3.3 and 3.7, we have the following fact.
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Theorem 3.8. Let L be an MV-algebra and d be a derivation on L. Then the following

statements are equivalent: for any x, y ∈ L,

(1) d is an additive derivation,

(2) d is an isotone derivation,

(3) d(x) ≤ d(1),

(4) d(x) = d(1) ⊙ x,

(5) d(x⊙ y) = d(x) ⊙ y = x⊙ d(y),

(6) d(x ∧ y) = d(x) ∧ d(y),

(7) d(x ∨ y) = d(x) ∨ d(y),

(8) d(x⊙ y) = d(x) ⊙ d(y),

(9) d(x) ≤ y if and only if d(x) ≤ d(y),

(10) d(x) → d(y) = d(x) → y.

Proof. (1) ⇒ (2) It follows from Proposition 3.7(1)

(2) ⇒ (3) It is straightforward.

(3) ⇒ (4) It follows from Proposition 3.7(2).

(4) ⇒ (1) From Propositions 2.3(3),3.3(2) and Proposition 3.7(2), we have

d(x⊕ y) = d(1) ⊙ (x⊕ y) = (d(1) ⊙ x) ⊕ (d(1) ⊙ y) = d(x) ⊕ d(y).

(4) ⇒ (5) From (4), we have

d(x⊙ y) = d(1) ⊙ x⊙ y = x⊙ (d(1) ⊙ y) = x⊙ d(y).

(5) ⇒ (4) Taking y = 1 in (5), we have d(x) = d(1) ⊙ x.

(4) ⇒ (6) From (4) and Proposition 3.3(2), we have

d(x ∧ y) = d(1) ⊙ (x ∧ y) = d(1) ∧ (x ∧ y) = d(1) ∧ d(1) ∧ x ∧ y = d(x) ∧ d(y).

(4) ⇒ (7) From (4) and Proposition 3.3(2), we have

d(x∨y) = d(1)⊙(x∨y) = d(1)∧(x∨y) = (d(1)∧x)∨(d(1)∧y) = (d(1)⊙x)∨(d(1)⊙y) = d(x)∨d(y).

(7) ⇒ (2) Let x ≤ y, we have x ∨ y = y. Then it follows from (7), we have

d(y) = d(x ∨ y) = d(x) ∨ d(y) ≥ d(x).

(4) ⇒ (8) From (4) and Proposition 3.3(2), we have

d(x⊙ y) = d(1) ⊙ (x⊙ y) = d(1) ⊙ d(1) ⊙ x⊙ y = d(x) ⊙ d(y).

(6) ⇒ (4), (7) ⇒ (4), (8) ⇒ (4) are straightforward.

(2) ⇒ (9) If d(x) ≤ y, then d(d(x)) ≤ d(y), and hence by Proposition 3.7(3), we have

d(x) ≤ d(y). Conversely, if d(x) ≤ d(y), from Proposition 3.3(4), then d(x) ≤ d(y) ≤ y for all

x, y ∈ L.

(9) ⇒ (2) If x ≤ y, then d(x) ≤ x ≤ y, and hence d(x) ≤ d(y) for all x, y ∈ L.

(2) ⇒ (10) Assume that d is an isotone derivation on L. From d(y) ≤ y for any y ∈ L, it

follows that d(x) → d(y) ≤ d(x) → y. On the other hand, let t ≤ d(x) → y for all t ∈ L, we

can obtain d(x) ⊙ t ≤ y. Since d is an isotone derivation, we have d(d(x) ⊙ t) ≤ d(y) for all
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x, y, t ∈ L. From d(x⊙y) = (d(x)⊙y)⊕(x⊙d(y)), we get d(x)⊙y ≤ d(x⊙y) for all x, y ∈ L. It

follows d(d(x))⊙ t ≤ d(d(x)⊙ t). By Proposition 3.7(3), we have d(x)⊙ t ≤ d(d(x)⊙ t) ≤ d(y).

Hence t ≤ d(x) → d(y) for all t ∈ L, which implies d(x) → y ≤ d(x) → d(y) for all x, y ∈ L.

Therefore, we obtain d(x) → d(y) = d(x) → y for any x, y ∈ L.

(10) ⇒ (2) Assume that d(x) → d(y) = d(x) → y for all x, y ∈ L. For any x, y ∈ L, let

x ≤ y, by Proposition 3.3(4), we have d(x) ⊙ 1 = d(x) ≤ x ≤ y. It follows that 1 ≤ d(x) → y =

d(x) → d(y), which implies d(x) ≤ d(y) for any x, y ∈ L.

Remark 3.9. (1) Theorem 3.8 shows that isotone derivations are equivalent to additive deriva-

tions on MV-algebras.

(2) Example 3.2 shows that an additive derivation is not a homomorphism on an MV-algebra

in general, since d(a∗) = b ̸= 1 = (d(a))∗.

(3) Example 3.2 shows that the fixed point set of an additive derivation d is not a subalgebra

of an MV-algebra L in general, since 0∗ = 1 /∈ {0, b} = Fixd(L).

(4) Theorem 3.8(4) shows that every additive derivation d on an MV-algebra L is completely

defined by the image d(1) of the 1.

Theorem 3.10. Let d be an additive derivation on MV-algebra L. Then

(Fixd(L),⊕,¬, 0)

is an MV-algebra, where ¬x = d(x∗) = (x⊕ (d(1))∗)∗ for any x ∈ Fixd(L).

Proof. It follows from Definition 3.4(2) that Fixd(L) is closed under ⊕.

Also, for all x ∈ Fixd(L), from Propositions 3.3(2) and 3.7(2), we have

d(¬x) = d(d(x∗)) = d(1) ⊙ d(1) ⊙ x∗ = d(1) ⊙ x∗ = d(x∗) = ¬x,
which implies that Fixd(L) is closed under ¬.

(MV1) It follows from Definition 3.4(2).

(MV2) From Theorem 3.8(3), we have

¬¬x = (¬x⊕ (d(1))∗)∗ = (x⊕ (d(1))∗) ⊙ d(1) = x ∧ d(1) = d(x) ∧ d(1) = x,

which implies ¬¬x = x for all x ∈ Fixd(L).

(MV3) From Theorem 3.8(3) and Proposition 3.3(2), we have

x⊕ ¬0 = x⊕ d(1) = d(x) ⊕ d(1) = d(x) ∨ d(1) = d(1),

which implies x⊕ ¬0 = d(1) for all x ∈ Fixd(L).

(MV4) From Theorem 3.8(4), we have

¬(¬x⊕ y) ⊕ y = (¬x⊕ y ⊕ (d(1))∗)∗ ⊕ y

= ((x⊕ (d(1))∗)∗ ⊕ y ⊕ (d(1))∗)∗ ⊕ y

= ((x⊕ (d(1))∗) ⊙ d(1) ⊙ y∗) ⊕ y

= ((x ∧ d(1)) ⊙ y∗) ⊕ y

= x ∨ y,

which implies ¬(¬x⊕ y) ⊕ y = x ∨ y for any x, y ∈ Fixd(L).
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Proposition 3.11. Let L be an MV-algebra and d an additive derivation on L. Then we have

the following properties:

(1) d : L −→ Fixd(L) is a surjective homomorphism,

(2) d̄ : L/Ker(d) −→ Fixd(L) is an isomorphism.

Proof. It follows from Theorem 3.8 and Proposition 3.10.

(2) It is verified that Ker(d) is an ideal of L. If x ∼Ker(d) y, then (x⊖y)⊕(y⊖x) ∈ Ker(d),

and hence

d((x⊖ y) ⊕ (y ⊖ x)) = d(x⊖ y) ⊕ d(y ⊖ x) = 0.

Then it follows from Theorem 3.8(5) that d(x ⊖ y) = d(x ⊙ y∗) = d(x) ⊙ y∗ = 0, which

implies d(x) ≤ y. Similarity, we can prove d(y) ≤ x. Then by Theorem 3.8(10), d(x) = d(y).

Thus, d̄ is well defined. Moreover, it follows from (1) that d̄ : L/Ker(d) −→ Fixd(L) is an

isomorphism.

Corollary 3.12. Let L be an MV-algebra and d : L → L be a map on L such that d(L) ⊆ B(L).

Then the following statements are equivalent: for any x, y ∈ L,

(1) d is an additive derivation on L,

(2) d(x) = d(1) ⊙ x,

(3) d(x⊙ y) = d(x) ⊙ y = x⊙ d(y).

Proof. (1) ⇒ (2) It follows from Proposition 3.7(1).

(2) ⇒ (3) The proof is similar to that of Theorem 3.8 (4) ⇒ (5).

(3) ⇒ (1) The proof is similar to that of Theorem 3.8 (5) ⇒ (1).

§4 Solution to open problems related to derivations

In this section, we further discuss the relationship between ideals and additive derivations

on MV-algebras, and give a negative answer to the open problems (OP1) and (OP2).

Example 4.1. Let S3 be the MV-algebra in Example 2.1. Now, we define a map d : S3 −→ S3

by

d(x) =

{
0, x = 0, 1

1
2 , x = 1

2 .

Then d is a derivation on S3, while is not an additive derivation ([9]). Also, Fixd(L) = {0, 1
2}

is not an ideal of L since 1
2 ⊕ 1

2 = 1 /∈ Fixd(L).

Proposition 4.2. Let L be an MV-algebra and d be an additive derivation on L. Then Fixd(L)

is an ideal of L.

Proof. (1) It follows from Definition 3.4(2) that Fixd(L) is closed under ⊕.
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(2) Let x ≤ y and y ∈ Fixd(L). Then

d(x) = d(x ∧ y) = d((x⊕ y∗) ⊙ y)

= (d(x⊕ y∗) ⊙ y) ⊕ ((x⊕ y∗) ⊙ d(y))

= (d(x⊕ y∗) ⊙ y) ⊕ ((x⊕ y∗) ⊙ y)

= (d(x⊕ y∗) ⊙ y) ⊕ (x ∧ y)

= (d(x⊕ y∗) ⊙ y) ⊕ x,

which implies x ≤ d(x), and hence x ∈ Fixd(L).

However, the converse of Proposition 4.2 may not hold in general.

Example 4.3. Let L be the MV-algebra in Example 3.5. Then Fixd(L) = {0} is an ideal of

L, but d is not an additive derivation on L.

Inspired by Proposition 4.2, we naturally ask that whether there exists an additive

derivation d such that Fixd(L) = I for given ideal I in an MV-algebra L. For the

similar question regard to the lattice and residuated lattice, Xin gives the positive answer under

certain conditions as follows in [11,23].

Proposition 4.4. Let L be a lattice (Heyting algebra) and I be a non-void prime ideal of L.

Then there exists a derivation d such that Fixd(L) = I.

Proof. Let I be a non-void prime ideal of L. Then there exists a map d : L −→ L defined by

d(x) =

{
x, x ∈ I

x ∧ t, x ∈ L\I, where t ∈ I,

is a derivation satisfying Fixd(L) = I. Indeed, if x, y ∈ I, then we can see that

d(x ∧ y) = x ∧ y = (x ∧ y) ∨ (x ∧ y) = (dx ∧ y) ∨ (x ∧ dy).

If x ∈ I, y ∈ L I, then x∧ y ≤ x and so x∧ y ∈ I. Hence d(x∧ y) = x∧ y, (dx∧ y)∨ (x∧ dy) =

(x ∧ y) ∨ (x ∧ y ∧ a) = x ∧ y, which shows that d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy).

If x, y ∈ L I, then x∧y ∈ L I since I is prime. Hence d(x∧y) = x∧y∧a, (dx∧y)∨(x∧dy) =

(x ∧ a ∧ y) ∨ (x ∧ y ∧ a) = x ∧ y ∧ a. By the above argument, we can see that d is a derivation.

Clearly Fixd(L) = I.

The following example shows that t ∈ I in Proposition 4.4 is necessary.

Example 4.5. Let L = {0, a, b, c, 1}, where 0 ≤ a ≤ b, c ≤ 1. Define operation → on L as

follows:

→ 0 a b c 1

0 1 1 1 1 1

a 0 1 1 1 1

b 0 c 1 c 1

c 0 b b 1 1

1 0 a b c 1
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It is verified that ({0, a, b, c, 1},∧,∨,→, 0, 1) is a Heyting algebra and I = {0, a, b} is a non-void

prime ideal of L. Then by Proposition 4.4 there exists a map d : L → L defined by

d(x) =

{
x, x ∈ I

x ∧ c, x ∈ L\I,

is a derivation on L. But Fixd(L) = {0, a, b, c} ≠ I.

The following example shows that the condition “prime ideal” in Proposition 4.4 is necessary.

Example 4.6. ([22]) Let L = [0, 1] and I = (0, 1). Then (L,≤) is a lattice and I is an ideal of

L, but it is not prime, where ≤ is the ordinary order. Moreover, we can see that there is not

any isotone derivation d such that Fixd(L) = I.

The following remark give a negative answer to the two open problems (OP1) and (OP2).

Remark 4.7. The answer to the above open problems are easily seen to be negative even for

Boolean algebras. In particular, let L be the finite-cofinite Boolean algebra on an infinite set

and I the (prime) ideal of finite sets. If I = Fixd(L) for some additive derivation d, which is

equivalent to the isotone lattice derivation on L, then by Theorem 3.8(9) for each finite set X

and infinite set Y we have X ⊆ d(Y ) if and only if X ⊆ Y , which implies that d(X) have to be

the smallest finite set below Y , but no such set exists. It is well known that Boolean algebras

are a subclass of MV-algebras, residuated lattices and lattices, and additive derivations are a

special classes of derivations and lattice derivations. Then we give a negative answer to the two

open problems (OP1) and (OP2).

§5 Representations of Boolean algebras based on derivations

In this section, we give some representations of Boolean algebras via two special kinds of

derivations, which are defined as follows:

(1) da : L → L such that da(x) = a⊙ x, for all x ∈ L,

(2) ga : L → L such that ga(x) = a⊕ x, for all x ∈ L.

Example 5.1. Let S3 be the MV-algebra and d be a derivation in Example 4.1. Then d is not

an additive derivation on S3, since d( 1
2 ⊕ 1

2 ) = d(1) = 0 ̸= 1 = d( 1
2 ) ⊕ d( 1

2 ).

Theorem 5.2. Let L be an MV-algebra. Then the following statements are equivalent:

(1) L is a Boolean algebra,

(2) da is an additive derivation on L, for all a ∈ L.

Proof. (1) ⇒ (2) If L is a Boolean algebra, by Proposition 2.2, then

da(x⊙ y) = a⊙ (x⊙ y) = (a⊙ x) ⊙ y = da(x) ⊙ y,

da(x⊕ y) = (x⊕ y) ⊙ a = (x ∨ y) ⊙ a = (x⊙ a) ∨ (y ⊙ a) = da(x) ∨ da(y) = da(x) ⊕ da(y),

for any x, y ∈ L, which implies that da is an additive derivation on L.

(2) ⇒ (1) If da is an additive derivation on MV-algebra L, then

a = da(1) = da(1 ⊙ 1) = (da(1) ⊙ 1) ⊕ (1 ⊙ da(1)) = a⊕ a,

for any a ∈ L, which implies L ⊆ B(L). Thus, L is a Boolean algebra.
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Remark 5.3. Theorem 5.2 shows that da is an additive derivation on a Boolean skeleton of an

MV-algebra. Hence we call da a Boolean additive derivation on an MV-algebra. We denote the

set of all Boolean additive derivations on MV-algebras by D(L), that is, D(L) = {da|a ∈ B(L)}.

Now, we introduce the adjoint derivation of Boolean additive derivations on MV-algebras.

Definition 5.4. Let L be an MV-algebra. A map g : L → L is called an implication derivation

on L if it preserves → and satisfies the following condition: for any x, y ∈ L,

g(x → y) = (g(x) → y) ⊕ (x → g(y)).

Example 5.5. Let L = {0, a, b, 1}, where 0 ≤ a, b ≤ 1. Define operations ⊕ and ∗ as follows:

⊕ 0 a b 1

0 0 a b 1

a a a 1 1

b b 1 b 1

1 1 1 1 1

∗ 0 a b 1

1 b a 0

Then ({0, a, b, 1},⊕, ∗, 0) is an MV-algebra. Define a map g : L −→ L by

g(x) =

{
a, x = 0, a

1, x = b, 1.

It is verified that g is an implicative derivation on L, while g is not a homorphism on L, since

g(0) ̸= 0.

Theorem 5.6. Let L be an MV-algebra. Then the following statements are equivalent:

(1) L is a Boolean algebra,

(2) ga is an implicative derivation on L, for all a ∈ L.

Proof. (1) ⇒ (2) If L is a Boolean algebra and a ∈ L, then

ga(x → y) = ga(x) → ga(y).

In particular, by Proposition 2.3(6), we have

a∗ → (x → y) = (a∗ → x) → (a∗ → y),

which is equivalent to

a⊕ (x → y) = (a⊕ x) → (a⊕ y),

which implies ga(x → y) = ga(x) → ga(y) for any a ∈ L.



138 Appl. Math. J. Chinese Univ. Vol. 38, No. 1

Then by Proposition 2.3, we have

ga(x → y) = a⊕ (x → y)

= x∗ ⊕ (a⊕ y)

= x∗ ⊕ ga(y)

= ((ga(x))∗ ∨ x∗) ⊕ (ga(y) ∨ y)

= ((ga(x))∗ ⊕ x∗) ⊕ (ga(y) ⊕ y)

= ((ga(x))∗ ⊕ y) ⊕ (x∗ ⊕ ga(y))

= (ga(x) → y) ⊕ (x → ga(y).

which implies that ga is an implicative derivation on L.

(2) ⇒ (1) If ga is an implicative derivation on MV-algebra L, then

ga(x → y) = ga(x) → ga(y)

for all x, y ∈ L. Taking x = a∗ and y = a∗ ⊙ a∗ in the above equation, we have

ga(x → y) = a⊕ (x → y)

= a∗ → (a∗ → a∗ ⊙ a∗)

= a∗ ⊙ a∗ → a∗ ⊙ a∗

= 1,

and

ga(x) → ga(y) = (a∗ → a∗) → (a∗ → a∗ ⊙ a∗) = a∗ → a∗ ⊙ a∗,

which implies a∗ ≤ a∗ ⊙ a∗, and hence a∗ = a∗ ⊙ a∗, that is, a⊕ a = a.

Remark 5.7. Theorem 5.6 shows that ga is an implicative derivation on a Boolean skeleton

of an MV-algebra. Hence we call ga a Boolean implicative derivation on an MV-algebra. We

denote the set of all Boolean implicative derivations on MV-algebras by G(L), that is, G(L) =

{ga|a ∈ B(L)}.

Definition 5.8. A Boolean additive derivation µa is called residuated if there exists a Boolean

implicative derivation νa such that the pair (µa, νa) forms a Galois connection.

The Boolean implicative derivation νa is called the adjoint derivation of the Boolean additive

derivation µa.

If the Boolean additive derivation µa is residuated, with the properties of residuated map,

then µa and it’s adjoint derivation must be isotone. In particular, if the Boolean additive

derivation µa has the adjoint derivation νa, then the adjoint of µa unique. Thus we shall

denote this unique νa by µ∗
a.

Example 5.9. Let L be the MV-algebra in Example 5.5. Define two maps νa and µa on L as

follows:

µa =

{
0, x = 0, b

a, x = a, 1
, νa =

{
a, x = 0, a

1, x = b, 1.
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Then νa and µa are Boolean implicative and additive derivations on L, respectively, and (νa, µa)

forms a Galois connection on L.

Theorem 5.10. Let L be an MV-algebra and a ∈ B(L). Then the map ga∗ is the adjoint

derivation of the map da on L.

Proof. Theorems 5.2 and 5.6 show that da and ga∗ are a Boolean additive derivation and a

Boolean implicative derivation on L, respectively.

(1) If x ≤ y, then

ga∗(x) = a → x ≤ a → y = ga∗(y), da(x) = a⊕ x ≤ a⊕ y = da(y),

which implies ga∗ and da are isotone.

(2) da(x) = a⊙ x ≤ y if and only if x ≤ a → y = ga∗(y).

Thus (da, ga∗) forms a Galois connection on L.

As a corollary of Theorem 3.10 and Theorem 5.10, we have the following result.

Corollary 5.11. Let L be an MV-algebra and a ∈ B(L). Then (Fixda
(L),⊕,¬1, 0, a) is an

MV-algebra, where ¬1x = da(x∗) for all x ∈ L.

Corollary 5.12. Let L be an MV-algebra and a ∈ B(L). Then (Fixda∗ (L),⊕,¬2, 0, a
∗) is an

MV-algebra, where ¬2x = da∗(x∗) for all x ∈ L.

Corollary 5.13. Let L be an MV-algebra and a ∈ B(L). Then (Fixga(L),⊕, ◦1, a, 1) is an

MV-algebra, where x◦1 = ga(x∗) for all x ∈ L.

Corollary 5.14. Let L be an MV-algebra and a ∈ B(L). Then (Fixga∗ (L),⊕, ◦2, a∗, 1) is an

MV-algebra, where x◦2 = ga∗(x∗) for all x ∈ L.

We have seen in [11, Theorem 4.10] that the fixed point set of principal ideal derivations and

that of their adjoint derivations in residuated lattices are lattice isomorphic. The strong ver-

sion result for MV-algebras is as follows, i.e., the fixed point set of Boolean additive derivations

and that of their adjoint derivations in MV-algebras are isomorphic.

Theorem 5.15. Let L be an MV-algebra and a ∈ B(L). Then (Fixda(L),⊕,¬1, 0, a) and

(Fixga∗ (L),⊕, ◦2, a∗, 1) are isomorphic.

Proof. Let f :Fixda(L) −→ Fixga∗ (L) be defined by

f(x) = a∗ ⊕ x = a → x,

for all x ∈ Fixda(L), a ∈ L. Then f is well defined.

(1) If f(x) = f(y), then a∗⊕x = a∗⊕y, that is, x = a⊙x, y = a⊙y for all x, y ∈ Fixda(L).

Now, if a⊙ x ≤ x, then x ≤ a → x = a∗ ⊕ x, and hence x ≤ a∗ ⊕ y = a → y, that is x ≤ y. If

x ≤ a⊙ x, then y ≤ x. So x = y, which implies that f is injective.

(2) If x ∈ Fixga∗ (L), then x = ga∗(x) = a∗ ⊕ x. So

f(a⊙ x) = a∗ ⊕ (a⊙ x) = a∗ ⊕ (a⊙ (a∗ ⊕ x)) = a∗ ⊕ x = x,

which implies that f is surjective.

(3) From Propositions 2.2 and 2.3, we have
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f(x⊕ y) = a∗ ⊕ (x⊕ y) = a∗ ⊕ a∗ ⊕ x⊕ y = (a∗ ⊕ x) ⊕ (a∗ ⊕ y) = f(x) ⊕ f(y),

f(¬1x) = a∗ ⊕ (a⊙ x∗) = a∗ ⊕ x = a∗ ⊕ (a∗ ⊕ x) = (a∗ ⊕ x)◦2 = (f(x))◦2 ,

which implies that f is an homomorphism.

It is easily to checked that f−1(x) = a⊙ x is also an homomorphism.

Therefore, (Fixda(L),⊕,¬1, 0, a) and (Fixga∗ (L),⊕, ◦2, a∗, 1) are isomorphic.

The next result gives a representation of MV-algebra via Boolean derivations.

Theorem 5.16. Every MV-algebra L is isomorphic to the direct product (Fixda(L),⊕,¬1, 0, a)

and (Fixda∗ (L),⊕,¬2, 0, a
∗), where a ∈ B(L).

Proof. Let τ : L −→ Fixda(L) × Fixda∗ (L) be defined by

τ(x) = (x⊙ a, x⊖ a),

for all x, a ∈ L. Then it follows from Theorem 5.2 that τ is well defined.

(1) It follows from Corollaries 3.12,5.11 and 5.12 that τ is a surjective homomorphism from

L to Fixda(L) × Fixda∗ (L).

(2) If x1 ∈ Fixda(L) and x2 ∈ Fixda∗ (L), then for x = x1 ∨ x2,

τ(x) = (x1, x2).

Since (L,∧,∨) is a distributive lattice,

x = (x ∧ a) ∨ (x ∧ a∗)

for all x ∈ L. Thus τ is injective.

(3) It is easy to verify that τ−1(x, y) = x ∨ y for all (x, y) ∈ Fixda(L) × Fixda∗ (L), is also

an MV-homomorphism from Fixda(L) × Fixda∗ (L) to L.

As a consequence of Corollaries 5.13 and 5.14, we have the following result.

Corollary 5.17. Every MV-algebra L is isomorphic to the direct product (Fixga∗ (L),⊕, ◦2, a∗, 1)

and (Fixga(L),⊕, ◦1, a, 1), where a ∈ B(L).

Theorem 5.18. Let L be an MV-algebra. Then the following statements are equivalent:

(1) L is a Boolean algebra,

(2) for any a ∈ L, Fixda(L) = (a],

(3) for any a ∈ L, Fixga(L) = [a).

Proof. (1) ⇒ (2) If L is a Boolean algebra, then da(a) = a ⊙ a = a, which implies a ∈
Fixda(L). Then it follows from Proposition 4.2 that Fixda(L) is an ideal of L, that is, for all

x ∈ L, if x ≤ a, then x ∈ Fixda(L). So (a] ⊆ Fixda(L). Conversely, if x ∈ Fixda(L), then

da(x) = a⊙x = a∧x = x, which implies that x ≤ a, that is, x ∈ (a], and hence Fixda(L) ⊆ (a].

(2) ⇒ (1) Suppose that Fixda(L) = (a] for all a ∈ L. Notice that a ∈ (a], we have a ∈
Fixda(L). Then da(a) = a, that is, a⊙ a = a for all a ∈ L. So L is a Boolean algebra.

(1) ⇔ (3) The proof is similar to that of (1) ⇔ (2).
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The following theorems give a representation of Boolean algebras in terms of Boolean deriva-

tions. Namely, every Boolean algebra is isomorphic to the algebra of all Boolean derivations.

Theorem 5.19. Let L be an MV-algebra. Then (D(L),⊔,⊓, ⋆, d0, d1) is a Boolean algebra,

where

(da ⊔ db)x = (dax) ∨ (dbx), (da ⊓ db)x = (dax) ∧ (dbx), (da)⋆x = da∗x,

for any da, db ∈ D(L), x ∈ L.

Proof. (1) We show that (D(L),⊔,⊓, d0, d1) is a bounded lattice with d0 as the smallest element

and d1 as the greatest element.

For all da, db ∈ D(L) and x ∈ L, we have

(da ⊓ db)(x) = (da(x)) ∧ (db(x))

= (a⊙ x) ∧ (b⊙ x)

= (a ∧ b) ⊙ x

= da∧b(x),

which implies da ⊓ db ∈ D(L).

Also, we have

(da ⊔ db)(x) = (da(x) ∨ db(x))

= (a⊙ x) ∨ (b⊙ x)

= (a ∨ b) ⊙ x

= da∨b(x),

which implies da ⊔ db ∈ D(L).

Moreover, for all da ∈ D(L) and x ∈ L, we have

(da ⊓ d0)(x) = da(x) ∧ d0(x) = 0 = d0(x)

(da ⊔ d1)(x) = da(x) ∨ d1(x) = x = d1(x),

which implies that d0 and d1 are the smallest element and greatest element in D(L), respectively.

(2) We show that (D(L),⊔,⊓, ⋆, d0, d1) is a Boolean algebra.

For all da ∈ D(L) and x ∈ L, we have

(da)⋆(x) = da∗(x) = a∗ ⊙ x = da∗(x),

which implies (da)⋆(x) = da∗(x). Then follow from a∗ ∈ B(L) that da
⋆ ∈ D(L).

Also, we have

(da ⊔ (da)⋆)(x) = (da)(x) ∨ da∗(x) = (a⊙ x) ∨ (a∗ ⊙ x) = (a ∨ a∗) ⊙ x = x = d1(x),

(da ⊓ (da)⋆)(x) = (da)(x) ∧ da∗(x) = (a ∧ x) ∧ (a∗ ∧ x) = (a ∧ a∗) ∧ x = 0 = d0(x),

which implies da ⊔ (da)⋆ = d1, da ⊓ (da)⋆ = d0.

Theorem 5.20. Let L be an MV-algebra. Then (G(L),∩,∪, •, g0, g1) is a Boolean algebra,

where

(ga ∪ gb)x = (gax) ∨ (gbx), (ga ∩ gb)x = (gax) ∧ (gbx), (ga)•x = ga∗x,

for any ga, gb ∈ G(L), x ∈ L.
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Proof. The proof is similar to that of Theorem 5.19.

We have seen in [23, Theorem 3.29] that every distributive lattice is isomorphic to the algebra

of all principle derivations. The corresponding results for Boolean algebra are as follows.

Theorem 5.21. Every Boolean algebra (L,∧,∨, ∗, 0, 1) is isomorphic to (D(L),⊔,⊓, ⋆, d0, d1).

Proof. Let ϕ : L −→ D(L) be defined by

ϕ(a)(x) = a ∧ x,

for all a, x ∈ L. Then easily verified that ϕ is well defined, surjective and injective.

Also, for any a, b ∈ L, we have

ϕ(a ∧ b) = da∧b = (a ∧ b) ∧ x = (a ∧ x) ∧ (b ∧ x) = da ⊓ db = ϕ(a) ⊓ ϕ(b),

ϕ(a ∨ b) = da∨b = (a ∨ b) ∧ x = (a ∧ x) ∨ (b ∧ x) = da ⊔ db = ϕ(a) ⊔ ϕ(b),

ϕ(a∗) = da∗ = a∗ ∧ x = x⊖ a = (x⊖ a) ∨ (x⊖ x) = (x ∧ a) ⊖ x = (ϕ(a))⋆.

which implies that ϕ is a homomorphism.

Thus (L,∧,∨, ∗, 0, 1) and (D(L),⊔,⊓, ⋆, d0, d1) are isomorphic.

Theorem 5.22. Every Boolean algebra (L,∧,∨, ∗, 0, 1) is isomorphic to (G(L),∩,∪, •, g0, g1).

Proof. The proof is similar to that of Theorem 5.21.

§6 Concluding remarks

The notion of derivations gives a tool for studying structures and properties in algebraic

systems. In the paper, we obtain that the fixed point set of additive derivations is still an

MV-algebra, and show that the fixed point set of Boolean additive derivations and that of their

adjoint derivations are isomorphic. Then we obtain that some representation and characteri-

zation of MV-algebras via Boolean derivations and their adjoint derivations. This results also

give negative answers to two open problems.

In [8], B. Gerla introduced a pair of semirings (L,∨,⊙, 0, 1) and (L,∧,⊕, 0, 1) on MV-algebra

(L,⊕, ∗, 0) such that ∗ is semirings isomorphism between the above two semirings. Hence in

future, we will use the other operations to define different derivations on an MV-algebra and

we will obtain their properties. Also, we will study the relationship between them. We hope

that the above work would serve as a foundation for further on study the structure of various

derivations.
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